The TPRC Data Secces. Volume 11 DESTRIBUTION STATEMENT A Approved for public salegast Distribution STATEMENT DISTRIBUTION STATEMENT ACCESSION FOR WITS GRAAN BUTC TAB UNANNOUNCED JUSTIFICATION DISTRIBUTION STATEMENT SYALLARBILITY CODES DISTRIBUTION STATEMENT DATE ACCESSIONED DATE ACCESSIONED DATE ACCESSIONED DATE RECEIVED IN DTIC PHOTOGRAPH THIS SHEET AND RETURN TO DTIC-DDA-2	PHOTOGRAPH THIS SHEET										
DISTRIBUTION STATEMENT ACCESSION FOR NTES GRAAI DITK TAB UNANNOUNCED JUSTIFICATION BY DISTRIBUTION / AVAILABILITY CODES DIST AVAIL AND/OR SPECIAL DISTRIBUTION STAMP 83 05 18 013 DATE RECEIVED IN DITIC	114	LEVEL									
DISTRIBUTION STATEMENT ACCESSION FOR NTES GRAAI DITK TAB UNANNOUNCED JUSTIFICATION BY DISTRIBUTION / AVAILABILITY CODES DIST AVAIL AND/OR SPECIAL DISTRIBUTION STAMP 83 05 18 013 DATE RECEIVED IN DITIC	1129	The TPRO DOCUME	NT IDENTIFICATION								
ACCESSION FOR NTIS GRAAI DTIC TAB UNANNOUNCED JUSTIFICATION BY DISTRIBUTION / AVAILABILITY CODES DIST AVAIL AND/OR SPECIAL DISTRIBUTION STAMP 83 05 18 013 DATE RECEIVED IN DTIC	AD A	Appe	oved for public selected istribution Unlimited								
NTES GRAA! DTEC TAB UNANNOUNCED JUSTIFICATION BY DISTRIBUTION / AVAILABILITY CODES DIST AVAIL AND/OR SPECIAL DISTRIBUTION STAMP 83 05 18 018 DATE RECEIVED IN DTIC	C. concerns non	DIS	TRIBUTION STATEMENT								
DISTRIBUTION / AVAILABILITY CODES DIST AVAIL AND/OR SPECIAL DISTRIBUTION STAMP 83 05 18 018 DATE RECEIVED IN DTIC	NTIS GRAAI DTIC TAB UNANNOUNCED JUSTIFICATION	X	RELECTE								
83 05 18 013 DATE RECEIVED IN DTIC	DISTRIBUTION / AVAILABILITY CO	1	D DATE ACCESSIONED								
83 05 18 013 DATE RECEIVED IN DTIC	Harmen	TTION STAMP									
DATE RECEIVED IN DTIC											
PHOTOGRAPH THIS SHEET AND RETURN TO DTIC-DDA-2											
		PHOTOGRAPH THIS SHE	ET AND RETURN TO DTIC-DDA-2								

DTIC FORM 70A

DISTRIBUTION STATEMENT A

Approved for put he release; Distriction on Unimited

VOLUME REGISTRATION CERTIFICATE

THERMOPHYSICAL PROPERTIES OF MATTER The TPRC Data Series

VOLUME 11 VISCOSITY

Dear Owner of a TPRC Data Series Volume,

This self-addressed Volume Registration Certificate is provided as a service to you by TPRC and IFI/Pienum Data Corporation in order to sustain the usefulness of this valuable volume. Please complete the lower portion of this Certificate in full and return it at once to TPRC in order that we may send to you, on an annual basis, any corrections to the volume that may come to our attention during the life of this edition.

It is our hope that you may contribute to this endeavor by bringing to our attention possible errors and inconsistencies that may be noticed by you and your associates.

ـــ حـــ	الله به اله يك بلك بلك به نم يت بين بك كري به يت يت يت يت يت بيا بين	-
	Return to TPRC only to report changes in address and/or personnel previously supplied	
	Name of Organization	
	Division	
Ξ	Department	
	Individual authorizing purchase	
ξ	Individual authorized by organization/library to receive carrigends	
	Address	
>		
	Telephone Date	
	Comments:	
,		
	و کا میان کارورو کا کارورو کا میں	
	VOLUME REGISTRATION CARD Return at once for future errate sheets	
	Name of Organization	
	Division	
F		
	Department	
2	Individual authorizing purchase	
7	to receive corrigende	
>	Address	
	Tolophone	

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
REPORT NUMBER 2. GOVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER
TITLE (and Subtitio) Thermophysical Properties of Matter - The TPRC Data SeriesVol. 11. Vicosity	5. TYPE OF REPORT & PERIOD COVERED Data Book (See block 18) 6. PERFORMING ORG. REPORT NUMBER
	TPRC Data Series/Vol. 11
AUTHOR(*) Touloukian, Y. S.; Saxena, S. C. and Hestermans, F	8. CONTRACT OR GRANT NUMBER(#)
PERFORMING ORGANIZATION NAME AND ADDRESS CINDAS/Purdue University 2595 Yeager Road West Lafayette, IN 47906	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
CINDAS/Purdue University 2595 Yeager Road West Lafayette, IN 47906 1. CONTROLLING OFFICE NAME AND ADDRESS	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS 12. REPORT DATE
CINDAS/Purdue University 2595 Yeager Road West Lafayette, IN 47906 1. CONTROLLING OFFICE NAME AND ADDRESS Defense Logistics Agency	
CINDAS/Purdue University 2595 Yeager Road West Lafayette, IN 47906 1. CONTROLLING OFFICE NAME AND ADDRESS Defense Logistics Agency DTIC-AI/Cameron Station	12. REPORT DATE
CINDAS/Purdue University 2595 Yeager Road West Lafayette, IN 47906 1. CONTROLLING OFFICE NAME AND ADDRESS Defense Logistics Agency	12. REPORT DATE 1975
CINDAS/Purdue University 2595 Yeager Road West Lafayette, IN 47906 1. CONTROLLING OFFICE NAME AND ADDRESS Defense Logistics Agency DTIC-AI/Cameron Station	12. REPORT DATE 1975 13. NUMBER OF PAGES

16. DISTRIBUTION STATEMENT (of this Report)
Unlimited

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)

18. SUPPLEMENTARY NOTES TEPIAC Publication (DTIC Source Code 413571) Hard copy on Data Book no longer available from publisher: Plenum Publishing Corp., 227 W. 17th St., New York, NY 10011

Microfiche copy available from DTIC

- 19. KEY WORDS (Continue on reverse side if necessary and identify by block number)
 - *Viscosity--*thermophysical properties--*liquids --*gases--*fluids--*elements-*inorganic compounds--*compounds--acetons-acetylene--air--air mixturesamonia--amonia mixtures--argon--argon mixtures--bensene--bromine--butane-carbon oxides--carbon oxide mixtures--chloroform--deuterium--athane--ethane
 mixtures---athyl alcohol---athylene--fluorine--helium--helium mixtures---
- 20. ABSTRACT (Continue on reverse side it necessary and identify by block number) (continue on reverse side)
 The TPRC Data Series published in 13 volumes plus a Master Index volume constitutes a permanent and valuable contribtion to science and technology. This 17,000 page Data Series should form a necessary acquistion to all scientific and technological libraries and laboratories. These volumes contain an enormous amount of data and information for thermophysical properties on more than 5,000 different materials of interest to researchers in government laboratories and the defense industrial establishment, (continue on reverse side)

DD 1 JAN 73 1473 EDITION OF 1 NOV \$5 IS OBSOLETE

Unclassified

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

19. KEYWORDS (cont)

Heptane--Hydrogen chloride--hydrogen mixtures--iodine--krypton--krypton mixtures--lead & tin--methyl alcohol--methyl chloride--neon--neon mixtures--nitrogen oxides--oxygen--propylene--refrigerants--steel--water--xenon--

20. ABSTRACT (cont)

Volume 11. 'Viscosity,'Touloukian, Y.S., Saxena, S. C., and Hestermans, P., 801 pp., 1975.

Volume 11 in this 14 volume TPRC Data Series presents data and information on the viscosity of fluids and fluid mixtures, covering 12 elements (plus one isotope of hydrogen), 10 inorganic compounds, 36 organic compounds, 99 binary systems of fluid mixtures, eight ternary systems, three quarternary systems, and 19 multicomponent systems. In addition to the experimental data, recommended reference viscosity values are presented for the pure fluids, for saturated liquid, saturated vapor, and gaseous states. The fluid mixtures' graphically smoother values are given as well.

804 pages, 1975

\$75.00 (\$90.00 outside US)

VISCOSITY

THERMOPHYSICAL PROPERTIES OF MATTER The TPRC Data Series

A Comprehensive Compilation of Data by the Thermophysical Properties Research Center (TPRC), Purdue University

Y. S. Touloukian, Series Editor C. Y. Ho, Series Technical Editor

- Volume 1. Thermal Conductivity-Metallic Elements and Alloys
- Volume 2. Thermal Conductivity-Nonmetallic Solids
- Volume 3. Thermal Conductivity-Nonmetallic Liquids and Gases
- Volume 4. Specific Heat-Metallic Elements and Alloys
- Volume 5. Specific Heat-Nonmetallic Solids
- Volume 6. Specific Heat-Nonmetallic Liquids and Gases
- Volume 7. Thermal Radiative Properties-Metallic Elements and Alloys
- Volume 8. Thermal Radiative Properties-Nonmetallic Solids
- Volume 9. Thermal Radiative Properties-Coatings
- Volume 10. Thermal Diffusivity
- Volume 11. Viscosity
- Volume 12. Thermal Expansion-Metallic Elements and Alloys
- Volume 13. Thermal Expansion-Nonmetallic Solids

New data on thermophysical properties are being constantly accumulated at TPRC. Contact TPRC and use its interim updating services for the most current information.

THERMOPHYSICAL PROPERTIES OF MATTER VOLUME 11

VISCOSITY

Y. S. Touloukian

Director
Thermophysical Properties Research Center and
Distinguished Atkins Professor of Engineering School of Mechanical Engineering Purdue University and
Visiting Professor of Mechanical Engineering Auburn University

S.C. Saxena

Professor of Energy Engineering
University of Illinois
Chicago Circle
and
Consultant
Thermophysical Properties Research Center
Purdue University

P. Hestermans

Director
Belgian Institute of High Pressure
Sterrebeek, Belgium
Formerly
Affiliate Senior Researcher
Thermophysical Properties Research Center
Purdue University

IFI/PLENUM · NEW YORK-WASHINGTON

Library of Congress Catalog Card Number 73-129616

ISBN (13-Volume Set) 0-306-67020-8 ISBN (Volume 11) 0-306-67031-3

Copyright: © 1975, Purdue Research Foundation

IFI/Plenum Data Company is a division of Plenum Publishing Corporation 227 West 17th Street, New York, N.Y. 10011

Distributed in Europe by Heyden & Son, Ltd.
Spectrum House, Alderton Crescent
London NW4 3XX, England

Printed in the United States of America

"In this work, when it shall be found that much is omitted, let it not be forgotten that much likewise is performed..."

SAMUEL JOHNSON, A.M.

From last paragraph of Preface to his twovolume *Dictionary of the English Language*, Vol. I, page 5, 1755, London, Printed by Strahan.

Foreword

In 1957, the Thermophysical Properties Research Center (TPRC) of Purdue University, under the leadership of its founder, Professor Y. S. Touloukian, began to develop a coordinated experimental. theoretical, and literature review program covering a set of properties of great importance to science and technology. Over the years, this program has grown steadily, producing bibliographies, data compilations and recommendations, experimental measurements, and other output. The series of volumes for which these remarks constitute a foreword is one of these many important products. These volumes are a monumental accomplishment in themselves, requiring for their production the combined knowledge and skills of dozens of dedicated specialists. The Thermophysical Properties Research Center deserves the gratitude of every scientist and engineer who uses these compiled data.

The individual nontechnical citizen of the United States has a stake in this work also, for much of the science and technology that contributes to his well-being relies on the use of these data. Indeed, reco ion of this importance is indicated by a mere reading of the list of the financial sponsors of the Thermophysical Properties Research Center; leaders of the technical industry of the United States and agencies of the Federal Government are well represented.

Experimental measurements made in a laboratory have many potential applications. They might be used, for example, to check a theory, or to help design a chemical manufacturing plant, or to compute the characteristics of a heat exchanger in a nuclear power plant. The progress of science and technology demands that results be published in the open literature so that others may use them. Fortunately for progress, the useful data in any single field are not scattered throughout the tens of thousands of technical journals published throughout the world. In most fields, fifty percent of the useful work appears in no more than thirty or forty journals. However, in the case of TPRC, its field is so broad

that about 100 journals are required to yield fifty percent. But that other fifty percent! It is scattered through more than 3500 journals and other documents, often items not readily identifiable or obtainable. Over 75,000 references are now in the files.

Thus, the man who wants to use existing data, rather than make new measurements himself, faces a long and costly task if he wants to assure himself that he has found all the relevant results. More often than not, a search for data stops after one or two results are found—or after the searcher decides he has spent enough time looking. Now with the appearance of these volumes, the scientist or engineer who needs these kinds of data can consider himself very fortunate. He has a single source to turn to; thousands of hours of search time will be saved, innumerable repetitions of measurements will be avoided, and several billions of dollars of investment in research work will have been preserved.

However, the task is not ended with the generation of these volumes. A critical evaluation of much of the data is still needed. Why are discrepant results obtained by different experimentalists? What undetected sources of systematic error may affect some or even all measurements? What value can be derived as a "recommended" figure from the various conflicting values that may be reported? These questions are difficult to answer, requiring the most sophisticated judgment of a specialist in the field. While a number of the volumes in this Series do contain critically evaluated and recommended data, these are still in the minority. The data are now being more intensively evaluated by the staff of TPRC as an integral part of the effort of the National Standard Reference Data System (NSRDS). The task of the National Standard Reference Data System is to organize and operate a comprehensive program to prepare compilations of critically evaluated data on the properties of substances. The NSRDS is administered by the National Bureau of Standards under a directive from the Federal Council for Science

and Technology, augmented by special legislation of the Congress of the United States. TPRC is one of the national resources participating in the National Standard Reference Data System in a united effort to satisfy the needs of the technical community for readily accessible, critically evaluated data.

As a representative of the NBS Office of Standard Reference Data, I want to congratulate Professor Touloukian and his colleagues on the accomplishments represented by this Series of reference data

books. Scientists and engineers the world over are indebted to them. The task ahead is still an awesome one and I urge the nation's private industries and all concerned Federal agencies to participate in fulfilling this national need of assuring the availability of standard numerical reference data for science and technology.

EDWARD L. BRADY Associate Director for Information Programs National Bureau of Standards

Preface

Thermophysical Properties of Matter, the TPRC Data Series, is the culmination of seventeen years of pioneering effort in the generation of tables of numerical data for science and technology. It constitutes the restructuring, accompanied by extensive revision and expansion of coverage, of the original TPRC Data Book, first released in 1960 in loose-leaf format, $11'' \times 17''$ in size, and issued in June and December annually in the form of supplements. The original loose-leaf Data Book was organized in three volumes: (1) metallic elements and alloys; (2) nonmetallic elements, compounds, and mixtures which are solid at N.T.P., and (3) nonmetallic elements, compounds, and mixtures which are liquid or gaseous at N.T.P. Within each volume, each property constituted a chapter.

Because of the vast proportions the *Data Book* beg n to assume over the years of its growth and the greatly increased effort necessary in its maintenance by the user, it was decided in 1967 to change from the loose-leaf format to a conventional publication. Thus, the December 1966 supplement of the original *Data Book* was the last supplement disseminated by TPRC.

While the manifold physical, logistic, and economic advantages of the bound volume over the loose-leaf oversize format are obvious and welcome to all who have used the unwieldy original volumes, the assumption that this work will no longer be kept on a current basis because of its bound format would not be correct. Fully recognizing the need of many important research and development programs which require the latest available information. TPRC has instituted a Data Update Plan enabling the subscriber to inquire, by telephone if necessary. for specific information and receive, in many instances, same-day response on any new data processed or revision of published data since the latest edition. In this context, the TPRC Data Series departs drastically from the conventional handbook and giant multivolume classical works, which are no longer adequate media for the dissemination of numerical data of science and technology without a continuing activity on contemporary coverage. The loose-leaf arrangements of many works fully recognize this fact and attempt to develop a combination of bound volumes and loose-leaf supplement arrangements- as the work becomes increasingly large. TPRC's Data Update Plan is indeed unique in this sense since it maintains the contents of the TPRC Data Series current and live on a day-to-day basis between editions. In this spirit, I strongly urge all purchasers of these volumes to complete in detail and return the Volume Registration Certificate which accompanies each volume in order to assure themselves of the continuous receipt of annual listing of corrigenda during the life of the edition.

The TPRC Data Series consists initially of 13 independent volumes. The first seven volumes were published in 1970, Volumes 8 and 9 in 1972, and Volume 10 in 1973. Volumes 11, 12, and 13 are planned for 1975. It is also contemplated that subsequent to the first edition, each volume will be revised, up-dated, and reissued in a new edition approximately every fifth year. The organization of the TPRC Data Series makes each volume a self-contained entity available individually without the need to purchase the entire Series.

The coverage of the specific thermophysical properties represented by this Series constitutes the most comprehensive and authoritative collection of numerical data of its kind for science and technology.

Whenever possible, a uniform format has been used in all volumes, except when variations in presentation were necessitated by the nature of the property or the physical state concerned. In spite of the wealth of data reported in these volumes, it should be recognized that all volumes are not of the same degree of completeness. However, as additional data are processed at TPRC on a continuing basis, subsequent editions will become increasingly more complete and up to date. Each volume in the Series basically comprises three sections, consisting of a text,

the body of numerical data with source references, and a material index.

The aim of the textual material is to provide a complementary or supporting role to the body of numerical data rather than to present a treatise on the subject of the property. The user will find a basic theoretical treatment, a comprehensive presentation of selected works which constitute reviews, or compendia of empirical relations useful in estimation of the property when there exists a paucity of data or when data are completely lacking. Established major experimental techniques are also briefly reviewed.

The body of data is the core of each volume and is presented in both graphical and tabular formats for convenience of the user. Every single point of numerical data is fully referenced as to its original source and no secondary sources of information are used in data extraction. In general, it has not been possible to critically scrutinize all the original data presented in these volumes, except to eliminate perpetuation of gross errors. However, in a significant number of cases, such as for the properties of liquids and gases and the thermal conductivity and thermal diffusivity of all the elements, the task of full evaluation, synthesis, and correlation has been completed. It is hoped that in subsequent editions of this continuing work, not only new information will be reported but the critical evaluation will be extended to increasingly broader classes of materials and properties.

The third and final major section of each volume is the material index. This is the key to the volume, enabling the user to exercise full freedom of access to its contents by any choice of substance name or detailed alloy and mixture composition, trade name, synonym, etc. Of particular interest here is the fact that in the case of those properties which are reported in separate companion volumes, the material index in each of the volumes also reports the contents of the other companion volumes.* The sets of companion volumes are as follows:

Thermal conductivity: Volumes 1, 2, 3
Specific heat: Volumes 4, 5, 6
Radiative properties: Volumes 7, 8, 9
Thermal expansion: Volumes 12, 13

The ultimate aims and functions of TPRC's Data Tables Division are to extract, evaluate, rec-

oncile, correlate, and synthesize all available data for the thermophysical properties of materials with the result of obtaining internally consistent sets of property values, termed the "recommended reference values." In such work, gaps in the data often occur, for ranges of temperature, composition, etc. Whenever feasible, various techniques are used to fill in such missing information, ranging from empirical procedures to detailed theoretical calculations. Such studies are resulting in valuable new estimation methods being developed which have made it possible to estimate values for substances and/or physical conditions presently unmeasured or not amenable to laboratory investigation. Depending on the available information for a particular property and substance, the end product may vary from simple tabulations of isolated values to detailed tabulations with generating equations, plots showing the concordance of the different values, and, in some cases, over a range of parameters presently unexplored in the laboratory.

The TPRC Data Series constitutes a permanent and valuable contribution to science and technology. These constantly growing volumes are invaluable sources of data to engineers and scientists, sources in which a wealth of information heretofore unknown or not readily available has been made accessible. We look forward to continued improvement of both format and contents so that TPRC may serve the scientific and technological community with everincreasing excellence in the years to come. In this connection, the staff of TPRC is most anxious to receive comments, suggestions, and criticisms from all users of these volumes. An increasing number of colleagues are making available at the earliest possible moment reprints of their papers and reports as well as pertinent information on the more obscure publications. I wish to renew my earnest request that this procedure become a universal practice since it will prove to be most helpful in making TPRC's continuing effort more complete and up to date.

It is indeed a pleasure to acknowledge with gratitude the multisource financial assistance received from over fifty sponsors which has made the continued generation of these tables possible. In particular, I wish to single out the sustained major support received from the Air Force Materials Laboratory-Air Force Systems Command, the Defense Supply Agency, the Office of Standard Reference Data-National Bureau of Standards, and the Office of Advanced Research and Technology-National Aeronautics and Space Administration. TPRC is indeed proud to have been designated as a National

^{*}For the first edition of the Series, this arrangement was not feasible for Volumes 7 and 8 due to the sequence and the schedule of their publication. This situation will be resolved in subsequent editions.

Information Analysis Center for the Department of Defense as well as a component of the National Standard Reference Data System under the cognizance of the National Bureau of Standards.

While the preparation and continued maintenance of this work is the responsibility of TPRC's Data Tables Division, it would not have been possible without the direct input of TPRC's Scientific Documentation Division and, to a lesser degree, the Theoretical and Experimental Research Divisions. The authors of the various volumes are the senior staff members in responsible charge of the work. It should be clearly understood, however, that many have contributed over the years and their contributions are specifically acknowledged in each

volume. I wish to take this opportunity to personally thank those members of the staff, assistant researchers, graduate research assistants, and supporting graphics and technical typing personnel without whose diligent and painstaking efforts this work could not have materialized.

Y. S. TOULOUKIAN

Director Thermophysical Properties Research Center Distinguished Atkins Professor of Engineering

Purdue University West Lafayette, Indiana October 1974

Introduction to Volume 11

This volume of *Thermophysical Properties of Matter*, the TPRC Data Series, presents the data and information on the viscosity of fluids and fluid mixtures and follows the general format of Volume 3 of this Series.

The volume comprises three major sections: the front text on theory, estimation, and measurement together with its bibliography, the main body of numerical data with its references, and the material index.

The text material is intended to assume a role complementary to the main body of numerical data, the presentation of which is the primary purpose of this volume. It is felt that a moderately detailed discussion of the theoretical nature of the property under consideration together with an overview of predictive procedures and recognized experimental methods and techniques will be appropriate in a major reference work of this kind. The extensive reference citations given in the text should lead the interested reader to sufficient literature for a more comprehensive study. It is hoped, however, that enough detail is presented for this volume to be self-contained for the practical user.

The main body of the volume consists of the presentation of numerical data compiled over the years in a most meticulous manner. The coverage includes 59 pure fluids, most of which are identical to those covered in Volumes 3 and 6 of this Series, and 129 systems of fluid mixtures which are felt to be of greatest engineering importance. The extraction of all data directly from their original sources ensures freedom from errors of transcription. Furthermore, a number of gross errors appearing in the original source documents have been corrected. The organization and presentation of the data together with other pertinent information on the use of the tables and figures is discussed in detail in the introductory material to the section entitled Numerical Data.

The data on pure fluids have been critically evaluated, analyzed, and synthesized, and "recommended reference values" are presented, with the available experimental data given in departure plots.

The recommended values are those that were considered to be the most probable when assessments were made of the available data and information. It should be realized, however, that these recommended values are not necessarily the final true values and that changes directed toward this end will often become necessary as more data become available. Future editions will contain these changes.

The data on fluid mixtures have been smoothed graphically and the smoothed values as well as the experimental data are presented in both graphical and tabular forms. Furthermore, the experimental data for binary mixtures have been fitted with equations of the Sutherland type and the Sutherland coefficients have been calculated and are presented.

As stated earlier, all data have been obtained from their original sources and each data set is so referenced. TPRC has in its files all data-source documents cited in this volume. Those that cannot readily be obtained elsewhere are available from TPRC in microfiche form.

This volume has grown out of activities made possible principally through the support of the Air Force Materials Laboratory-Air Force Systems Command, the Defense Supply Agency, and the American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc., all of which are gratefully acknowledged.

Inherent to the character of this work is the fact that in the preparation of this volume we have drawn most heavily upon the scientific literature and feel a debt of gratitude to the authors of the referenced articles. While their often discordant results have caused us much difficulty in reconciling their findings, we consider this to be our challenge and our contribution to negative entropy of information, as an effort is made to create from the randomly distributed data a condensed, more orderly state.

While this volume is primarily intended as a reference work for the designer, researcher, experimentalist, and theoretician, the teacher at the graduate level may also use it as a teaching tool to point out

to his students the topography of the state of knowledge on the viscosity of fluids. We believe there is also much food for reflection by the specialist and the academician concerning the meaning of "original" investigation and its "information content."

The authors are keenly aware of the possibility of many weaknesses in a work of this scope. We hope that we will not be judged too harshly and that we will receive the benefit of suggestions regarding references omitted, additional material groups needing more detailed treatment, improvements in pre-

sentation or in recommended values, and, most important, any inadvertent errors. If the *Volume Registration Certificate* accompanying this volume is returned, the reader will assure himself of receiving annually a list of corrigenda as possible errors come to our attention.

West Lafayette, Indiana October 1974 Y. S. TOULOUKIAN

S. C. SAXENA

P. HESTERMANS

Contents

Foreword							•		•		vii
Preface											ix
Introduction to Volume 11											xiii
Grouping of Materials and List of Figures and Ta	ables										xix
Theory, Estin	nation	, and	Meas	ureme	nt						
Notation							•				la
Viscosity of Gases and Gas Mixtures											3a
1. Introduction	•		•								3a
2. Theoretical Methods											3a
A. Introduction								·			3a
B. The Mean-Free-Path Theories.											4a
C. The Rigorous (Chapman-Enskog) Theo	ries										4a
a. Pure Monatomic Gases											5a
b. Multicomponent Systems of Monator	mic Ga	ases									5a
c. Nonpolar Polyatomic Gases and Mul	lticom	poner	nt Sys	tems							5a
d. Pure Polar Gases and Multicompone	nt Syst	tems									7a
e. Quantum Effects									•		8a
f. High-Temperature Calculations.				•							9a
g. High-Density (or Pressure) Calculation	ons						•				lla
h. Magnetic- and Electric-Field Effects		•			•	•			•		13a
i. Critical and Rarefied Gas Regions	•	•				•	•	•	•		13a
3. Estimation Methods											14a
A. Introduction											14a
B. Pure Gases											14a
B. Pure Gases											19a
a. Method of Buddenberg and Wilke											19a
b. Method of Saxena and Narayanan						•					19a
c. Method of Herning and Zipperer											19a
d. Method of Dean and Stiel											20a
e. Method of Strunk, Custead, and Stev											20a
f. Method of Ulybin											20a
g. Sutherland Form and Rigorous Kine	tic Th	еогу							•		20a
h. Method of Saxena and Gambhir.							•	•	•	•	21a
i. Method of Gambhir and Saxena.		•	•	•	•	•	•	•	•	•	21a
j. Method of Saxena and Gambhir.					•	•	•	•	•	•	21a
k. Method of Brokaw			•		•	•	•	•	•	•	22a
1. Viscosity from Thermal Conductivity			•	•	•	•	•	•	•	•	23a
m. Viscosity from Interdiffusion Data	•	•	•	•	•	•	•	•	•	•	23a
D. Sutherland Coefficients	•					•	•	•			23a

4. Experimental Methods												248
A. Introduction												248
B. Various Methods of Measurement			•	•								248
a. The Capillary-Flow Method												248
a. The Capillary-Flow Methodb. The Oscillating-Disk (Solid-Book)c. The Rotating-Cylinder (Sphere	dy) M	ethod	•	•				•	•		•	278
c. The Rotating-Cylinder (Sphere	or Di	sk) Me	thod	•	•			•	•	•	•	28a
d. The Falling-Sphere (Body) Met		٠										298
e. The Less-Developed Methods:							and E	lectric	Arc l	Measu	re-	
ments	•	•	•	•	•	•	•	•	•	•	•	30a
Viscosity of Liquids and Liquid Mixtures												33a
1. Introduction												33a
O The wat the de												
2. Theoretical Methods			•	•	•	•	•	•	•	•	•	33a
A. Introduction	•	•	•	•	•	٠			•	•	•	33a 33a
B. The Simple Theories	•	•	•	•	•	•	•	•	•	•	•	-
C. The Reaction-Rate Theory . D. The Significant-Structure Theory	•	•	•	•	•	•	•	•	•	•	•	35a 36a
E. The Cell or Lattice Theory .	•	•	•	•	•	•	•			•	:	37a
F. The Statistical-Mechanical Theory	. •	•	•	•	•		•	•	•	•	•	388
								•	•	•	•	40a
G. Correlation Function TheoriesH. Theories for Liquids of Complicat	ed Ma	Mecular	r Stro	ctures	•	•	•	•	•	•	•	41a
									•	•	•	
3. Estimation Methods	•	•	•	•	•	•	•	•	•	•	•	418
A. Introduction.	<u>:</u> .	÷	•		•	•	•	•	•	•	•	41a
B. Procedures Based on the Principle								•	•	•	٠	41a
C. Semitheoretical or Empirical Proce	dures	for Pu	ire Lie	Juids	· .	•				•	•	42a
D. Semitheoretical or Empirical Processing	edures	ior M	ixture	S OI L	nguia	s.	•	•	•	•	•	43a
4. Experimental Methods		•										448
A. Introduction		•										448
B. The Capillary-Flow Viscometers										•		45a
C. The Oscillating-Disk Viscometers												458
D. The Falling-Body Viscometers.				•		•				•		458
E. The Coaxial-Cylinder Viscometers	•	•				•	•	•	•	•		458
F. Other Types of Viscometers .	•	•		•			•	•	•	•	•	468
References to Text			_		_	_						938
	•	-	•	-	-	·	•	-	-	·	-	,,,,
	ŗ	Numeri	cal D	ata								
Data Presentation and Related General Info	r m atio	n.						•		•		123a
1. Scope of Coverage												123a
- -	•	•	•	•	•	•	•	•	•	•	•	
2. Presentation of Data	•	•	•	•	•	•	•	•			•	1238
3. Symbols and Abbreviations Used in the	ne Fig	ures ar	d Tai	oles				٠.				1248
4. Convention for Bibliographic Citation	_											1258
• •		-				n.	:! ~	• •		Dia		
5. Name, Formula, Molecular Weight, 7 and Compounds.	ransıt	non Te	mper	kures.	, and	rnys	ICAL C	OBTAI	IO EJ	cieme	nts	125ε
•		•	•	•	•	•	•	•	•	•	•	
6. Conversion Factors for Units of Visco	sity	•	•	•	•	•	•	•	•	•	•	1258

													Conte	its	XVi
	nerical Data on Visc						-	-					follov	/ing	
_	oups of materials)		•	•	•	•	•	•	•	•	•	•	•	•	
1.	Elements		•	•	•	•	•	•	•			٠	•	•	
2.	Inorganic Compou	ınds							•						6
3.	Organic Compoun	ds	•				•		•						9
4.	Binary Systems .														23:
	A. Monatomic-M	onatomic Sys	stems						•						23
	B. Monatomic-N	onpolar Polya	atomic	Syst	ems										28
	C. Monatomic-Po	olar Polyatom	nic Sys	tems			•								34
	D. Nonpolar Poly														350
	E. Nonpolar Poly	atomic-Polar	Polya	tomi	c Syste	ems						•			50
	F. Polar Polyaton	nic-Polar Pol	yatom	ic Sy	stems										54
	G. Metallic Alloy	Systems .		•					•						57
5.	Ternary Systems.														57
	A. Monatomic Sys														58
	B. Monatomic and														58
	C. Nonpolar Poly														58
	D. Polar Polyaton	nic Systems	•	•	•	•	•	•		•	•			•	59
6.	Quarternary System	ms													59
	A. Monatomic an														59
	B. Nonpolar Poly	atomic Syster	ms												59
7	Multicomponent S	vstems .													59
• •	A. Monatomic an									•	•	•	•	•	60
	B. Monatomic, N											·	Ċ	·	60
	C. Nonpolar Poly													•	60
	D. Nonpolar Poly										•	•	·		62
	•			0.,		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			•	•	•	•	•	•	
Kefe	rences to Data Sour	ces	•	•	•	•	•	٠	•	•	•	•	•	٠	63
				,	Materi	al Ind	ex								
Mat	erial Index			•	·486411										A
***	cross street A		•	•	•	٠	•	•	•	•	•	•	•	•	

GROUPING OF MATERIALS AND LIST OF FIGURES AND TABLES

1. ELEMENTS	3			
Figure and/ Table No.		Formula	Physical State*	Page No.
1	\Argon (R-740)	Ar	L,V,G	. 2
2	Bromine	Br ₂	-,-,G	. 9
3	Chlorine (R-771)	Cl2	-,-,G	. 11
4	Deuterium (R-704A)	$\mathbf{D}_{\overline{\mathbf{z}}}$	-,-,G	. 13
5	Fluorine (R-738)	F ₂	-,-,G	. 16
6	Helium (R-704)	He	-,-,G	. 18
7	e Hydrogen, normal (R-702)	H ₂	L, V, G	. 24
8	Iodine	I ₂	-,-,G	. 35
9	Krypton (R-784)	Kr	-,-,G	. 37
10	√ Neon (R-720)	Ne	L,V,G	. 41
11	√ Nitrogea (R-728)	N ₂	L, V, G	. 48
. 12	✓ Oxygen (R-732)	O ₂	L,V,G	. 56
13	Xenon	Xe	-, -, G	. 62
2. INORGANIC	COMPOUNDS			
14	/Ammonia (R-717)	NH ₃	L,V,G	. 68
15	Boron Trifluoride (R-768)	BF ₃	-,-,G	. 74
16	Hydrogen Chloride (R-736)	HC1	-, -, G	. 76
17	Hydrogen Iodide	н	-, -, G	. 78
18	Hydrogen Sulfide (R-734)	H ₂ S	-,-,G	. 80
19	Nitric Oxide (R-730)	NO ·	-,-,G	. 82
20	Nitrogen Peroxide (R-746)	NO ₂	-,-,G	. 85
21	Nitrous Oxide (R-744A)	N ₂ O	-,-,G	. 87
22	Sulfur Dioxide (R-764)	SO ₂	-,-,G	. 91
23	/Water (R-718)	H ₂ O	L,V,G	. 94
3. ORGANIC C	OMPOUNDS			
24	Acetone	(CH ₂) ₂ CO	-,-,G	. 98
25	Acetylene	СНСН	-, -,G	. 100
26	Benzene	C _e H _e	-,-,G	. 102
27	Bromotrifluoromethane (R-13B1)	CBrF,	L, V, G	. 104
28	i-Butane (R-600a)	i-C4H10	L,V,G	
29	n-Butane (R-600)	n-C4H10	L,V,G	. 114
30	Carbon Dioxide (R-744)	CO ₂	L, V, G	
31	Carbon Monoxide (R-728A)	co	-,-,G	
32	Carbon Tetrachloride (R-10)	CC14	_	. 129
33	Carbon Tetrafluoride (R-14)	CF,	-, -, G	. 131

^{*} L = saturated liquid, V = saturated vapor, G = gas.

3. ORGANIC COMPOUNDS (continued)

Figure and/or Table No.	i N amo	Formula	Physical State*	Page No.
34	Chlorodifluoromethane (R-22)	CHC1F,	L, V, G	. 133
35	Chloroform (R-20)	CHCI ₂	~, ~, G	. 138
36	Chloropentafluoroethane (R-115)	C ₂ ClF ₅	L.V.G	. 140
37	Chlorotrifluoromethane (R-13)	CClF ₃	L, V, G	. 145
38	Dichlorodiffuoromethene (R-12)	CCl ₂ F ₂	L, V, G	. 150
39	Dichlorofinoromethane (R-21)	CHCl ₂ F	L, V, G	. 156
40	Dichlorotetrafinoroethane (R-114)	C ₂ C) ₂ F ₄	L.V,G	. 160
41	1, 1-Diffuorosthane (R-152a)	C2H4F2	L, -, -	165
42	Ethane (R-170)	C ₂ H ₆	L,V,G	. 167
43	Ethyl Alcohol	C ₂ H ₈ OH	-,-,G	. 172
44	Ethylene (R-1150)	C ₂ H ₄	L, V, G	174
45	Ethyl Ether (R-610)	(C ₂ H ₅) ₂ O	-,-,G	180
46	n-Heptane	n-C ₇ H ₁₆	-,~,G	182
47	n-Hexane	B-C ₀ H ₁₄	-, -, G	184
48	Mothago (R-50)	CH ₄	L, V, G	186
49	Methyl Alcohol	CH3OH	-, -, G	192
50	Methyl Chloride (R-40)	CH ₉ Cl	L, V, G	194
51	Octafinorocyclobutane (R-C318)	C ₄ F ₈	L, V, G	199
52	n-Octane	n-C ₆ H ₁₆	-, -, G	204
53	n-Pentane	n-C ₆ H ₁₂	-,-,G	206
54	Propune (R-290)	C ₃ H ₄	L,V,G	208
56	Propyleme (R-1270)	C ₃ H ₄	L, V, G	213
56	Toksens	C ₆ H ₆ CH ₃	-,-,G	218
57	Trichlorofluoromethane (R-11)	CCLF	L, V, G	220
58	Trichlorotrifluoroethane (R-113)	C ₂ Cl ₂ F ₃	L, V, G	225
59	Trifluoromethane (R-23)	CHF:	L,V.G	230
4. Binary syste	M8			
A. Monatomic	- Monatomic Systems			
60	Argon – He <u>lium</u>	Ar - He	-,-,G	237
61	Argon - Krypton	Ar - Kr	-, -, G · · · · ·	249
62	Argon - Neon	Ar - Ne	-, -, Q	251
63	Argon - Xenon	Ar - Xe	-,-,0	258
64	Helium - Krypton	He - Kr	-,-,G	260
65	Helium - Neon	He ~ Ne	-,-,G	269
66	Helium - Xenon	He - Xe	-, -, G	277
67	Krypton - Neon	Kr ~ Ne	-,-,G	279
68	Krypton - Xenon	Kr - Xe	-,-,G	281
69	Neon - Xenon	Ne - Xe	-,-,6	283
B. Monatomic -	Nonpolar Polyatomic Systems			
70	Argon - Carbon Dioxide	Ar ~ CO	-,-,G · · · ·	286
71	A	Ar - He	· · · <u>-</u>	289
72	A	Ar - No	-, -, G · · · · · · · · · · · · · · · · · ·	269 294
			-,-,,, , , , , ,	294

^{*} L = saturated liquid, V = saturated vapor, G = gas.

4. BINARY SYSTEMS (continued)

B. Monetomic - Nompolar Polystomic Systems (continued)

Figure and/or Table No.	Name	Formula	Physical State*	Page No.
73	Helium - Carbon Dioxide	He - CO2	-,G	. 297
74	Helium - Hydrogen	He - H ₂	-,G	302
75	Helium - Nitrogen	He - N ₂	-,G	. 308
76	Helium - Oxygen	He - O	-,G	322
77	Krypton - Carbon Dioxide	Kr - CO ₂	-,G	. 331
78	Neon - Carbon Dioxide	Ne - CO ₂	-,G	. 334
79	Neon - Hydrogen	Ne - H ₂	-,G	. 337
80	Neon - Nitrogen	Ne - N ₂	-,G	339
C. Monatomic	- Polar Polyatomic Systems			
81	Argon - Ammonia	Ar - NH ₃	-,G	. 342
82	Argon - Sulfur Dioxide	Ar - SO ₂	-,G	. 348
D. Nonpolar Po	olyatomic - Nonpolar Polyatomic Sy	stems		
83	Benzene - Cyclohexane	$C_6H_6 - C_6H_{12}$	L,	350
84	Benzene - n-Hexane	$C_6H_6 - n-C_6H_{14}$	L,	352
85	Benzene - Octamethylcyclotetrasiloxane	C ₆ H ₆ - [OSI(CH ₂) ₂] ₄	L,	. 354
86	n-Butane - Methane	n-C ₄ H ₁₀ - CH ₄	-,G	. 357
87	Carbon Dioxide - Hydrogen	CO ₂ - H ₂	-,G	. 366
88	Carbon Dioxide - Methane	CO ₂ - CH ₄	-,G	. 369
89	Carbon Dioxide - Nitrogen	CO ₂ - N ₂	-,G	376
90	Carbon Dioxide - Nitrous Oxide	CO ₂ - N ₂ O	-,G	383
91	Carbon Dioxide - Oxygen	CO ₂ - O ₂	-,G	. 385
92	Carbon Dioxide - Propane	$CO_2 - C_3H_8$	-,Q	. 387
93	Carbon Monoxide - Ethylene	CO - C ₂ H ₄	-, a	. 389
94	Carbon Monoxide - Hydrogen	CO - H ₂	-,G	. 391
95	Carbon Monoxide - Nitrogen	CO - N ₂	L,G	. 393
96	Carbon Monoxide - Oxygen	CO - O ₂	-,G	. 397
97	Carbon Tetrachloride - Octamethylcyclotetragiloxane	CCl4 - [OSI(CH3)2]4	L,	. 399
98	Carbon Tetrafluoride - Methane	CF ₄ - CH ₄	-,G	. 401
99	Carbon Tetrafluoride – Sulfur Hexafluoride	CF ₄ - SF ₆	-,G	406
100	Cyclohexane - n-Hexane	$C_0H_{12}-n-C_0H_{14}$	L,	. 408
101	n-Decene - Methane	n-C ₁₀ H ₂₂ - CH ₄	L,	. 410
102	Deuterium - Hydrogen	D ₂ - H ₂	-,G	413
103	Deutsrium - Hydrogen Deutsride	D ₂ - HD	-,G	. 415
104	Ethane - Ethylene	C ₂ H ₆ - C ₂ H ₄	L,	. 417
105	Ethane - Hydrogen	C ₂ H ₆ - H ₂	-,G	. 419
106	Ethane - Methane	C ₂ H ₆ - CH ₄	-,Q	. 421
107	Ethane - Propane	C ₂ H ₆ - C ₂ H ₉	-,G	. 423
108	Ethylene - Hydrogen	C2H4 - H2	-, G	. 425
109	Ethylene - Methane	C ₂ H ₄ - CH ₄	L,	. 428

^{*} L = saturated liquid, G = gas.

4. BINARY SYSTEMS (continued)

D. Nonpolar Polyatomic - Nonpolar Polyatomic Systems (continued)

Figure and/or Table No.	Name	Formula	Physical State*	Page No.
110	Ethylene - Nitrogen	$C_2H_4 - N_2$	-, G	 . 432
111	Ethylene - Oxygen	CeH4 - O1	-,G	 . 434
112	n-Heptane - Nitrogen	n-C ₇ H ₁₆ - N ₂	-,G	 . 436
113	Hexadecafluoro-n-Heptane - 2,2,4-Trimethylpentane	n-C ₇ F ₁₆ ~ (CH ₃) ₂ CHCH ₂ C(CH ₃) ₃	-, G	 . 438
114	Hydrogen - Hydrogen Deuteride	H ₃ - HD	-,G	 . 440
115	Hydrogen - Methane	H ₂ - CH ₄	-,G	 . 442
116	Hydrogen - Nitric Oxide	H ₂ - NO	-, G	 . 445
117	Hydrogen - Nitrogen	$H_2 - N_2$	-, G	 . 447
118	Hydrogen - Nitrous Oxide	$H_2 - N_2O$	-,G	 . 458
119	Hydrogen - Oxygen	H ₂ - O ₂	-, G	 . 460
120	Hydrogen - Propane	$H_2 - C_3H_8$	-, G	 . 463
121	Methane - Nitrogen	CH4 - N2	L,G	 . 465
122	Methane - Oxygen	CH4 - O2	-,G	 . 474
123	Methane - Propane	CH4 - O3H4	L,G	 . 477
124	Nitric Oxide - Nitrous Oxide	NO - N ₂ O	-, G	 . 492
125	Nitric Oxide - Nitrogen	NO - N ₂	~, G	 . 495
126	Nitrogen - Oxygen	N ₂ - O ₂	-,G	 . 497
127	Nitrous Oxide ~ Propane	$N_2O - C_3H_8$	-, G	 . 499
128 12 9	Carbon Dioxide - Hydrogen Chloride Carbon Dioxide - Sulfur Dioxide	CO ₂ - HC1 CO ₂ - SO ₂	-,G -,G	 . 501 . 503
129 130	Carbon Dioxide - Sulfur Dioxide Carbon Tetrachloride - Dichloromethane	CCl - SU,	-, G -, G	 . 508
131	Carbon Tetrachloride - Isopropyl Alcohol	CCI4 ~ (CH3)2CHOH	L, -	 . 508
132	Carbon Tetrachloride - Methanol	CCL - CH3OH	L, -	 . 510
133	Dioxane - Benzyl Acetate	C4H8O2 - CH3COOCH2C6H8	L, -	 . 512
134	Ethylene - Ammonia	C2H4 - NH3	-, G	 . 514
135	Hydrogen - Ammonia	H ₂ - NH ₃	-, G	 . 516
136	Hydrogen - Ethyl Ether	$H_2 - (C_2H_4)_2O$	-, G	 . 519
137	Hydrogen - Hydrogen Chloride	H ₂ - HCl	-, G	 . 521
138	Hydrogen - Sulfur Dioxide	H ₂ - 8O ₂	-, G	 . 523
139	Methane - Ammoria	CH4 - NH3	-, <i>G</i>	 . 526
140	Methane - Sulfur Dioxide	CH4 - 8O2	~, G	 . 529
141	Nitrogen - Ammonia	N ₂ - NH ₃	-,G	 . 531
142	Nitrous Oxide - Ammonia	N2O - NH2	-, G	 . 534
143	Nitrous Oxide - Sulfur Dioxide	N ₂ O - SO ₂	-, <i>G</i>	 . 536
144	Oxygen - Ammonia	O ₂ - NH ₃	-,G	 . 538
F. Polar Polys	atomic – Polar Polyatomic Systems			
145	Ammonia - Methylamine	NH ₉ - CH ₉ NH ₂	-, G	 . 540
146	Aniline - Benzyl Acetste	CeHeNHa - CHaCOOCHaCeHs	L, -	 . 543

^{*} L = saturated liquid, G = gas.

4. BINARY SYSTEMS (continued)

F	. Pol	ar Po	lyatomic -	Pol	ar	Polyatomic	Systems	(continued)
---	-------	-------	------------	-----	----	------------	---------	-------------

F	igure and/or Table No.	Name	Formula	Physical State*		Page No.
	147	Benzyl Acetate - meta-Cresol	CH3COOCH2C6H5 - CH3C6H4OH	L,-,		545
	148	Dimethyl Ether - Methyl Chloride	(CH ₃) ₂ O - CH ₃ Cl	-,-,G		547
	149	Dimethyl Ether - Sulfur Dioxide	(CH ₃) ₂ O - SO ₂	-,-,G		549
	150	Methyl Chloride - Sulfur Dioxide	CH ₃ Cl - SO ₂	-,-,G		551
	151	Refrigerant 500 [Dichlorodifluoromethane (R-12) - 1,1-Difluoroethane (R-152a)]	CCLF2 - C2H4F2	L,V,G		553
	152	Refrigerant 502 [Dichlorodifluoromethane (R-12) - Chloropentafluoro- ethane (R-115)]	CCl ₂ F ₂ - C ₂ ClF ₅	L,V,G		558
	153 154	Refrigerant 503 [Chlorotrifluoromethane (R-13) - Trifluoromethane (R-23)] Refrigerant 504	CCIF3 - CHF3	L, -,		563
		[Methylene Fluoride (R-32) - Chloropentafluoroethane (R-115)]	CH ₂ F ₂ - C ₂ ClF ₆	L,-,		565
	155	Sodium Chlorate - Sodium Nitrate	NaClO ₃ - NaNO ₃	L,-,		567
	156	Sulfur Dioxide - Sulfuryl Fluoride	SO ₂ - SO ₂ F ₂	-,-,G · · ·		570
G.	Metallic All	loy Systems Iron - Carbon Lead - Tin	Fe - C Pb - Sn	L, -, L, -,		573 576
	ERNARY SYST	Systems		-		
	159	Argon - Helium - Neon	Ar - He - Ne	-,-,G	• •	580
В.		and Nonpolar Polyatomic Systems				
	160	Argon - Helium - Carbon Dioxide	Ar - He - CO ₂	-,-,G		581
	161	Argon - Helium - Methane	Ar - He - CH ₄	-,-,G		582
	162	Argon - Carbon Dioxide - Methane	Ar - CO ₂ - CH ₄	-,-,G	• •	583
c.	Nonpolar Po	lyatomic Systems				
	163	Carbon Dioxide - Hydrogen - Oxygen	CO ₂ - H ₂ - O ₂	-,-,G		584
	164	Carbon Dioxide - Nitrogen - Oxygen	CO ₂ - N ₂ - O ₂	-,-,G		585
	165	Hydrogen - Methane - Nitrogen	H ₂ - CH ₄ - N ₂	-,-,G		587
D.	Polar Polya	tomic Systems				
	166	Dimethyl Ether - Methyl Chloride - Sulphur Dioxide	(CH ₃) ₂ O - CH ₃ C1 - SO ₂	-,-,G		592
* L = 4	encurated Houi	ld. V = asturated vapor G = cas				

^{*} L = saturated liquid, V = saturated vapor, G = gas.

xxiv Grouping of Materials and List of Figures and Tables

A. Monatomic and Nonpolar Polyatomic Systems

6. QUATERNARY SYSTEMS

175

176

	594
 	595
	596
	600
	601
	602
	603
	604

В.	Monatomic,	Nonpolar Polyatomic, and Polar Polyatomic Systems
	177	Helium - n-Butane - Ethane -

177	Helium - n-Butane - Ethane - Methane - Nitrogen - Propane - i-Butane	He - n-C ₄ H ₁₀ - C ₂ H ₆ - CH ₄ - N ₂ - C ₃ H ₈ - i-C ₄ H ₁₀	-,-,G .			607

He - Air - CO2 - CH4

-,-,G · · · ·

He - Air - CH4

C. Nonpolar Polyatomic and Nonpolar Polyatomic Systems

Helium - Air - Methane

Helium - Air - Carbon Dioxide -Methane

178	Air (R-729)	Air	L, V, G			608
179	Air - Carbon Dioxide	Air - CO2	-,-,G			614
180	Air - Carbon Dioxide - Methane	Air - CO ₂ - CH ₄	~,-,G			616
181	Air - Methane	Air - CH	-,-,G			617
182	Carbon Dioxide - Carbon Monoxide - Hydrogen - Methane - Nitrogen	CO ₂ - CO - H ₂ - CH ₄ - N ₂	-,-,G			620
183	Carbon Dioxide - Carbon Monoxide - Hydrogen - Methane - Nitrogen - Oxygen	CO ₂ - CO - H ₂ - CH ₄ - N ₂ -	-,-,G			621
184	Carbon Dioxide - Carbon Monoxide - Hydrogen - Methans - Nitrogen - Oxygen - Heavier Hydrocarbons	CO ₂ - CO - H ₂ - CH ₄ - N ₂ ~ O ₂ - Heavier Hydro- carbons	-,-,G			622
185	Carbon Dioxide - Carbon Monoxide - Hydrogen - Nitrogen - Oxygen	CO - CO - Ha - Na - Oa	G			623

^{*} L = saturated liquid, V = saturated vapor, G = gas.

7. MULTICOMPONENT SYSTEMS (continued)

D. Nonpolar Polyatomic and Polar Polyatomic Systems

rigure and/or Table No.	Name	Formula	Physical State*	Page No.
186	Air - Ammonia	Air - NH.	_	
187	Air - Hydrogen Chloride	•	G	624
188		Air - HCl	G	626
400	Air - Hydrogen Sulphide	Air - H ₂ S	G ,	628

Theory, Estimation, and Measurement

Notation

а	Root-mean-square radius in equations	$\Delta H_{\rm vb}$	Latent heat of vaporization
	(50 and 51); Numerical constant	1	Moment of inertia
a'	Proportionality constant	k	Coefficient of thermal conductivity
A	Atomic weight; Work function for melting point; Numerical constant		[equation (1)]; Boltzmann's constant; Wave vector [equation (105)]
A'	Numerical constant	k°	Translational thermal conductivity
A_{ij}	Parameter [equation (41)]	\vec{k}_1	Adiabatic compressibility
b ''	Impact parameter; Van der Waals con-	K	Transmission coefficient; Numerical con-
	stant; Numerical constant	••	stant; Bulk modulus
В	Numerical constant	1	Length
C	Numerical constant	L_1, L_2, L_3	Mean absolute deviation, root-mean-
<i>c</i> '	Numerical constant		square deviation, and maximum ab-
C	Numerical constant		solute deviation from smoothed
C^1	Numerical constant		values [defined in equations (47)-(49)]
C '	Numerical constant	m	Mass of a molecule; Numerical constant;
C_{ij}	Parameter [equation (41)]		Molecular weight
C_p	Molar specific heat at constant pressure	M	Molecular weight
C_{v}	Molar specific heat at constant volume	n	Numerical constant; Number of Mole-
ď	Displacement; Diameter		cules
D	Self-diffusion coefficient; Numerical con- stant	N	Avogadro's number; Number of data points
D_{ij}	Diffusion coefficient	P	Dipole moment [equation (8)]
E	Total energy; Numerical constant	P	Pressure
E_s	Energy of sublimation	P_{c}	Critical pressure
E_{μ}	Numerical constant	$\dot{P_R}$	Reduced pressure
ΔE_{vap}	Energy of vaporization	Q [^]	Numerical constant
ΔE_{aci}	Activation energy	ř	Radius
$f(\vec{)}$	Function [equation (64)]	R	Neighborhood of the resonant fre-
f_0	Resonant frequency		quency; Radius; Universal gas con-
$f_{\mu}^{(n)}$	Correction factor		stant; Resistance [equation (136)];
$F^{(n)}_{\mu}$	Numerical constant; Resistance force		Numerical constant
F_a^*	Partition function	s	Displacement
$\vec{F_n}$	Partition function	S	Numerical constant
8	Gravitational acceleration; Initial rela-	S S _t	Collision cross section
	tive speed [equation (10)]	ı ·	Time; Temperature, C
g ⁽²⁾	Pair correlation function; Equilibrium	T	Absolute temperature, K
	radial distribution function	$T_{\mathbf{b}}$	Boiling temperature
G	Force constant of potential energy;	T.	Critical temperature
	Numerical constant	T _c T _m	Melting temperature
h	Planck's constant	T_R^m	Reduced temperature
H	Numerical constant	T*	Reduced temperature
$\Delta H_{\rm vap}$	Enthalpy of vaporization	u _s	Speed of sound

2a Notation

U	Numerical constant	λ	Mean free path; Logarithmic decrement:
v	Specific volume; Volume of an atom;		Distance
	Velocity	Λ*	Reduced de Brogie wavelength
Ū	Mean speed	μ	Coefficient of viscosity
\boldsymbol{V}	Molar volume	μ*	Reduced viscosity
V_f	Free volume	μ°	Viscosity at atmospheric pressure
V_A	Volume of a gram atom	V	Coefficient of kinematic viscosity
w	Parameter [equation (71)]	ν _o	Molecular vibrational frequency
W	Activation energy; Viscous drag; Ap-	ξ.	Parameter [equations (31) and (32)]
	parent weight	π	3.14159
W^4	Energy dissipated per cycle	ρ	Density
W^{v}	Vibrational energy	$ar{oldsymbol{ ho}}$	Average gas density
x	Displacement	ρ_c	Critical density
x_i	Mole fraction of the ith component	ρ_i	Density of the ith component
$x_t^{i_1}$	Double Fourier transform of trans-	ρ_R	Reduced density
•	verse current-current correlation	ρ*	Reduced density
	function	σ	Size parameter
Z	Number of moles of a component; Compressibility coefficient	σ_0	Potential parameter [equations (8) and (9)]
α	Molecular mobility; Numerical constant	τ	Period of vibration; Mean life [equations
· α ′	Coefficient of thermal expansion		(70) and (71)]
α_{ij}	Interaction parameter	φ	Azimuthal angle
β΄	Friction constant; Numerical constant	Φ	Angular deflection [equations (54) and
β	Coefficient [equation (129)]		(55)]
γ	Parameter [equation (10)]	χ	Deflection angle in a binary collision
δ	Deviation function; Correction factor; Potential parameter	Ψ_2	Coefficient of the Legendre polynomial of order 2
Δ	Logarithmic decrement; Differential in-	Ψ_{ii}	Sutherland coefficient
	crement	Ψ_{ij}^{φ}	Parameter [equation (40)]
€	Small correction factor; Measure of,	ψ_{α}°	Parameter [equation (4)]
	intermolecular depth; Potential	ω	Angular frequency, angular velocity
	parameter; Difference in energy	ω_c	Collision frequency
ζ	Orientation factor [equation (8)]	ω,	Larmor frequency
$\dot{\theta}$	Einstein characteristic temperature	$\Omega^{(l,n)}$	Viscosity collision integral
θ_i	Mass rate of flow; Angle [equation (8)]	$\Omega^{(l,n)*}$	Reduced viscosity collision integral
•	, , , , , , , , , , , , , , , , , , , ,		•

Viscosity of Gases and Gas Mixtures

1. INTRODUCTION

An adequate knowledge of viscosity plays a very important role in a variety of interesting engineering problems involving fluid flow and momentum transfer. This much-needed information is scattered throughout the literature, as may be seen from an examination of the many sources cited in [1] for a limited number of materials, either as obtained from an experimental measurement or as values computed according to a certain theoretical procedure. The probability of finding even an approximate value of viscosity decreases considerably as the molecular complexity of the material increases and/or the interest shifts toward extremes in such environmental conditions as temperature, density, magnetic fields, electric fields, etc. The information available for multicomponent systems is meager in comparison with that for pure substances, and in general the theoretical understanding of the phenomenon is less developed for the liquid state than for the gaseous state. Measurements of the viscosity of liquids and their mixtures are quite scarce. In the absence of elaborate experimental information and adequate theoretical understanding of the coefficient of viscosity for fluids and their mixtures, it would be most desirable to critically evaluate the available information and by a judicious interplay of theory and experiment develop, as well as possible, both the standard data and reliable procedures for theoretical calculations. This volume is an initial effort in this broad and general direction. In the first part we review the present state of the art of theory, estimation, and measurement techniques of gases and gas mixtures, and then of liquids and liquid mixtures. The second part deals with the critical evaluation of viscosity data obtained by different workers and different techniques, and lists the recommended values for pure and mixed materials in the gaseous and liquid states. In this entire volume we have implied by the word fluid its traditional meaning, the gaseous and liquid states.

2. THEORETICAL METHODS

A. Introduction

The history of the development of the kinetic theory of gases is both long and interesting. Chapman and Cowling [2] in their classic book give a brief description of this long development of several centuries. Brush, in a series of articles [3-9], has referred in a very original fashion to the contribution of Herapath, Waterson, Clausius, Maxwell, and others. Chapman [10] has delivered a very interesting lecture on the history of development of kinetic theory. The kinetic theory of transport processes is described in different detail and with varying degrees of rigor in a number of textbooks by Kennard [11], Jeans [12, 13], Loeb [14], Saha and Srivastava [15], Present [16], Herzfeld and Smallwood [17], Cowling [18], Knudsen [19], Guggenheim [20], Kauzmann [21], Golden [22], etc. Desloge [23-27] has written a number of articles presenting a pedagogical approach to the theoretical expressions for the transport properties coefficients starting from the Boltzmann transport equation. In their treatises, Chapman and Cowling [2] and Hirschfelder, Curtiss, and Bird [28] have presented a detailed rigorous treatment of the derivation of transport coefficients. Additional works which must be mentioned in this context are those of Mintzer [29], Mazo [3], Liboff [31], Cercignani [32], Waldmann [33, 34], Hochstim [35], and DeGroot [36]. The general theory of irreversible processes is also developed to derive transport coefficients [36-38].

We briefly refer below to the kinetic theory expressions for the coefficient of viscosity as obtained by simple and by more rigorous theories. The simple mean-free-path and the rigorous Chapman-Enskog theories lead to quite different theoretical expressions, but Monchick [40, 41] has successfully developed the interconnection between the two theories and their equivalence.

In Volume 3 of this series, Thermal Conductivity of Nonmetallic Liquids and Gases [42], we have described the various theories and the theoretical

49

expressions for the coefficient of thermal conductivity. As the mechanisms of transport of energy and momentum are similar in many ways there is an inherent interconnection between the coefficients of thermal conductivity and viscosity. We will, therefore, when discussing the latter, omit at places certain basic details which have already been given in connection with thermal conductivity [42]. Furthermore, the scope of our present text is to reproduce most of the practical results and refer to all major and relevant works so that consulting the widely scattered literature becomes easier. Many similar efforts of varying scope are referred to later, but mention must be made here of a series of survey articles by Liley [43–46] reviewing the work on transport properties of gases.

B. The Mean-Free-Path Theories

The transport of momentum is considered in a homogeneous gas which is spherically symmetric and monatomic, so that no inelastic collisions occur, and the pressure and density are such that only binary collisions between the gas molecules occur and the collisions between the gas and wall are negligible in comparison to gas—gas collisions. If the temperature is high enough so that the quantum effects are negligible and classical mechanics is adequate, if there is only a small velocity gradient so that $v_{x+4x} = v_x + (\partial v/\partial x)\Delta x$ accurately describes the velocity variation over Δx , and if the temperature is low enough so that the gas is un-ionized, undissociated, and not electronically excited, the simple kinetic theory predicts that

$$\mu = \frac{1}{3}\rho \hat{v}\lambda = k/C_{\nu} \tag{1}$$

Here μ is the coefficient of viscosity, ρ the density of the molecules, \bar{v} the mean speed, λ the mean free path, k the coefficient of thermal conductivity, and C_v the specific heat at constant volume.

Different numerical factors are found in equation (1) if consideration is given to the dependence of mean free path and collision rate on molecular velocity. A more rigorous calculation gives

$$\mu = \frac{5\pi}{32} \rho \bar{v} \lambda \tag{2}$$

or more precisely

$$\mu = \frac{5\pi}{32}(1 + \epsilon)\rho\bar{v}\lambda \tag{3}$$

where ϵ is a small number whose value depends upon the nature of the intermolecular force field. Thus, ϵ is zero for a Maxwellian gas and increases to 0.016 for a gas composed of rigid impenetrable spheres. The variation in the numerical coefficient of these relations for viscosity is mainly due to the tendency of the molecules to continue moving in their original direction even after a collision.

If the simple mean-free-path arguments are applied to a mixture consisting of n different gases, the resulting expression for the coefficient of viscosity, $\mu_{\rm mix}$, in terms of the viscosities of the pure components and other quantities, is [11, 47]

$$\mu_{\min} = \sum_{i=1}^{j} \mu_i / \left(1 + \sum_{\substack{j=1 \ i \neq i}}^{n} \psi_{ij} \frac{x_j}{x_i} \right)$$
 (4)

where

$$\psi_{ij} = \frac{S_{ij}}{S_i} \frac{\left[1 + (M_i/M_j)\right]^{1/2}}{\sqrt{2}}$$
 (5)

Here μ_i , x_i , and M_i are the coefficients of viscosity, mole fraction, and molecular weight of component i in the mixture, respectively; S_i and S_{ij} are the collision cross sections for molecules of type i and types i and j, respectively. This general form of equation (4) has been extensively studied, both to determine the physical significance of ψ_{ij} , and in the development of methods based on equation (4) which can be used for the estimation of μ_{mix} and which offer different alternatives for equation (5). These will be dealt with later at appropriate places in this chapter.

These results of simple kinetic theory are only of historical importance because estimates based on these expressions are in crude agreement with the directly observed values even for simple systems. The principal limitation of this approach consists in neglecting the effect of intermolecular forces during molecular collisions. In the rigorous approach of Chapman and Enskog this feature is considered and the theoretical expressions for viscosity are derived for a pure gas as well as for multicomponent gas mixtures. These expressions have been further refined in more recent years, as will be briefly described in the next section.

C. The Rigorous (Chapman-Enskog) Theories

The pioneer work of Enskog and Chapman is described in the treatise on the kinetic theory of nonuniform gases by Chapman and Cowling [2]. Many notable efforts have been made since then to reformulate the problem in different ways by adopting different approaches, developing more general and sometimes equivalent and alternative approaches for solving the Boltzmann equation, and deriving the expressions for transport coefficients. It will be in

order to refer to some of these efforts: Kirkwood [48, 49], Grad [50, 51], Kumar [52, 53], Green [54-56], Green and Piccirelli [57], Hoffman and Green [58], Snider [59], Mazur and Biel [60], Su [61], McLennan [62], Garcia-Coling, Green, and Chaos [63], Fujita [64], Bogoliubov [65, 66], Desai and Ross [67], and Tip [1172]. Montroll and Green [68] have reviewed various efforts aimed at developing the statistical mechanics of transport processes. Grad [69-71] has introduced a very strong approach to the formulation of transport coefficients of dilute gases. Zwanzig [72] reviewed the formulation of transport coefficients in terms of time-correlation functions. Model calculations have also been used in kinetic theory to simplify many of the complicated aspects while retaining all the essential features: see Bhatnagar, Gross, and Krook [73], Welander [74], Gross and Krook [75], Gross and Jackson [76], Sirovich [77], Enoch [78], Hamel [79], Willis [80], and Holway [81]. We refer to studies which have derived expressions for the coefficient of viscosity for pure gases and their mixtures of increasing molecular complexity and under different environmental conditions of temperature, pressure, etc. It is also appropriate to mention a recent article by Mason [82], who has reviewed the present art of calculation of transport coefficients in neutral gases and their mixtures.

a. Pure Monatomic Gases

The theoretical first-approximation Chapman-Cowling expression for the coefficient of shear viscosity of a pure monatomic gas under the same assumptions as mentioned above is [2, 28]

$$[\mu]_1 = \frac{a\sqrt{MT}}{\sigma^2 \Omega^{(2,2)*}} \tag{6}$$

Here $\sigma^2\Omega^{(2,2)*}$ is the viscosity collision cross section, σ is a size parameter, and $\Omega^{(2,2)*}$ is a function of the reduced temperature $T^*=kT/\epsilon$. ϵ is a measure of the depth of the attractive part of the intermolecular potential, T the temperature, and k the Boltzmann constant. The quantity a is a numerical factor and if μ be expressed in g cm⁻¹ sec⁻¹, σ in Å (10^{-8} cm), T in degrees K, its value is 266.93×10^{-7} .

The higher approximations to μ are represented in terms of $[\mu]_1$, the *n*th approximation being

$$[\mu]_n = [\mu]_1 f_{\mu}^{(n)} \tag{7}$$

 $f_{\mu}^{(n)}$ has been evaluated up to n=3 and found to be very feebly dependent on the nature of the intermolecular potential for moderate temperature ranges and not much different from unity [28]. The expression

for $f_{\mu}^{(3)}$ according to the procedure of Chapman and Cowling [2] is quite complicated, and Kihara [83] has developed an alternative scheme for representing the transport coefficients as an infinite series. The latter procedure approximates the actual intermolecular potential as a perturbation to the Maxwellian model. Joshi [85, 86] on the other hand has developed another approximation scheme in which the actual potential energy function is regarded as a perturbation over the rigid-sphere model and has derived the expressions for $f_{\mu}^{(2)}$ and $f_{\mu}^{(3)}$. In either formulation the higher-order approximation correction factors are simpler than those derived by the method of Chapman and Cowling [2, 28], and a tabulation of $f_{\mu}^{(2)}$ is available for the Lennard-Jones (12-6) potential on the Kihara approximation scheme [87].

b. Multicomponent Systems of Monatomic Gases

The general expression for the first approximation to viscosity of a multicomponent mixture is derived by Curtiss and Hirschfelder [88]. The higher second and third Chapman-Cowling approximations have been derived by Saxena and Joshi [89, 90] and Joshi [91], respectively. The Kihara approximation procedure has been extended by Mason [92], and the theoretical expression for a binary gas system on the Kihara-Mason scheme is derived by Joshi and Saxena [93]. The general characteristics of a gas mixture have been discussed by Waldmann [94] on the basis of the first-approximation Chapman-Cowling theoretical expression for the viscosity coefficient. Hirschfelder, Taylor, Kihara, and Rutherford [95] have theoretically examined the conditions under which the viscosity of a binary mixture will exhibit either a maximum or a minimum in the plot of viscosity versus composition of the mixture. They [95] have based their studies on the first-approximation Chapman-Cowling expression. Kessel'man and Litvinov [1158] have described the calculation of multicomponent viscosity from the first-approximation theoretical expression in conjunction with a Lennard-Jones (12-6) intermolecular potential with parameters regarded as depending on temperature. Barbe [1160] has developed automatic computer calculation procedure for multicomponent viscosity based on the kinetic theory expression.

c. Nonpolar Polyatomic Gases and Multicomponent Systems

The transport theory of polyatomic gases is much more complicated than that of monatomic gases, for

two reasons. First, the intermolecular potential is not central for polyatomic systems and due consideration must be given to its orientation or direction dependence. Second, the collisions are not all elastic and various complications associated with inelastic collisions must be properly considered. Consistent with the general style and scope of this text we refer briefly below to the various efforts made to resolve the overall understanding of the momentum transfer process in the above two categories.

Curtiss and co-workers [96-100] have developed the classical theory of nonspherical molecules by suitably modifying the Boltzmann equation and considering only the rotational motion. Curtiss [96] applied the perturbation technique of Chapman-Enskog and solved the Boltzmann equation to derive expressions for the transport coefficients which may be regarded as referring to rigid convex nonspherical bodies in which the center of mass is a center of symmetry. Curtiss and Muckenfuss [97] specialized the calculations [96] to a spherocylindrical model and presented results for shear viscosity as a function of two parameters characterizing the shape and mass distribution of the molecule. These calculations have also been extended to multicomponent mixtures [98] and further examined in detail including rigid convex nonspherical molecules with symmetrictop mass distributions [99, 100]. Others who have considered this molecular model are Sandler and Dahler [101] and Kagan and Afana'sev [102]. Another molecular model which has been studied in detail and for which the coefficient of viscosity is derived is the loaded sphere [103, 104]. Historically, the molecular model having internal energy, first studied by Pidduck [105], consisted of perfectly rough, elastic, rigid spherical molecules. For such molecules the energy of translation and the energy of rotation are interconvertible [2]. In more recent years the kinetic description of such a dilute gas of perfectly rough spheres was developed in considerable detail by Condiff, Lu, and Dahler [106], McLaughlin and Dahler [107], and Waldmann [108]. Dahler [109] made some interesting comments concerning the developments in the transport theory of polyatomic fluids. Pople [110, 111] has treated the interaction between nonspherical molecules as consisting of a central part and directional terms of various angular symmetries. He considered in particular the axially symmetric molecules. Attempts [28, 112, 113] have been made to further extend such an approach, but mainly equilibrium thermodynamic properties have been computed. The transport properties of gases with

rotational states have also been examined by McCourt and Snider [114, 115] and Kagan and Maksimov [116]. Studies have been made of transport phenomena in diatomic gases [117], the probability for rotational energy transfer in a collision [118], the relation between angular distribution and transport cross sections [119], etc. The subject of molecular friction in dilute gases has been discussed by Dahler and coworkers [120–122]. Bjerre [123] has derived the expressions for shear viscosity starting from the theory of Curtiss and Muckenfuss [96–98] and specializing them for a model appropriate for planar molecules. Other molecular models have been developed by Morse [124] and Brau [125] to account for the collision term in the kinetic equation for polyatomic gases.

The topic of molecular collisions in polyatomic molecules has received considerable attention both theoretically and experimentally. Here we refer only to a series of articles written by Curtiss and co-workers [126-135, 1164-1170] on this subject, which deals with collisions between diatomic and polyatomic molecules and considers both rotational and vibrational excitations. Wang Chang and Uhlenbeck [136, 137] developed a formal theory of transport phenomena in dilute polyatomic gases. They treated the problem semi-quantum-mechanically, treating the translational motion of the molecules classically and the internal motion quantum-mechanically. This enabled them to assume the existence of quantum inverse collisions. Furthermore, they considered two cases: one in which the energy exchange between the translational and internal degrees of freedom is easy [136], and the other extreme case in which such an energy transfer is quite rare [137]; see also Wang Chang, Uhlenbeck, and de Boer [138]. However, the Wang Chang-Uhlenbeck equation is much more complicated than the Boltzmann equation, and an attempt by Finkelstein and Harris [139] to linearize the former is interesting. They used the geometrical technique of Finkelstein [140]. Hanson and Morse [141] have developed the kinetic model equations for a gas with internal structure by employing a modified diagonal approximation and the Wang Chang-Uhlenbeck equation. A classical theory of transport phenomena in dilute polyatomic gases is developed by Taxman [142] as an extension of the Chapman-Enskog theory for monatomic gases [2]. This theory [142] is also the classical limit of the work of Wang Chang and Uhlenbeck [137].

The formal theory of Wang Chang and Uhlenbeck [136-138] and of Taxman [142] has been very

cleverly simplified by Mason and Monchick [143] and Monchick, Yun, and Mason [144, 145] to derive expressions for transport coefficients. They have neglected terms arising from considerations of inelastic collisions which are small and expressed the others in terms of measurable quantities. The potential of this procedure is also successfully tested in predicting the other transport properties [146-148]. A similar success is demonstrated for the loaded sphere model calculations of the thermal diffusion factor [149, 150]. Alievskii and Zhdanov [151] have discussed the transport phenomena in mixtures of polyatomic gases. Curtiss [1171, 1193] has recently derived an explicit classical expression for the viscosity of a lowdensity gas of rotating and nonvibrating diatomic molecules. Stevens [1173] performed calculations for methane including inelastic collisions and introducing approximations in the calculation of transport cross sections. He found that viscosity is hardly influenced by inelastic effects.

d. Pure Polar Gases and Multicomponent Systems

The properties of polar gases are hard to calculate because the interaction between two molecules depends on their relative orientations and the calculation of molecular trajectories for angle-dependent potentials is not easy. The occurrence of inelastic collisions and resonant transfer of internal energy complicates the analysis considerably. The nonspherical shape of the molecules gives rise to shortrange orientation-dependent overlapping repulsive forces. The attractive force between polar molecules arises from three different sources; dispersion, the interaction between permanent electrostatic distributions (dipoles and higher multipoles), and interactions arising from electric moments induced by the permanent moments of other molecules. A detailed discussion of this topic is given by Buckingham and Pople [156, 157], Saxena and Joshi [158], and Hirschfelder, Curtiss, and Bird [28].

Krieger [159] assumed the following type of Stockmayer potential [160, 161] to correlate and estimate the viscosities of polar gases:

$$\Phi(r) = 4\epsilon \left[\left(\frac{\sigma_0}{r} \right)^{12} - \left(\frac{\sigma_0}{r} \right)^6 \right] - \left(\frac{p^2}{r^3} \right) \zeta \tag{8}$$

where

$$\zeta = 2\cos\theta_1\cos\theta_2 - \sin\theta_1\sin\theta_2\cos\phi$$

Here p is the dipole moment of the molecule, ζ is an orientation factor in which θ_1 and θ_2 are the angles of inclination of the two dipole axes to the line joining

the centers of the molecules, and ϕ is the azimuthal angle between them. In the limit when $p \to 0$, $\phi(r)$ is just the Lennard-Jones (12-6) potential, and ϵ and σ_0 are the potential parameters. Krieger [159] further assigned a constant value of 2 to ζ , which implies that the dipoles maintain an attractive end-on position, corresponding to the maximum attractive orientation, throughout their encounter. This assumption transforms the above angle-dependent potential into the following central potential:

$$\Phi(r) = 4\epsilon [(\sigma_0/r)^{12} - (\sigma_0/r)^6 - \delta(\sigma_0/r)^3]$$
 (9)

where

$$\delta = p^2/2\epsilon\sigma_0^3$$

Krieger [159] evaluated the viscosity collision integral for the reduced temperature range, T^* , from 1.0 to 512 and for nine equally spaced δ values from 0.00 to 2.00. He [159] correlated the viscosity data for twelve polar gases and determined the values of the potential which he found inadequate for highly polar gases. Liley [163] made certain comments concerning the accuracy of the tabulated viscosity collision integral by Krieger [159] and presented a retabulation for the low temperature range, $T^* = 0.70$ to 5.00. More detailed calculations of Itean, Glueck, and Svehla [164] confirmed an error in the original calculations of Krieger [159]. However, the Itean et al. [164] corrected calculations give only unreasonable values for the potential parameters if experimental data are fitted with the theoretical predictions on this model.

Monchick and Mason [165] argued that in Krieger's model all repulsive orientations are neglected, and the orientation of aligned dipoles of maximum attraction and rotational energy is the one in which the molecules spend the least amount of time; hence this model may be unrealistic. They suggested a model in which all relative orientations are accounted for but still the dipole field is replaced by a central field. The Monchick and Mason [165] model assumes that the molecular trajectories are insignificantly affected by the inelastic collisions even when they occur quite frequently. They justify this on the consideration of energy grounds because the rotational energy at ordinary temperatures is much smaller than the translational kinetic energy, which is of the order of kT. This assumption is likely to be reasonable for shear viscosity because of the small contribution of inelastic collisions to momentum transport [145]. This assumption simplifies the

theoretical expression of μ given by Taxman [142] so that

$$\frac{1}{\mu} = \frac{8}{5(\pi mkT)^{1/2}} \int \left[(1 - \cos^2 \chi)b \, db \, d\phi \right]$$

$$\times \exp(-\gamma^2)\gamma^7 \, d\gamma$$
(10)

where

$$\gamma^2 = \left(\frac{m}{4kT}\right)g^2$$

Here m is the mass of a molecule, k the Boltzmann constant, T the temperature, χ the deflection angle in a binary collision, b the impact parameter, ϕ the azimuthal angle, and g the initial relative speed. Equation (10) is the same as that obtained for no internal degrees of freedom.

Monchick and Mason [165] further argued that the relative orientation of the molecules over a small range around the distance of closest approach remains almost constant, and the angle of deflection is primarily and mainly controlled by this particular relative orientation rather than by all the possible orientations assumed along the entire trajectory from $t = -\infty$ to $t = +\infty$. The work of Horn and Hirschfelder [166] also supports this point of view. The idea of a fixed relative orientation during a collision leads one, in actual calculation, to treat ζ as a constant ζ_0 (value of ζ at the distance of closest approach) and thus replace Φ by a multiplicity of central field potentials corresponding to all values of ζ_0 between -2 and +2. The collision integrals are then calculated for each of these potentials and average values are determined by giving the proper weight of the potential. The latter is essentially the probability of the collision taking place along that potential. The viscosity is then computed by the same expression as that for nonpolar gases except that $\Omega^{(2,2)*}$ is replaced by the average value, $\langle \Omega^{(2,2)*} \rangle_{av}$, obtained according to the above procedure. This is a valid approach for all orders of the kinetic-theory approximations as shown by Mason, Vanderslice, and Yos [167]. Mason and Monchick [168] have extended this model with reasonable success for the computation of the viscosities of mixtures. Singh and Das Gupta [1162] have analyzed the data on polar gases according to a simple preaveraged 12-6-6 intermolecular potential. They [1163] have also studied the properties of binary mixtures of polar gases where one component has a predominance of dipole moment while the other has a quadrupole moment only.

e. Quantum Effects

The calculation of viscosity of light gases at low temperatures is complicated because of the appearance of quantum-mechanical diffraction and statistical effects [28]. The collision cross sections must now be computed using quantum mechanics instead of classical mechanics [169, 170]. It also becomes imperative to work through the quantum-mechanical version of the Boltzmann equation as given by Uehling and Uhlenbeck [171]. Considerable progress has been made in both of these directions, and an excellent review on the subject by Buckingham and Gal [172] has appeared. Here we refer to some of the pertinent works which may prove specially useful in the art of computing viscosities of gases at low temperatures.

Detailed discussions of derivations of the Boltzmann equation using different quantum-mechanical approaches are available in two recent review articles by de Boer [173] and Mori, Oppenheim, and Ross [174]. Other interesting derivations have appeared since then: Waldman [175], Snider [176, 177], Hoffman, Mueller, and Curtiss [178], and Hoffman [179]. Mention may be made of the diagram technique of Prigogine and co-workers [180-182] in handling the transport equation in quantum gases. Quantummechanical kinetic theory has been worked out in detail by Mueller and Curtiss [183, 184] for a gas of loaded spheres. de Boer and Bird [185, 186] have derived correction factors to be applied to the classical collision integrals to estimate the quantum effects. Their calculations are valid for relatively high temperatures (above the reduced temperature, T^* , of five) and for a monotonic decreasing intermolecular potential function [187]. Choi and Ross [188] have calculated the first-order quantum correction by solving without any approximation the equation of motion of a two-particle system and have estimated the magnitude by assuming a simple model for molecular interactions. Buckingham and Gal [172] have computed the quantum corrections assuming the Buckingham-Corner [189] intermolecular potential. Imam-Rahajoe, Curtiss, and Bernstein [190] and Munn, Smith, Mason, and Monchick [191] have determined the contribution of quantum effects to the transport cross sections assuming a Lennard-Jones (12-6) intermolecular potential function. More detailed calculations of the phase shifts and quantum corrections to transport corrections have been made in recent years by Curtiss and Powers [192], Wood and Curtiss [193], Munn, Mason, and Smith [194]. Smith, Mason, and Vanderslice [195], Bernstein.

Curtiss, Imam-Rahajoe, and Wood [196], and Aksarailian and Cerceau [1161].

A number of calculations have been made on the isotopic varieties of lighter gases (helium and hydrogen) and their mixtures. This is because quantum corrections are expected to be large for such systems and many of these have been experimentally studied. We mention here several such efforts. Assuming the interaction model to be of rigid-sphere type, Massey and Mohr [197] calculated the quantum collision cross sections and collision integrals. This work followed a series of investigations for He⁴ assuming different types of molecular interactions. Massey and Mohr [198] and Massey and Buckingham [199] did calculations using the Slater interaction potential [201]; Buckingham, Hamilton, and Massey [202] for six different potentials; de Boer [203], Keller [204], Monchick, Mason, Munn, and Smith [205], and Larsen, Witte, and Kilpatrick [206] for the Lennard-Jones (12-6) potential [207]. Keller [204] has considered the modified exp-six potential derived by Mason and Rice [208]. Similar calculations have been made for He³ by Buckingham and Temperley [209], de Boer and Cohen [210], Buckingham and Scriven [211], Cohen, Offerhaus, and de Boer [212], Halpern and Buckingham [213], Keller [204], and Monchick et al. [205]. Some of these authors have also discussed the properties of the mixtures of He³ and He4 [214].

A number of interesting calculations have been made on the isotopes of hydrogen. Cohen, Offerhaus, Leeuwen, Roos, and de Boer [215] computed the viscosities of ortho- and para-hydrogen assuming a spherically symmetric Lennard-Jones (12-6) type of interaction potential [207]. A similar investigation is due to Buckingham, Davies, and Gilles [216], who approximated the force field by a Buckingham-Corner type potential [189]. Takayanagi and Ohno [217] and Niblett and Takayanagi [218] have further extended the scope of these calculations by considering the nonspherical potential. Waldmann [219] has discussed the kinetic theory of para-ortho-hydrogen mixtures, for which Hartland and Lipsicas [220] have made some interesting comments. Diller and Mason [221] have calculated the transport properties of H₂, D₂, HD, and some of their mixtures employing a Lennard-Jones (12-6) potential.

Calculations of the viscosity of atomic hydrogen at low temperatures have also been made by several workers: Buckingham and Fox [222], Buckingham, Fox, and Gal [223], Buckingham and Gal [172], Browing and Fox [224], etc. Konowalow,

Hirschfelder, and Linder [225] have computed the viscosity of oxygen and sulfur atoms from the potential energy curves at large separations. It may be pointed out that the low-temperature viscosity studies help in the understanding of the operation of low-density free jets such as those which occur in space vehicles and low-density wind tunnels [226].

f. High-Temperature Calculations

The calculation of viscosity at high temperatures is of particular interest to design engineers and to the outer space exploration program. The computation is tedious because with increasing temperature, internal energy excitations, electronic excitations, dissociation, and various degrees of ionization must be considered. Multiplicity of intermolecular potentials, nonequilibrium between the electron and heavy-particle temperatures, appearance of quantum corrections for high-density plasmas and, at extremely high temperatures (above 10⁶ K), for low-density plasmas, and resonant charge exchange between ions are the main factors making the calculation of transport properties at high temperatures difficult. However, many significant improvements have been made in recent years, and in many cases reliable estimates of viscosity are possible up to high temperatures of practical need. Many review articles and books, differing in scope and emphasis, summarize these developments, e.g., Chapman and Cowling [2], Hochstim [35], Spitzer [227], Ahtye [228, 229], and Brokaw [230]

The kinetic equations and the calculation of transport properties of ionized gases and plasmas have been recently reviewed in a series of articles by Tchen [249], Lewis [250], and Hochstim and Massel [251]. Here we will refer very briefly to some of the work which is of direct relevance to the calculation of viscosity of gases under partial or complete ionization.

The calculation of viscosity at high temperatures is easy if the contributions of internal degrees of freedom, electronic excitations, dissociation, and ionization are ignored. Under such assumptions the theory of Chapman and Enskog [2, 28] may be used if the molecular interactions and corresponding viscosity collision integrals are known. Amdur and Mason [231], Kamnev and Leonas [232], and Balyaev and Leonas [233] adopted this approach and predicted properties of rare gases and homonuclear diatomic gases, hydrogen, nitrogen, and oxygen, up to 15,000 K. In each case the interaction potentials were determined by experiments on the elastic scattering of fast molecular beams. Amdur, in a series of articles

[234–236], has explained the limitations of such an approach and their effect on the calculated values of transport coefficients. Brokaw [237] has discussed the role of viscosity in calculating the convective heat transfer in high-temperature gases. Yos [238, 239] has computed the viscosity of hydrogen, nitrogen, oxygen, and air in the temperature range 1000-30,000 K and for pressures from 1 to 30 atm. The values for the fully ionized case were made to agree with those of Spitzer and Harm [240]. The viscosity of dissociating gases has been computed by Mason and co-workers with the assumption of no ionization and no electronic excitation for hydrogen [241, 242], nitrogen and oxygen [243], and air [244, 245]. Krupenie, Mason, and Vanderslice [246] have computed the viscosity of Li + Li, Li + H, and O + Hsystems in the temperature range 1000-10,000 K. Belov and Klyuchnikov [247] have also considered the viscosity of the weakly ionized LiH plasma in the temperature range 1000-10,000 K and at five pressure levels. The viscosity values of alkali metal vapors have been computed by Davies, Mason, and Munn [248]. Belov [1156] has computed the viscosity of partially ionized hydrogen in the temperature range of 6000-30,000 K and for pressures of 0.001, 0.01, 0.1, 1, and 10 atm. The effect of charge transfer is included.

It was observed by Ahtye [229] that for ionized gases higher Chapman-Enskog approximations are needed because the convergence of the infinite series representing the transport coefficients is poor due to the small mass of the electron. Devoto extended the formulation of viscosity to include second [252], third [253], and even higher approximations [254, 255]. In view of the great complexity of these expressions, Devoto [256] has also attempted to simplify them, and has assessed the adequacy of these simple expressions by performing actual calculations for partially ionized argon.

A number of other interesting developments have been made which facilitate the calculation of viscosity at high temperatures in general. Mason and Sherman [257] have made estimates of the cross sections for symmetric resonant charge exchange between ions differing by one electronic charge. Chmieleski and Ferziger [258] have presented a modified Chapman-Enskog approach for an ionized gas where heavy particle and electron temperatures are allowed to differ, though up to zero order all species have the same macroscopic velocity. This inequality of temperature is caused mainly by the fact that the relaxation time for energy exchange

between the heavy and light species is much larger than the time for each individual species to acquire equilibrium with itself. In the limit of equal temperature for electron and ion, these expressions are identical with the results obtained adopting the Chapman-Enskog approach. Sandler and Mason [259] have considered a scheme for the solution of the Boltzmann equation which converges more rapidly than the usual Chapman-Cowling procedure [2]. They considered a particular gas system called an almost-Lorentzian mixture, where the mass of one component is far greater than the other and the proportion of the lighter component in the mixture is smaller than that of the heavier component. A partially ionized gas mixture constitutes such a system. Hahn, Mason, Miller, and Sandler [1192] have made calculations to determine the contributions of dynamic shielding to the transport properties of partially ionized argon both at low and high degrees of ionization. Meador [260] has discussed a collision model, which is similar in many respects to a Lorentz gas, for an ionized gas plasma.

A number of calculations have been made of the transport properties in general and viscosity in particular of ionized gases as a function of temperature and pressure. Some of these will be quoted here. Devoto and Li [261] have tabulated the viscosity of partially ionized helium in chemical equilibrium at pressures of 0.01, 0.1, 1, and 5 atm and for temperatures ranging from 4000 to 30,000 K. Kulik, Panevin, and Khvesyuk [262] have reported the computed values of viscosity of ionized argon in the temperature range 2000-30,000 K and for pressure levels of 1, 0.1, 0.01, 0.001, and 0.0001 kg/cm². Devoto [263] has graphically reported the viscosity values of equilibrium partially ionized krypton and xenon covering temperatures between 2000 and 20,000 K at pressures of 0.01, 0.1, 1, and 10 atm. Devoto [264, 265] has also tabulated the viscosity values for partially ionized hydrogen at these four pressure levels but for temperatures ranging up to 50,000 K. Grier [266] has given tabulations of transport properties of ionizing atomic hydrogen.

Mason, Munn, and Smith [267] have used repulsive and attractive screened coulomb potentials to represent interactions among charged particles in an ionized gas. They have computed the classical Chapman-Enskog collision integral: these potentials over a wide range of reduced temperatures, the latter being equivalent to a wide range of electron densities and temperatures. This work has also included a discussion of quantum effects at high densities and temperatures. This work supersedes the

earlier computation of collision integrals for repulsive screened coulomb potentials by Smith, Mason, and Munn [268]. Beshinske and Curtiss [269] have recently initiated the study of a dense fluid of molecules composed of nuclei and electrons with purely coulomb interaction potentials.

Dalgarno and Smith [270] have calculated the viscosity of atomic hydrogen for temperatures up to 10⁵ K and estimated that the classical calculations are adequate for temperatures above 100 K; below this temperature quantum corrections are important. Dalgarno [271] has also shown that the effect of quantum symmetry on viscosity cross section is small for the collision of two similar particles. It is also appropriate to mention the calculations of momentum transfer and total and differential cross sections for scattering from a coulomb potential with exponential screening by Everhart and co-workers [272, 273].

g. High-Density (or Pressure) Calculations

The calculation of viscosity of a dense gas becomes very complicated because of the possibility of occurrence of more than two particle collisions and the transfer of momentum from the mass center of one particle to another through the action of intermolecular forces [2, 28]. These two effects are briefly referred to as "higher-order collisions" and "collisional transfer of momentum," respectively. David Enskog's [2] efforts are pioneering contributions to the study of dense gases. He modified the Boltzmann equation and applied it to a dense gas of rigid spherical molecules. Since then this molecular model has been extensively studied because for such molecules the probability of multiple collisions is negligible and the collisions are instantaneous [2]. Curtiss [274] and Cohen [275-277] have briefly referred to the various efforts made to understand the transport behavior of a dense gas, and a more detailed review on the subject by Ernst, Haines, and Dorfman [278] has recently appeared. We now cite the different works which have helped in the understanding of this difficult subject and may also help in the prediction of viscosity of moderately dense or dense gases in general. A few attempts to examine the individual gases are also mentioned.

As in the case of a theory for dilute gas, here also for a dense gas an appropriate development of transport theory involves the formulation of an alternative or modification to the Boltzmann equation. Many attempts have been made in this direction by Bogoliubov [65], Cohen [280], Sengers and Cohen [281], Cohen [282, 285], Green and Piccirelli [57], Piccirelli [286], García-Colin [287], and others, as discussed below. It may be pointed out that an interesting question concerning the appropriate definition of temperature arises in the kinetic theory of dense gases. Two temperature definitions are possible, based either on the kinetic or total energy densities. The latter includes the molecular-interaction potential energy. This is discussed by García-Colin and Green [288] and Ernst [289]. The two definitions are equivalent as far as the coefficient of shear viscosity is concerned, but only the second definition is consistent with the irreversible thermodynamics [289].

We now mention some simple kinetic-theory approaches which have been developed to understand the transport processes in dense fluids, in certain cases for specialized molecular interactions. Dymond and Alder [290] developed a theory for transport coefficients on the basis of the van der Waals concept of a dense fluid. Making certain simplifying assumptions about the pair distribution functions, Longuet-Higgins and Pople [291] and Longuet-Higgins and Valleau [292] have derived an expression for the shear viscosity of a dense fluid of hard spheres, and Valleau [293] for rough spheres exerting no attractive forces. Longuet-Higgins and Valleau [294] developed the theory for a dense gas whose molecules attract each other according to a square-well potential, and Valleau [295], Naghizadeh [296], and McLaughlin and Davis [297] extended the theory to mixtures. McCov, Sandler, and Dahler [298] have also worked out the theory of a dense gas of perfectly rough spheres including the effect of rotational degrees of freedom. Sandler and Dahler [299] have computed from their theory the shear viscosity for a dense gas of loaded spheres. Sather and Dahler [300] have considered a dense polyatomic fluid whose molecules interact with impulsive forces and derived, among other transport coefficients, the expression for shear viscosity. Some other authors who have used statistical mechanics to study the kinetic theory of a dense gas composed of rigid spherical molecules are O'Toole and Dahler [301] and Livingston and Curtiss [302]. Ono and Shizume [303] discuss the transport coefficients of a moderately dense gas on the basis of the statistical mechanics of irreversible processes.

Snider and Curtiss [304] developed the kinetic theory of moderately dense gases by ignoring the effect of three-body collisions and considering the collisional transfer of momentum arising from the distortion of the radial distribution function [305].

12a

Their expressions when evaluated for the limiting case of a rigid-sphere gas give the same results as those of Enskog [2, 28]. These expressions were simplified by Snider and McCourt [307] and evaluated for a case where molecules interact according to an inverse power potential. Curtiss, McElroy, and Hoffman [308] have performed the numerical calculations of the first- and second-order density corrections to the transport coefficients of a gas) assuming a Lennard-Jones (12-6) interaction potential. Starting from a generalized Boltzmann equation valid to all orders in density [57] and adopting a method similar to that of García-Colin, Green, and Chaos [63], García-Colin and Flores [309, 310] have derived the expressions for shear viscosity to terms linear in density for a moderately dense gas.

Stogryn and Hirschfelder [312] have developed a theory to compute the initial pressure dependence of viscosity. They approximated the three-body collisions effectively by a two-body collision between a monomer and a dimer. The fractions of molecules in bound and metastable states are calculated according to procedures outlined by Hill [313, 314] and Stogryn and Hirschfelder [312, 315]. The contribution of collisional transfer is obtained by a semiempirical modification of the Enskog theory [2, 28]. This theory has been applied to explain many experimentally observed facts with reasonable success [316, 320].

Singh and Bhattacharyya [321] have derived the relation for computing the viscosity of moderately dense gases with appreciable quadrupole moments. Their approach is similar to that developed by Stogryn and Hirschfelder [312]; they assumed equal probability for all the relative orientations of the interacting quadrupoles and employed equilibrium constants for dimerization for quadrupolar gases as evaluated by Singh and Das Gupta [322]. Singh and Manna [323] have presented a similar formulation for moderately dense dipolar gases using the equilibrium concentrations of dimers as evaluated by Singh, Deb, and Barua [324]. Kim and Ross [325], on the other hand, have developed a theory for moderately dense gases in which, though the contribution of collisional transfer is neglected, a more complicated picture of a triple collision is considered by including in the calculation what they call quasi-dimers due to orbiting collisions, in addition to bound and metastable dimer states.

Curtiss and co-workers have developed the theory for dense gases as an improvement of their theory for moderately dense gases [304] by including the contribution of three-body collisions, as have

Hollinger and Curtiss [326], Hollinger [327], and Hoffman and Curtiss [328, 330]. Bennett and Curtiss [331] have recently derived the transport coefficients for mixtures on the basis of a modified Boltzmann equation, considering the effects from both collisional transfer and three-body collisions. The various collision integrals which appear in this formulation are evaluated numerically for the Lennard-Jones potential. In this formulation the effect of bound pairs is not included; it is probably small at higher temperatures. Sengers, in a series of papers [332-336, 1174], has discussed how the expressions for transport coefficients change if details of collisions are properly accounted for. On including certain types of recollisions and cyclic collisions he finds a divergence in the density expansion of the transport coefficients. This particular topic has been discussed in recent years by Dorfman and Cohen [337, 338], Dorfman [339, 340], Stecki [341], Andrews [342, 343], Fujita [344, 345], and Ernst, Haines, and Dorfman [278] in considerable detail. Sengers [346, 347], Hanley, McCarty, and Sengers [348], and Kestin, Paykoc, and Sengers [1175] have considered the experimental data on viscosity of gases and their parametric dependence on the density of the gas. Hoffman, Mueller, and Curtiss [178], Imam-Rahajoe and Curtiss [349], Grossmann [350-353], Grossman and Baerwinkel [354], Fujita [355], and Morita [357] have discussed the various features of dense gases from the viewpoint of quantum mechanics.

Another approach used to study the density dependence of transport coefficients in a moderately dense gas is based on expressions in terms of time-correlation functions. The developments of this approach and the various methods used in recent years have been reviewed by Zwanzig [72], Helfand [358], Ernst, Haines, and Dorfman [278], and Ernst [279]. Reference is made to the efforts of Kawasaki and Oppenheim [359–362], Frisch and Berne [363], Storer and Frisch [364], Prigogine [365], Ernst, Dorfman, and Cohen [366, 367], Ernst [368, 369], Zwanzig [371, 372], Weinstock [373–378], and Goldman [379], whose work has helped very much in the development of the theory of dense gases.

The various procedures used to derive the theoretical expressions for the transport coefficients of a moderately dense gas, based either on a generalized Boltzmann equation and the distribution function approach or the correlation function approach, have been compared by a number of workers such as García-Colin and Flores [380], Chaos and García-Colin [381], Stecki and Taylor [382], Prigogine and

Resibois [383], Resibois [384-387], Brocas and Resibois [388], and Nicolis and Severne [389]. Mo, Gubbins, and Dufty [1187] have developed a perturbation theory for predicting the transport properties of pure fluids and their mixtures. Good agreement is reported between the calculated and experimental viscosity values of both pure and mixed dense gases and liquids. Attempts have also been made in recent years by Tham and Gubbin [1188] and Wakeham, Kestin, Mason, and Sandler [1189] to extend the Enskog theory of dense gases to multicomponent mixtures. The theory is found to agree with the available experimental data.

h. Magnetic- and Electric-Field Effects

A good way of determining the contribution of the nonspherical shape of polyatomic molecules to the transport processes is to study the effects of magnetic and electric fields. In 1930 Senftleben [390] experimentally examined the effect of magnetic field on the thermal conductivity of paramagnetic diatomic gases. A similar investigation was made in relation to shear viscosity [391-394] and a number of other studies were made about the same time [395-400]. A simple mean-free-path kinetic theory to explain this magnetic-field dependence in paramagnetic gases was developed by Gorter [401] and Zernike and Van Lier [402]. In the externally applied magnetic field, the magnetic moment causes the molecular axis to precess around it with a Larmor frequency, ω_{i} . Thus, the changing orientation of the axis between collisions alters the effective collision cross section, and the net effect of the external field is to introduce an additional averaging over different orientation. It is also evident in this picture that collision frequency ω_c , and hence pressure, should be a controlling factor, and indeed this effect is found to be dependent upon the ratio of the field to the pressure of the gas. Thirty-two years later Beenakker, Scoles, Knaap, and Jonkman [403] showed that the transport properties of any polyatomic gas are influenced by the presence of an external magnetic field; hence in recent literature this phenomenon has been referred to as the "Senftleben-Beenakker" effect. The first measurement [403] was confined to nitrogen up to 21 kOe at pressures of 12.2 and 5.4 mm Hg. Since this preliminary work, the viscosity of many other gases has been studied. For example, O2, NO, CO, normal H₂ and D₂, para-H₂, ortho-D₂, HD, CH₄, CF₄, and CO₂ have been studied by Korvig, Hulsman, Knaap, and Beenakker [384, 406]. In a smilar fashion the thermal conductivity of nonspherical gases (H2, D2, O₂, N₂, CO, and CO₂) is altered in the presence of an external magnetic field, as shown by the experiments of Gorelik and Sinitsyn [407] and Gorelik, Redkoborodyi, and Sinitsyn [408].

Efforts to develop a more rigorous theory to explain the effects of external field, starting from a rigorous Boltzmann equation [108, 114, 409] and adopting a procedure somewhat parallel to that of Chapman and Enskog, have been made by Kagan and Maksimov [116, 410], McCourt and Snider [411], Knapp and Beenakker [412], Tip [413], Levi and McCourt [414], Tip, Levi, and McCourt [415]. Tip [416], and Hooyman, Mazur, and de Groot [417]. These theoretical studies also established that energy and momentum transport will also occur perpendicular to the directions of external field and gradient. Korvig, Hulsman, Knaap, and Beenakker [418] have reported experimental results of this transverse effect in the case of viscosity for O2, N2, and HD at room temperature. The experimental work of Kikoin, Balashov, Lazarev, and Neushtadt [419, 420] on oxygen and nitrogen has shown the necessity of more detailed study of this transverse effect. In the last few years many additional investigations have been made to understand the effect of external magnetic field on the transport properties of gases: Tip [421], Korvig, Knapp, Gordon, and Beenakker [422], Korvig, Honeywell, Bose, and Beenakker [423], Gorelik and Sinitsyn [424], Levi, McCourt, and Hajdu [425], Levi, McCourt, and Beenakker [426], McCourt, Knapp, and Moraal [427], Gorelik, Nikolaevskii, and Sinitsyn [428], Hulsman and Burgmans [1180], Moraal, McCourt, and Knaap [1181], Korving [1182], Tommasini, Levi, Scoles, de Groot, van den Brocke, van den Meigdenberg, and Beer.akker [1183], Hulsman, van Waasdijk, Burgmans, Knaap, and Beenakker [1184], Hulsman and Knaap [1185], and Beenakker and McCourt [1186]. Studies have also been made to determine the effect of the magnetic field on the properties of mixtures: viscosity [429], diffusion [430], and thermal diffusion [431].

Similar studies have been conducted to investigate the effect of an external electric field on the transport properties of gases: Senftleben [432], Amme [433], Borman, Gorelik, Nikolaev, and Sinitsyn [434], Borman, Nikolaev, and Nikolaev [435], Gallinaro, Meneghetti, and Scoles [436], and Levi, McCourt, and Tip [437].

i. Critical and Rarefied Gas Regions

Our understanding of the properties of fluids near the critical point is far from being satisfactory

[438], and much theoretical and experimental work needs to be done. The status of knowledge concerning viscosity is reviewed in recent articles by Sengers [439, 1176, 1177], Sengers and Sengers [440], Deutch and Zwanzig [441], Fixman [442], and Teague and Pings [443]. Cercignani and Sernagiotto [444] have recently discussed the Poiseuille flow of a rarefied gas in a cylindrical tube and solved the integrodifferential equation numerically for the Bhatnagar, Gross, and Krook model. Because of the limited present understanding of these topics, we refer to them only briefly here.

3. ESTIMATION METHODS

A. Introduction

A number of methods have been developed to compute the viscosity of gases and their multicomponent mixtures under conditions of temperature and composition where directly measured values are not available. Many ways have emerged from the framework of Chapman-Enskog theory [2] to estimate the collision integrals either through a simplified adjusted potential or a more complicated potential whose parameters are obtained from critical constants or boiling point constants, or from viscosity data over a limited temperature range. Attempts have been made to arrange the rigorous theory expression in such a form that various groups of quantities depend only in an insensitive way on the temperature, composition, etc., so that once the expression is adjusted for one or two observed values of viscosity, the reliable estimation for other conditions is possible with great ease. Many sources list methods with various viewpoints and consequently with varying degrees of rigor. Reid and Sherwood [445] in their book describe correlation procedures for the viscosity data of gases as a function of temperature, and methods of calculation for pure gases and mixtures. Westenberg [446] and Brokaw [740] have discussed the calculation of viscosity of gases and multicomponent mixtures on the basis of rigorous kinetic theory for polar and nonpolar gases, labile atoms, and radicals. Hilsenrath and Touloukian [447] and Hilsenrath, Beckett, Benedict, Fano, Hoge, Masi, Nuttal, Touloukian, and Woolley [448] have recommended viscosity data for a number of gases based on various empirical or kinetic theory expressions. Svehla [449, 450] and Simon, Liu, and Hartnett [451, 773] have tabulated the estimated values of viscosities of a number of gases and mixtures as a function of temperature. Because of the interest of the petroleum industry, viscosities have been computed for natural gases [452], light hydrocarbons [453, 777], and lubricants [454]. Some other articles will be referred to later while discussing the individual estimation procedures.

B. Pure Gases

The rigorous kinetic theory expression given earlier can be used to compute the viscosity of the desired gas under specified conditions if all the necessary related information is known; this view is supported by a large number of studies [28, 809]. For simple molecules in the predissociation and preionization range at ordinary pressures, the basic information necessary is the intermolecular potential, and hence, the computed viscosity collision cross section. Much effort has been devoted to determining the nature of intermolecular forces as well as in the computation of collision integrals. We refer to many such studies here, for they are of prime importance in the calculation of viscosities of gases and gaseous mixtures.

Various books [2, 28] discuss the subject of intermolecular forces, but it will be sufficient here to mention two recent publications [455, 456] which exclusively deal with this complicated subject from different points of views. Some other exhaustive reviews on the subject are due to Margenau [457], Fitts [458], Pauly and Toennies [459], Lichten [460], Buckingham [461], Dalgarno [462], Walker, Monchick, Westenberg, and Fowin [463], Treanor and Skinner [464], and Certain and Bruch [370]. Some papers deal with particular features in detail, e.g., zero-point energy [465], long-range intermolecular forces [466-469], moderately long-range intermolecular forces [470, 471], short-range intermolecular forces [472-474], exchange forces [475, 476], additivity of intermolecular forces [477-479], quasi-spherical [480, 481] and polar [482] molecule interactions, and resonant charge exchange [483, 484]. The determination of short-range intermolecular forces from measurements of elastic scattering of high-energy beams has been discussed by Amdur [485] and Amdur and Jordan [486]. In spite of all such studies, the understanding of intermolecular forces is still quite primitive [487], and the qualitative features thus derived are combined with experimental data to determine the unknown parameters which are adjusted in this process to values depending upon the property and the temperature range used. Here again extensive work has been done, and we briefly review below the various semiempirical potential forms so

far used and the effort to determine their unknown parameters.

Various semiempirical potential forms used for computing transport properties are reviewed in a number of articles [2, 488-491] and in many more; some of these will be referred to later. The simple inverse (or exponential) attractive (or repulsive) potentials have been considered to compute transport property collision integrals [492-496]. The more complicated potential forms are square-well [776], various Lennard-Jones (12-6) [497-499], (9-6) and (28-7) [500], (m-6) for m = 9, 12, 15, 18, 21, 24, 30, 40, 50, and 75 [501], modified Buckingham exp-six [502, 503], Morse [504, 505], and the Lennard-Jones (12-6) with an added quadrupole-quadrupole term [506]. Barker, Fock, and Smith [507] have computed the viscosity collision integral for the Kihara sphericalcore potential [84] and for another particular potential derived by Guggenheim and McGlashan [508]. Some other forms used for polar gases or for gases at low and high temperatures have been referred to earlier in the text.

Mention may also be made of other potential forms which have been studied in connection with the various equilibrium properties but their use in the calculation of viscosity still remains to be explored. Some such references are: Pollara and Funke [509], Saxena and Joshi [510, 511], Saxena, Joshi, and Ramaswamy [512], Saksena and Saxena [113, 513], Saxena and Saksena [514], Saksena, Nain, and Saxena [515], Varshni [516], Dymond, Rigby, and Smith [517, 1206], Nain and Saxena [518, 529], Feinberg and de Rocco [519], de Rocco and Hoover [520], de Rocco, Spurling, and Storvick [521], Spurling and de Rocco [522], Storvick, Spurling, and de Rocco [523], McKinley and Reed [524], Lawley and Smith [525], Dymond and Smith [526], Spurling and Mason [527], Carra and Konowalow [528], Nain and Saksena [530], Konowalow [531], and Dymond and Alder [1207].

A considerable amount of work has been done to determine the potential parameters of the different above-mentioned semiempirical potential functions—from theory as well as from experimental data. In reference [456] there are review articles by Mason and Monchick [532], Bernstein and Muckerman [533], Birnbaum [534], Bloom and Oppenheim [535]; some others have been referred to earlier in this section. Potential parameters are also well estimated on the basis of critical or boiling-point constants [28, 536-539, 735] and from densities in the liquid phase [540]. The independent calculation of long-

range dispersion forces is also possible from experimental data [541, 542], somewhat in the same manner as repulsive forces are determined from the scattering measurements on molecular beams [485, 486, 543, 544]. A series of articles discuss and demonstrate the limitations associated with the choice of proper data if appropriate values of the parameters are to be obtained. Some of these are by Zwimino and Keller [545], Munn [546], Munn and Smith [547], Klein [548], Hanley and Klein [549, 550], Klein and Hanley [551], Mueller and Brackett [552], and Hogervorst [1196].

The experimental data on viscosity as a function of temperature have been used extensively to determine the parameters of the intermolecular potentials. Such methods are developed by Hirschfelder, Curtiss. and Bird [28], Bird, Hirschfelder, and Curtiss [553], Srivastava and Madan [554], Hawksworth [555], Mason and Rice [208], Whalley and Schneider [556], and Robinson and Ferron [557]. Using these methods or their minor modifications, many workers have determined the potential parameters from the viscosity data, for example, Mason and Rice [558], Hanley [559, 560], Hanley and Childs [561, 917], Childs and Hanley [775], de Rocco and Halford [562], Milligan and Liley [563], Saran [564], Pal [565], and Chakraborti [566]. In a somewhat analogous fashion the experimental data giving the temperature dependence of thermal conductivity have been used to determine the intermolecular potentials [567, 568]. Similarly the measurements on self-diffusion [569, 571] and the isotopic thermal diffusion factor [572-575] are used to determine intermolecular forces between similar molecules of a gas. Next to viscosity, the second virial coefficient data as a function of temperature have been employed most extensively to determine force fields. Some of these investigations were conducted by Yntema and Schneider [576], Whalley and Schneider [577], Schamp, Mason, Richardson, and Altman [578], Schamp, Mason, and Su [579], Barua [580, 581], Srivastava [582], Srivastava and Barua [583], Barua and Saran [584], and Mason, Amdur, and Oppenheim [585]. Zero-pressure Joule-Thomson data have also been used to determine potential parameters [28, 586-588]. Combination of these two properties to determine the potential parameters is also suggested [589]. Parameters are also evaluated from the properties of the molecules in the solid state [590-594] and from x-ray scattering data [595]. Theoretical calculations of intermolecular forces between rare gas atoms are still common [596-598]. Indeed, many workers have employed

simultaneously the data on various properties to get the best overall adjusted potential parameters, for example, Fender [599], Bahethi and Saxena [600], Barua and Chakraborti [601], Chakraborti [602, 603], Srivastava and Saxena [604], Konowalow, Taylor, and Hirschfelder [605], Konowalow and Hirschfelder [606], Bahethi and Saxena [607, 608], Konowalow and Carra [609, 610], Konowalow [611, 612], and Saxena and Bahethi [613].

Semitheoretical combination rules have been suggested to determine the interaction potential between unlike molecules from the knowledge of potentials between like molecules. Such semiempirical combination rules have been given for Lennard-Jones (12-6) [614, 1197, 1198], modified Buckingham exp-six [615, 616], and Morse [617, 1198] potentials and have been extensively tested against the experimental data on different properties of mixtures [28, 554, 555, 558, 559, 614, 615, 618, 619]. It was soon realized that an alternative and maybe a better approach would be to determine the interaction potential parameters from the experimental data on the properties of mixtures themselves. The data on viscosity of binary mixtures have been used to determine unlike interactions by Srivastava [620], but now it is well understood that the appropriate properties are only those which are sensitive to such interactions, such as diffusion and thermal diffusion. Data on viscosity and thermal conductivity [621–628] have nevertheless been used as a good check for the appropriateness of the potential. Recently Alvarez-Rizzatti and Mason [1199] have given a perturbation and a variation method for the calculation of dipolequadrupole dispersion coefficients. They have thus derived the combination rules.

A number of workers have used the experimental data on the interdiffusion coefficient of gas mixtures as a function of temperature to determine the parameters of the potential, for example, Amdur, Ross, and Mason [629], Amdur and Shuler [630], Amdur and Beatty [631], Amdur and Malinauskas [632], Mason, Annis, and Islam [633], Srivastava [634], Srivastava and Barua [635], Paul and Srivastava [636], Srivastava and Srivastava [637], Srivastava [638], Walker and Westenberg [639-642], Saxena and Mathur [643], and Mathur and Saxena [644]. Srivastava and Madan [645] suggested the use of thermal diffusion data as a function of temperature to determine the unlike potential parameters. Saxena [646, 647] and Srivastava [648] have discussed and refined this method. Calculations by Madan [649] and Saxena [650] of other transport properties and comparison with the observed values revealed that the technique has a great potential in experimentally determining the forces between molecules. Srivastava and Srivastava [651] and Srivastava [652] have used the thermal diffusion data to determine the three parameters of the modified exp-six potential. In recent years thermal diffusion measurements have been used extensively to probe into the nature of intermolecular-force laws [653–658]. Simultaneous use of diffusion and thermal diffusion data has also been made to determine the potential functions [659–661].

The determination of potential functions on the basis of any type of experimental data is limited primarily because of the scarcity of accurate measurements. Consequently, theoretical calculation have turned out to be very useful and attempts are being continuously made to refine the theoretical approaches or develop new ones; for example, McQuarrie and Hirschfelder [662], Kim and Hirschfelder [663], and Certain, Hirschfelder, Kolos, and Wolniewicz [664]. Some other calculations of specific interaction potentials for atoms and molecules in their ground and excited states have been made by Mason, Ross, and Schatz [665], Ross and Mason [666], Mason and Hirschfelder [667, 668], Mason and Vanderslice [669], Vanderslice and Mason [670, 671], and Fallon, Mason, and Vanderslice [672]. The interaction energies have been computed between ions and neutral atoms by Mason and Vanderslice [673-678] using the ionscattered measurements. Binding energies of He⁺₂, Ne⁺₂, and Ar⁺₂ have also been computed by Mason and co-workers [679-681] on the basis of ion-scattering data. A number of calculations of potential energy from spectroscopic data have been made in recent years for ground and excited states of atomic and molecular diatomic gases by Vanderslice, Mason. Maisch, and Lippincott [682], Vanderslice, Mason, and Lippincott [683], Vanderslice, Mason, and Maisch [684, 685], Fallon, Vanderslice, and Mason [686, 687], Tobias and Vanderslice [691], Vanderslice [692], Krupenie, Mason, and Vanderslice [693], Weissman. Vanderslice; and Battino [694], Knof, Mason, and Vanderslice [695], Krupenie and Weissman [696], and Benesch, Vanderslice, Tilford, and Wilkinson [697-

As already pointed out [28, 536-539], the potential parameters are also obtained from the knowledge of critical constants through semiempirical relations. We refer here to a number of papers which deal with the determination of critical constants of complicated gases and their multicomponent mixtures. They are: Stiel and Thodos [700] for saturated aliphatic

hydrocarbons; Thodos for naphthenic hydrocarbons [701], aromatic hydrocarbons [702], and unsaturated [703] and saturated [704] aliphatic hydrocarbons; Forman and Thodos for hydrocarbons [705] and organic compounds [706]; Ekiner and Thodos for binary mixtures of aliphatic hydrocarbons [707], ethane-n-heptane system [708], and ethane-n-pentane system [709]; and Grieves and Thodos [710, 711] for binary systems of gases and hydrocarbons. Grieves and Thodos have also studied the critical temperatures [712] and pressures [713] of multicomponent mixtures of hydrocarbons. Many ternary systems [714], methane-propane-n-pentane systems [715], methaneethane-n-butane systems [716, 717], ethane-npentane-n-heptane systems [718], ethane-propane-nbutane systems [719], ethane-n-butane-n-pentane systems [720] have been investigated and their critical constants determined by Thodos and co-workers. Ekiner and Thodos [721-723] have proposed an interaction model for representing the critical temperatures and pressures of methane-free aliphatic hydrocarbon mixtures. Rastogi and Girdhar [724] have proposed a semiempirical relationship between the critical constants and the chain length of saturated hydrocarbons. Gunn, Chuch, and Prausnitz [725] have recently determined the effective critical constants for light gases which exhibit appreciable quantum effects, and Gambill [726-728] has reviewed the methods for estimating critical properties.

A number of attempts have been made to develop semitheoretical correlating expressions for the viscosity of pure gases based on the theoretical equations (6) and (7). Thus, Keyes [729] suggested that for the Lennard-Jones (12-6) potential $f^{(3)}/\Omega^{(2,2)*}$ be replaced by a three-term equation involving only the independent parameter T^* . Gambill [730] has tabulated the ratio as a function of T^* , Westenberg [731] and Sutten and Klimov [732, 733] have represented the viscosity collision integral, $\Omega^{(2,2)*}$, by different polynomials involving T^* , and recently Kim and Ross [734] have suggested the following three expressions for the different reduced temperature ranges:

$$\Omega^{(2,2)*} \simeq 1.604 (T^*)^{-1/2}, \quad 0.4 < T^* < 1.4$$

$$\Omega^{(2,2)*} \simeq 0.7616 [1 + (1.09)T^*], \quad 1 < T^* < 5$$

$$\Omega^{(2,2)*} \simeq 1.148 T^* - 0.145, \quad 20 < T^* < 100$$
(11)

These formulas lead to values which agree with the directly calculated values within maximum deviations of 0.7, 0.1, and 0.1%, respectively. Hattikudur and

Thodos [1201] have represented the reduced viscosity integral by the following relation:

$$\Omega^{(2,2)^{\bullet}}(T^{\bullet}) = \frac{1.155}{T^{\bullet 0.1462}} + \frac{0.3945}{e^{0.6672T^{\bullet}}} + \frac{2.05}{e^{2.168T^{\bullet}}}$$
(12)

This equation produces the original computed values in the $T^*=0.30$ to $T^*=400$ range within an average deviation of 0.13% and a maximum deviation of 0.54% at $T^*=0.30$. For $T^*\geq 1.15$, the average deviation is 0.09%, with a maximum deviation of 0.15% at $T^*=1.15$. Neufeld, Janzen, and Aziz [1202] employed the following twelve-adjustable-parameter equation:

$$\Omega^{(2,2)*}(T^*) = (A/T^{*B}) + [C/\exp(DT^*)] + [E/\exp(FT^*)] + [G/\exp(HT^*)] + RT^{*B}\sin(ST^{*W} - P)$$
 (13)

They found that this relation reproduces the actual values within an average deviation of 0.050% and a maximum deviation of 0.16% at $T^* = 100$. Klimov [733] has also reported the polynomials representing the viscosity collision integral for polar gases [28]. Brokaw [735] has expressed the collision integral for polar gases, $\Omega p^{(2,2)*}$, in terms of its value for nonpolar gases, $\Omega np^{(2,2)*}$, by the simple relation

$$\Omega p^{(2,2)*} \simeq \Omega n p^{(2,2)*} + \frac{0.2\delta^2}{T^*}$$
 (14)

This result is based on the collision integral tabulations of Monchick and Mason [165]. Brokaw [735] has given alignment charts for $\Omega np^{(2,2)*}$ as a function of T^* to obtain quick estimates of viscosity with fair accuracy.

Bromley and Wilke [736] wrote the theoretical expression in a slightly modified form and presented nomographs for rapid calculations. This procedure has been extensively used and recommended by Holmes and Baerns [737], and an interesting comment is made by Weintraub and Corey [738] which facilitates the estimation of viscosity at high temperatures. More recently, Brokaw [739] has presented alignment charts similar to those of Bromley and Wilke [736].

Many semiempirical forms have been used to represent the temperature dependence of viscosity. Licht and Stechert [741] considered the data for twenty-five gases and discussed the following four forms:

$$\mu = aT^{\mathsf{n}} \tag{15}$$

$$\mu = \frac{KT^{3/2}}{T+S}$$
 or $\frac{KT^{1/2}}{1+(S/T)}$ (16)

$$\mu = \frac{bT^{1/2}}{\exp(c/T)}\tag{17}$$

$$\mu = dT(T^{3/4} + T^{-3/4})^{-m} \tag{18},$$

These are all two-constant equations, these being a and n, K and S, b and c, and d and m in the four cases, respectively. Sutherland [1200] derived the form of the second equation for the coefficient of viscosity of a gas whose molecules are spherical and attract each other. More complicated relations have also been used. These are in many cases modified forms of the above relations, for instance [741, 875],

$$\mu = \frac{AT^{1/2}}{1 + C/T + D/T^2} \tag{19}$$

$$\mu = (A + BT + CT^2 + DT^3)T^{1/2}$$
 (20)

$$\mu = \frac{BT^{1/2}}{\exp[C'/(T+\alpha)]}$$
 (21)

$$\mu = \frac{QT^{(1/2+2/(s-1))}}{1 + UT^{(m-s)/(s-1)}} \tag{22}$$

For the empirical choice of m = 5 and s = 9, this equation reduces to

$$\mu = \frac{QT^{5/4}}{T^{1/2} + U} \tag{23}$$

In the following relation the value 3 has been used for S, as well as many other empirical choices:

$$\mu = \frac{KT^n}{1 + (S/T)} \tag{24}$$

The unknown constants are A, C, and D, A, B, C, and D, B, C', and α , Q, U, m, and s, and K, n, and S in equations (19), (20), (21), (22), and (24), respectively. The simple polynomial expansion in temperature as well as many other semiempirical forms have been used for individual or groups of gases [447, 453, 729, 742, 746, 749, 754, 774, 778], but these will not be enumerated here.

The principle of corresponding states has also been applied to develop procedures for correlating viscosity data [28]. Smith and Brown [747] and Whalley [748] have discussed extensively the form of this law and analyzed the data on viscosity of a large number of gases. Comings and Egly [1153] developed a graphical correlation on the basis of available data to predict viscosity of gases at high pressures. Tham and Gubbins have correlated the available experimental dense-gas viscosity data of rare gases [1190] and nonpolar polyatomic gases

[1191] by applying the principle of corresponding states. Licht and Stechert [741] used the same principle to develop a universal equation for predicting viscosities of gases. They even presented a nomograph [741] to be used along with their proposed equation. Bromley and Wilke [736] suggested a simple relation for the prediction of viscosity based on the rigorous theory expression in which the potential parameters were eliminated in favor of critical temperature and volume. The use of this equation is further facilitated by the presentation of two curves by Gegg and Purchas [755]. Shimotake and Thodos [756] and more recently Trappeniers, Botzen, Ten Seldam, Van Den Berg, and Van Oosten [757] have given the corresponding states correlations for the viscosity of rare gases. Thodos and co-workers have developed similar relations for diatomic gases [758], para-hydrogen [760], air [761], carbon dioxide [762], sulfur dioxide [1154], ammonia [763], and gaseous water [764]. Recently more ambitious efforts have been made in employing the principle of corresponding states in correlating the viscosity data of spherical molecules with a high degree of accuracy over a wide temperature range by Dymond [1203], Kestin, Ro, and Wakeham [1204], and Neufeld and Aziz [1205].

Stiel and Thodos [765] analyzed the viscosity data at atmospheric pressure for fifty-two nonpolar gases on the basis of a dimensional analysis approach, to develop a correlation involving reduced temperature. This approach has been successfully extended to dissociated and undissociated gases up to 10,000 K [766], to polar gases [767], and to hydrocarbon gases [1155]. Lefrancois [1159] has outlined a procedure for the computation of the viscosity of pure gases as a function of pressure based on the numerous measurements of the compressibility factors for gases.

Many of the above-mentioned works also include a discussion on the correlation of viscosity of dense gases, but reference may be made now to some other papers which deal exclusively with this aspect, for example, Starling and Ellington [768], Lennert and Thodos [769], Elzinga and Thodos [770], Jossi, Stiel, and Thodos [771], and Stiel and Thodos [772]. Viscosities of pure gases are also generated from the experimental data on other transport properties through the framework of kinetic theory [2, 28]. In particular, thermal conductivity data have been used, and the relation between μ and k has been confirmed from direct experimental work [827]. Saxena and Saxena [828], Saxena, Gupta, and Saxena [829], and Saxena and Gupta [830] have in this way generated the viscosity values for rare and

diatomic gases from their measurements on k as a function of temperature.

C. Multicomponent Gas Systems

A number of empirical and semiempirical relations have been used to estimate the viscosity of multicomponent gas mixtures. Some of these procedures can be justified to a large extent as simplifications of the rigorous theory expression. To assess the methods one needs to evaluate the simplifying limitations and the nature of the gas molecules involved. We outline below the various methods used so far for estimating viscosities of mixtures and point out their basis and probable degree of success.

Many of the earlier semiempirical relations employed for computing viscosities of mixtures are given by Partington [778]. One such relation is due to Enskog [779] and has been recently reexamined by Keyes [729]. Gambill [780] has reviewed the prediction methods. We list below some of the major methods which have proved useful and have been tested extensively in many cases. Hirschfelder, Curtiss, and Bird [28] found that to a good approximation the viscosity of a binary mixture of heavy isotopes is given by

$$\mu_{\min}^{-1/2} = x_1 [\mu_1]^{-1/2} + x_2 [\mu_2]^{-1/2} \tag{25}$$

The well-known Sutherland form [47] and the simple quadratic form

$$\mu_{\min} = \mu_1 x_1^2 + \mu_{12} x_1 x_2 + \mu_2 x_2^2 \tag{26}$$

for the viscosity of mixtures have been mentioned [11] though never sufficiently tested. Not too much is known about reliable prediction procedures for dense gas mixtures [780, 789] at the present time, and this development will have to await our theoretical understanding of the dense gases and more experimental work on such systems.

a. Method of Buddenberg and Wilke

Buddenberg and Wilke [781] showed that the viscosity data on mixtures are adequately correlated by the following Sutherland [47] type relation:

$$\mu_{\text{mix}} = \sum_{i=1}^{n} \mu_{i} / \left[\left(1 + \frac{1.385 \mu_{i}}{x_{i} \rho_{i}} \right) \sum_{\substack{j=1 \ i \neq i}}^{n} x_{j} / D_{ij} \right]$$
 (27)

here D_{ij} is the diffusion coefficient and ρ_i is the density of the *i*th component. Wilke [782] further simplified this relation to

$$\mu_{\text{mix}} = \sum_{i=1}^{n} \mu_{i} / \left(1 + \frac{1}{x_{i}} \sum_{\substack{j=1 \ j \neq i}}^{n} x_{j} \Psi_{ij} \right)$$
 (28)

where

$$\Psi_{ij} = \frac{\left[1 + (\mu_i/\mu_j)^{1/2} (M_j/M_i)^{1/4}\right]^2}{(4/\sqrt{2}) \left[1 + (M_i/M_j)\right]^{1/2}}$$

Hirschfelder, Curtiss, and Bird [28] have discussed the assumptions under which a relation of the type given by Buddenberg and Wilke [781] is derived from the rigorous kinetic theory expression. Bromley and Wilke [736] and more recently Brokaw [739] have given alignment charts which facilitate the computation of Ψ_{ii} as given by the above equation. Saxena and Narayanan [783] and Mathur and Saxena [784] have examined the method of Wilke for nonpolar multicomponent mixtures up to about 1300 K with reasonable success. These workers have also suggested that Ψ_{ij} computed at a lower temperature may be used for computation of $\mu_{\rm mix}$ at higher temperatures. That similar conclusions are valid for mixtures involving polar gases is established by the calculations of Mathur and Saxena [785].

b. Method of Saxena and Narayanan

Saxena and Narayanan [783] suggested that Ψ_{ij} in the μ_{mix} expression of Wilke may be regarded as disposable parameters independent of composition and temperature and may thus be determined from two experimental mixture viscosities. Their [783] checks against data at higher temperatures, as well as for the mixtures of three gases, demonstrated the potential and promise of the proposed method. Mathur and Saxena [786] successfully examined this method for binary systems of polar and nonpolar gases.

c. Method of Herning and Zipperer

Herning and Zipperer [787] suggested that μ_{mix} may be estimated from a still simpler relation than that of Wilke [782]:

$$\mu_{\min} = \sum_{i=1}^{n} (x_i \mu_i M_i^{1/2}) / \sum_{i=1}^{n} (x_i M_i^{1/2})$$
 (29)

This form is equivalent to Wilke's if

$$\Psi_{ij} = (M_j/M_i)^{1/2} = \Psi_{ji}^{-1}$$
 (30)

This formula has been tested extensively for hydrocarbon and other mixtures with an uncertainty of better than 2% [780]. Recently Tondon and Saxena [788] tested it for mixtures involving polar gases, and found that the method is particularly good for such binary mixtures where the mass ratio for the two components is small. For 174 mix tures of 11 systems

the average absolute deviation between theory and experiment is 6.1%, and this improves to 2.7% for 89 mixtures when three systems involving gases of large mass ratio are excluded.

d. Method of Dean and Stiel

Dean and Stiel [789] developed a relationship to estimate the viscosity of nonpolar gases at ordinary pressures in terms of the pseudocritical constants of the mixture. Their recommended expression is

$$\mu_{\text{mix}}\xi = 34.0 \times 10^{-5} T_R^{8/9}, \quad T_R < 1.5 \quad (31)$$

and

$$\mu_{\text{mix}}\xi = 166.8 \times 10^{-5} (0.1338 T_R - 0.0932)^{5/9}$$
 $T_R \ge 1.5$ (32)

where

$$\xi = T_{cm}^{1/6} / \left[\left(\sum_{i} x_{i} M_{i} \right)^{1/2} P_{cm}^{2/3} \right]$$

Here μ_{mix} is centipoises, $T_R = T/T_c$, and the defining relations for pseudocritical constants of the mixture as recommended by these authors [789] are

$$T_{cm} = \sum_{i} x_{i} T_{ci}$$

$$V_{cm} = \sum_{i} x_{i} V_{ci}$$

$$Z_{cm} = \sum_{i} x_{i} Z_{ci}$$

and

$$P_{cm} = Z_{cm} R T_{cm} / V_{cm}$$

They [789] have examined 339 experimental mixtures in twenty-two binary systems and reproduced the $\mu_{\rm mix}$ values on the basis of the above relations within an overall average of 1.7%.

e. Method of Strunk, Custead, and Stevenson

Strunk, Custead, and Stevenson [790] suggested on the basis of approximate theoretical analysis that the viscosity of a binary mixture of nonpolar gases may be computed on the basis of an expression similar to that given by the Chapman-Enskog rigorous kinetic theory [28]:

$$\mu_{\text{mix}} = \frac{266.93 \times 10^{-7} (TM_{\text{mix}})^{1/2}}{\sigma_{\text{mix}}^2 \Omega_{\text{mix}}^{(2,2)*}}$$
(33)

where

$$M_{\text{mix}} = \sum_{i=1}^{n} x_{i} M_{i}$$

$$y_{\text{mix}} = \sum_{i=1}^{n} x_{i} \sigma_{i}$$

and $\Omega_{\min}^{(2,2)*}$ is a function of the reduced temperature T^* , where

$$T^* = \frac{kT}{\epsilon_{\min}}$$

and

$$\frac{\epsilon_{\min}}{k} = \sum_{i=1}^{n} x_i \left(\frac{\epsilon_i}{k}\right) \sigma_i^3 / \sigma_{\min}^3$$

Thus, all one needs in the calculation are the parameters of the Lennard-Jones (12-6) potential for the pure components, and the mixture composition. These authors examined 201 binary mixtures of eleven different nonpolar gases. Strunk and Fehsenfeld [791] also evaluated the potential of these equations to predict viscosity of multicomponent mixtures of nonpolar gases. Their [791] detailed calculations on 136 mixtures containing three to seven components from sixteen different gases indicated that the experimental viscosities could be reproduced within -0.3 to -6.7% for 95% of the time. This led them to suggest that the numerical coefficient in equation (33) be replaced by 276.27 for ternary and higher-order mixtures. With this modification the viscosities could be reproduced to lie within +3.2 and -3.2%of the actual values 95% of the time.

f. Method of Ulybin

Ulybin [792] has suggested an empirical method in which the viscosity of a mixture at a temperature T_1 is related to its value at a lower temperature T_2 according to the following equation:

$$\mu_{\min}(T_2) = \mu_{\min}(T_1) \sum_{i=1}^{n} x_i [\mu_i(T_2)/\mu_i(T_1)]$$
 (34)

His detailed calculations on binary and ternary mixtures did reproduce the experimental value in most of the cases within the uncertainty in the latter. The somewhat remarkable success of this empirical relation is not surprising, in the light of the work of Saxena [793]. He [793] has given a theoretical basis to this formula; hence this relation is not to be regarded as empirical, but as an approximate theoretical expression. The discussion by Saxena [793] deals with the case of thermal conductivity but an exactly parallel argument can be given for the case of viscosity.

g. Sutherland Form and Rigorous Kinetic Theory

The success of the Sutherland form [47] in representing the experimental data on viscosity of gas mixtures is already evident from some of the work

referred to above. This led to a large number of investigations which will be mentioned in this section, they form the basis of the many methods of calculation of viscosities of multicomponent gas mixtures described later.

Cowling [794] and Cowling, Gray, and Wright [795] gave a simple physical interpretation to the coefficient Ψ_{ij} as the ratio of the efficiencies with which molecules i and molecules i separately impede the transport of momentum by molecules i. On the basis of this interpretation [794], they [795] have been able to develop the physical significance of the rigorous theory expression for viscosity [2]. Francis [796], Brokaw [797, 798], Hansen [799], Wright and Gray [800], Burnett [801], and Yos [802] made notable attempts to interpret the rigorous theory expression for μ_{mix} and in this process derived relations for Ψ_{ij} . Various approximations have been made by different workers resulting in different explicit expressions for Ψ_{ii} , the Sutherland coefficients. Some of these expressions of the interrelation between Ψ_{ij} and Ψ_{ji} have been used to develop methods for the predictions of μ_{mix} . These will be described now.

h. Method of Saxena and Gambhir

Following the analysis of Wright and Gray [800], Saxena and Gambhir [803] suggested the following relation connecting Ψ_{ii} with Ψ_{ii} :

$$\frac{\Psi_{ij}}{\Psi_{ii}} = \frac{\mu_i}{\mu_i} \left(\frac{M_j}{M_i} \right)^{0.85} \tag{35}$$

Thus, if the $\mu_{n,ix}$ value is known at one composition, equations (28) and (35), together with the knowledge of pure component viscosities, serve to obtain Ψ_{ij} and Ψ_{ii}. Detailed calculations by Saxena and Gambhir [804] on the binary and ternary mixtures of nonpolar gases indicated that this scheme is capable of reproducing the viscosity values to greater accuracy than the experimental uncertainties. Their [804] calculations also revealed that Ψ_{ij} and Ψ_{ji} may be regarded as independent of composition, so that the same set correlates the data over the entire range, and may also be used for multicomponent mixtures. They [804] also found that these Sutherland coefficients are feebly dependent on temperature; the experimental data over the temperature range 300-1300 K could be adequately represented by the Ψ_{ij} 's calculated at 300 K. Mathur and Saxena [805] applied the method to binary mixtures of nonpolar-polar gases and found the same conclusion to be valid. Their [805] calculations covering 79 binary mixtures reproduced

the experimental values within an average absolute deviation of 0.4%.

i. Method of Gambhir and Saxena

Gambhir and Saxena [806] examined the temperature and composition dependence of Ψ_{ij} and Ψ_{ji} on the basis of the theoretical expression for μ_{mix} . After making certain reasonable assumptions, they [806] found that if the mass of the one gas is sufficiently larger than the other in the binary mixture, the following simple relation connects Ψ_{ij} with Ψ_{ij} :

$$\frac{\Psi_{ij}}{\Psi_{ji}} = \frac{\mu_i M_j}{\mu_j M_i} \frac{50 M_i + 33 M_j}{33 M_i + 50 M_j}$$
(36)

Numerical calculations of Saksena and Saxena [807] established that this procedure, where the above relation and one μ_{mix} experimental value are used to compute the Sutherland coefficients, is completely satisfactory. Experimental data on ten binary systems could be reproduced within an overall average absolute deviation of 0.7%, whereas for a ternary system this number improved to 0.5%. These calculations on mixtures of nonpolar gases also established that the assumption of the temperature and composition independence of Sutherland coefficients is a good and practical one. Mathur and Saxena [808] made a detailed study of a similar nature for mixtures of polar and nonpolar gases and found that the method and above conclusions are also valid for these gas systems.

j. Method of Saxena and Gambhir

Saxena and Gambhir [810] suggested that Ψ_{ij} may be calculated in the Sutherland equation with the help of translational or frozen thermal conductivity data (i.e., the thermal conductivity of monatomic gases and in polyatomic gases that part of total thermal conductivity which is due to translational degrees of freedom only) so that

$$k_{mix}^{o} = \sum_{i=1}^{n} k_{i} / \left[1 + \sum_{i=1}^{n} \Psi_{ij}(x_{i}/x_{i}) \right]$$
 (37)

Here Ψ_{ij} is computed according to the formula derived by Mason and Saxena [812]:

$$\Psi_{ij} = \frac{1}{2\sqrt{2}} \left(1 + \frac{M_i}{M_j} \right)^{-1/2} \left[1 + \left(\frac{k_i^o}{k_j^o} \right)^{1/2} \left(\frac{M_i}{M_j} \right)^{1/4} \right]^2$$
(38)

 Ψ_{ji} is obtained from Ψ_{ij} by interchanging the subscripts referring to the molecular species. Numerical calculations of Saxena and Gambhir [810], and

Gandhi and Saxena [811] on the binary mixtures of rare gases showed good reliability for the method, particularly when one recalls that the knowledge of thermal conductivity is employed to predict the values for viscosity.

k. Method of Brokaw

Brokaw [797, 798] manipulated the expression for the multicomponent mixture into the Sutherland form and derived the increasingly complicated expressions for Ψ_{ij} . In approximations other than the first the expression for Ψ_{ij} is quite complicated and requires knowledge of the interaction potential and different collision integrals, so that the actual calculation of μ_{mix} becomes as difficult as the kinetic-theory expression. The first-approximation expressions for the Sutherland coefficient suggest that

$$\frac{\Psi_{ij}}{\Psi_{ji}} = \frac{\mu_i}{\mu_j} \frac{M_j}{M_i} \tag{39}$$

Gupta and Saxena [815] employed this relation and one value of $\mu_{\rm mix}$ in the Sutherland form to compute Ψ_{ij} and Ψ_{ji} . On this basis they [815] successfully correlated the data on twenty-two binary systems and twelve ternary mixtures of argon-neon-helium. They also confirmed that, treating these Ψ_{ij} as temperature independent, the high temperature viscosities could be reproduced within an average absolute deviation of 0.8%.

Brokaw [798] also suggested a simplified form for $\Psi_{i,i}$

$$\Psi_{ij} = \Psi'_{ij} + \frac{M_i \sqrt{\Psi'_{ij}} - M_j \sqrt{\Psi'_{ji}}}{2(M_i + M_j) + M_j \sqrt{\Psi'_{ii}}} \sqrt{\Psi'_{ij}}$$
 (40)

where

$$\Psi'_{ij} = \frac{\mu_i}{\mu_j} \frac{2M_j}{M_i + M_j}$$
$$\mu_i \times 10^7 = \frac{266.93 \sqrt{M_i T}}{\sigma_{ii}^2 \Omega_{ii}^{(2.2)}}$$

and

$$\mu_{ij} \times 10^7 = \frac{266.93\sqrt{2TM_iM_j(M_i + M_j)}}{\sigma_i^2 \Omega_{ij}^{(2.2)*}}$$

Brokaw's [798] limited calculations on three binary and one ternary systems of nonpolar gases indicated a very good accuracy for this procedure. Tondon and Saxena [788, 813], however, made detailed calculations on 224 binary mixtures of nonpolar-polar gases and found an average absolute diagreement of

3.0%. On the other hand the rigorous theory reproduced these results within an average absolute deviation of 1.0%.

Tondon and Saxena [788, 813] suggested a modification to the above procedure of Brokaw [798]. It consisted in using the experimental values for the viscosity of the pure components instead of the theoretically calculated ones. This reproduced the data on 95 mixtures at the lower temperatures within an average absolute deviation of 1.2%. They [788, 813] also suggested that these computed values of Ψ_{ij} at the lower temperatures may be used in computing viscosities at the higher temperatures. This procedure led to the reproduction of 174 experimental data points within an average absolute deviation of 1.8%. It is to be noted that the simplicity does not impair the accuracy seriously; these computed values are in better agreement with the experiments than the original suggestion of Brokaw [798].

Brokaw [814] has simplified his complicated expressions for Ψ_{ij} and suggested [735] that

$$\Psi_{ij} = S_{ij} A_{ij} (\mu_i / \mu_j)^{1/2} \tag{41}$$

where

$$\begin{split} S_{ij} &= \frac{\sigma_{ij}^2 \Omega_{ij}^{(2.2)*}}{(\sigma_{ii}^2 \Omega_{ii}^{(2.2)*} \sigma_{jj}^2 \Omega_{jj}^{(2.2)*})^{1/2}} \\ A_{ij} &\equiv \left(C_{ij} \frac{M_j}{M_i} \right)^{1/2} \\ &\times \left[1 + \frac{(M_i/M_j) - (M_i/M_j)^{0.45}}{2 \left(1 + \frac{M_i}{M_j} \right) + \frac{1 + (M_i/M_j)^{0.45}}{1 + C_{ij}} C_{ij}} \right] \end{split}$$

and

$$C_{ij} \equiv \left[\frac{4M_iM_j}{(M_i+M_j)^2}\right]^{1/4}$$

For mixtures of nonpolar gases $S_{ij} = 1$, while for polar-nonpolar gas mixtures

$$S_{ij} = S_{ji} \cong \frac{1 + (T_i^* T_j^*)^{1/2} + (\delta_i \delta_j / 4)}{[1 + T_i^* + (\delta_i^2 / 4)]^{1/2} [1 + T_j^* + (\delta_j^2 / 4)]^{1/2}}$$
(42)

In the limit when $\delta_i = \delta_j = 0$, as for nonpolar gases, the above relation does not reduce to $S_{ij} = 1$, and hence Brokaw [814] suggested that when δ_i and δ_j are both less than 0.1, S_{ij} should be taken to be unity. A_{ij} is a function of molecular-weight ratio and Brokaw [735] has given a scale giving A_{ij} and A_{ji} in terms of M_i/M_j to facilitate numerical calculations. Pal and Bhattacharyya [1194] and Brokaw [1195]

have performed calculations on binary polar gas mixtures to check the accuracy of this procedure [735, 814].

1. Viscosity from Thermal Conductivity Data

Saxena and Agrawal [816] employed the framework of the transport theory [2], and computed viscosities of seven binary systems of rare gases from thermal conductivity data. Their [816] indirectly generated values of $\mu_{\rm mix}$ were found to be in good agreement with the directly measured values. Since then this approach has been used to estimate the viscosities of binary systems for rare gases by Saxena and Tondon [817] and for mixtures involving polyatomic gases by Saxena and Gupta [628, 818]. The various assumptions involved in these interrelating expressions and their consequences for the generated data are also discussed by Gupta [819], Gupta and Saxena [820], Gandhi and Saxena [821], and Mathur and Saxena [822].

m. Viscosity from Interdiffusion Data

Data on interdiffusion coefficients can be used to generate reliable values of viscosities on the basis of the Chapman and Enskog theory [2] as illustrated by Mathur and Saxena [644] and Nain and Saxena [823]. The reverse of this approach, the determination of diffusion coefficients from viscosity data, has been more common in recent years [824].

D. Sutherland Coefficients

It is clear from the discussion in the previous section that the Sutherland form is a very successful one for correlating the data on binary systems, for predicting the values at high temperatures, and for multicomponent systems. The determination of these coefficients, Ψ_{ij} , is not a straightforward job and many suggestions have been made [825, 826, 1218]. Saxena [1218] found from an extensive numerical analysis on sixty-six binary systems involving both polar and nonpolar gases that the following Sutherland form:

$$\mu_{\text{mix}} = \frac{\mu_1}{1 + \Psi_{1,2}(x_2/x_1)} + \frac{\mu_2}{1 + \Psi_{2,1}(x_1/x_2)}$$
(43)

is satisfactory when two different procedures were employed to determine Ψ_{ij} . In the first method Ψ_{ij} and Ψ_{ii} were assumed to be interrelated by

$$\frac{\Psi_{ij}}{\Psi_{\mu}} = \frac{\mu_i}{\mu_i} \frac{M_j}{M_i} \tag{44}$$

while in the second method this relation was modified to

$$\frac{\Psi_{ij}}{\Psi_{ii}} = \frac{\mu_i}{\mu_j} \left(\frac{M_j}{M_i} \right)^{0.85} \tag{45}$$

In both procedures the values of μ_i , μ_j , and $\mu_{\rm mix}$ at one mixture composition must be known to correlate the data of $\mu_{\rm mix}$ over the entire composition range at the specified temperature.

Tables 1, on pages 47a to 86a, shows how the calculated values of Ψ_{12} and Ψ_{21} obtained by one-parameter fits to the available experimental data reported in the next section using equations (43) and (44) (the first method) and equations (43) and (45) (the second method), depend on the value of $\mu_{\rm mix}$ for the particular mixture composition used in making the fit and also on the temperature. The last column gives the viscosity values of the pure component on which the calculations are based. The relative constancy in the values of Ψ_{ij} for a given gas pair and temperature indicates the accuracy with which equation (43) represents the data.

Table 2, on pages 87a to 92a, contains recommended values of Ψ_{ij} for these mixtures, picked from the values in Table 1, along with three measures $(L_1, L_2, \text{ and } L_3)$ of the deviations of experimental data from the smoothed values computed with these Ψ_{ij} . If $\Delta\mu$ is the percent deviation from the smoothed value

$$\Delta \mu = \frac{\mu_{\text{exp}} - \mu_{\text{smoothed}}}{\mu_{\text{smoothed}}} \times 100 \tag{46}$$

then L_1 , the mean absolute deviation, is given by

$$L_1 = \frac{1}{N} \sum_{i=1}^{N} \Delta \mu_i$$
 (47)

here N is the number of data points. L_2 , the root-mean-square deviation, is given by

$$L_2 = \frac{1}{N} \sum_{i=1}^{N} (\Delta \mu_i)^2$$
 (48)

 L_3 , the maximum absolute deviation, is given by

$$L_3 = \Delta \mu_{\text{max}} \tag{49}$$

At each temperature, values of Ψ_{ij} obtained by each method were selected to give the generally most favorable set of values of L_i (usually the smallest values). The relative effectiveness of the two methods is evident from comparison of the two sets of L_i ; for practical interpolation one would pick the set of Ψ_{ij} that gives the more satisfactory L_i .

The presentation of all the Ψ_{ij} values calculated from the available experimental data (in Table 1) in addition to presenting the recommended sets of Ψ_{ij} values (in Table 2) is believed to be justified. First, the selected values given in Table 2 show mainly the temperature dependence, whereas the full values of Ψ_{ii} in Table 1 show both the composition and temperature dependences. Thus the extensive tabulation in Table 1 provides a general basis for data correlation and analysis and should be useful for further studies on these dependences. Second, the fact that Ψ_{ii} are weakly dependent upon composition and temperature is true only for mixtures of simple molecules, and it is not true for mixtures of complex molecules such as highly polar and polyatomic molecules, for which the full values in Table 1 are needed. Third, the full values of Ψ_{ij} in Table 1 are useful for the estimation of viscosity values at high temperatures and for multicomponent systems.

4. EXPERIMENTAL METHODS

A. Introduction

248

Historically, the early interest in the measurement of viscosity was directed more to liquids than to gases. This is obviously because of the practical thrust and everyday interest in the general problem of the flow of a liquid through a pipe. Dunstan and Thole [831] in their monograph briefly review the measurement done on pure liquids prior and subsequent to 1895 through about 1912. This work [831] also includes a brief reference to the viscosity of liquid mixtures, electrolytic solutions, and colloidal solutions. In 1928, Hatschek [832] published a more detailed account of the work done on the viscosity of liquids, similar in scope to that of Dunstan and Thole [831]. A more detailed description of the techniques of measurement of viscosity of gases and liquids is given by Barr [833]. Through these years the increasing interest in the viscosity of non-Newtonian fluids has led to the development of special techniques for such materials. Van Wazer, Lyons, Kim, and Colwell [834] have given an excellent description of the various viscometers developed and commercially available pertinent to the rheological studies. They [834] also append a list of 100 selected books on rhe clogy. In this section, consistent with the scope of this monograph, we will describe and refer to more recent work and to techniques which have resulted in a large body of data of reasonable accuracy. No claim can be made concerning its completeness, though it is hoped that this will constitute a fairly comprehensive survey of the work done during the last three to four decades. Gases will be discussed specially here and liquids in a subsequent chapter. Very briefly, Partington [778], Kestin [835], and Westenberg [446] have discussed the major methods of determining the viscosity of gases. Experimental measurements of viscosity fall in two general categories, absolute and relative. Absolute viscosity measurements differ from relative measurements in that the latter lead to viscosity values in terms of the viscosity of a known substance.

B. Various Methods of Measurement

a. The Capillary-Flow Method

The foundation of this method was laid in 1839 by the work of Hagin [836], who measured the flow rates of water through capillaries of varying bore and length. Poiseuille [837] in 1840 published a note, and his subsequent work describes in detail the theory of fluid flow through thin glass capillaries. It is on these pioneer investigations that a large number of efforts are based. Viscosity determinations, made with various variations of the same simplifying assumptions, do have to include many corrections before accurate values of viscosity can be computed from direct measurements. These will be discussed below, but in passing it may be mentioned that Fryer [838] has recently considered the theory of gas flow through capillaries, covering all the three pressure regimes when the mean free path is smaller than, comparable to, and greater than the diameter of the tube.

In the simple case of an incompressible Newtonian fluid flowing steadily through a capillary which is a perfect cylinder and in which the flow is everywhere laminar, with no slip at the wall, the mass rate of flow at the inlet, θ_i , is given by

$$\theta_i = \frac{\pi a^4 \bar{\rho} (P_i - P_o)}{8l\mu} \tag{50}$$

Here a is the root-mean-square radius of the tube, l its length, $\bar{\rho}$ the gas density evaluated at the capillary temperature and average pressure between inlet and outlet, P_l and P_o are the pressures at the inlet and outlet, respectively. For a compressible fluid flowing through a capillary of mean radius, a, with slip at the wall, and including the kinetic-energy correction, the above equation is given by [833]

$$\mu = \frac{\pi a^4 \bar{\rho} (P_i - P_o)}{8l\theta_i (1 + \delta)} \left(1 + \frac{4\zeta}{b} \right) - c \frac{\theta_i}{8\pi l} \tag{51}$$

Here δ is a small correction for nonuniformity of the bore, $(1 + 4\zeta/b)$ accounts for the slip at the wall, and

the last term arises because of the departure of the flow patterns at the inlet and outlet of the capillary from true parabolic velocity distribution. The detailed form of the equation depends on the nature of the experimental arrangement and the procedure being adopted in taking the data; see for example Shimotake and Thodos [839], Flynn, Hanks, Lemaire, and Ross [840], Giddings, Kao, and Kobayashi [841], Kao, Ruska, and Kobayashi [1146], and Carr, Parent, and Peck [842]. It is found that stable laminar flow exists as long as the Reynolds number is less than 2000 [835, 840].

In one variant of this general capillary flow method, the constant-volume gas viscometer, the gas transpires from a bulb containing the test gas through the capillary into a constant low-pressure region. In many cases the latter is just atmospheric pressure or a very low pressure obtained by continuous pumping. The fall in gas pressure of the bulb is noted over a known period of time. Since the historical work of Graham [843] frequent use of this general technique is made in determining the viscosities of gases and gaseous mixtures. Edwards [844] employed this principle and measured the viscosity of air between 15 and 444.5 C. This work resolved the controversy over the applicability of the Sutherland model to predict the temperature dependence of viscosity arising out of the experimental work of Williams [845] and the comment of Rankine [846]. Kenney, Sarjant, and Thring [847] built a similar apparatus with emphasis on design for work at high temperatures. They [847] measured the viscosity of nitrogen-carbon dioxide gas mixtures up to about 900 C with an estimated accuracy of 2%. Bonilla, Brooks, and Walker [848] employed this type of apparatus with a platinum capillary coiled in the form of a helix and made measurements on steam and nitrogen at atmospheric pressure. They went up to the maximum temperature of 1102.2 C for nitrogen and 1205.6 C for steam. They corrected their data for coiling of the capillary as outlined by White [849]. Bonilla, Wang, and Weiner [850] built another apparatus and measured the viscosity of steam, heavywater vapor, and argon relative to the known values for nitrogen. The measurements at atmospheric pressure extend up to as high as about 1500 C. McCoubrey and Singh [851, 852] employed a glass constant-volume gas viscometer and maintained a much lower pressure at the exit end of the capillary by continuously pumping, and thus determined the relative values of viscosity within an uncertainty of about 1 %. They worked with a number of polyatomic quasi-spherical molecules and pentanes in the temperature range 20 to about 200 C. A similar viscometer has been used by Raw and co-workers [871-873] to measure the viscosity of binary gas mixtures in the temperature range 0-400 C with an overall accuracy of $\pm 1\%$. Smith and co-workers [874–877] have devised a modified viscometer of this type and made relative measurements on pure gases over a wide temperature range, 77-1500 K, with an estimated accuracy of about 1%. Recently this group has reported data on inert gases [1151] and three gases each composed of quasi-spherical molecules [1152]. Pena and Esteban [1148, 1149] have employed a constant volume capillary viscometer and determined viscosities of organic vapors in the temperature range from -10 to 150 C. It is, thus, clear that this arrangement of capillary-flow viscometers is appropriate for moderate-accuracy absolute or relative measurements on gases at pressures around one atmosphere. The marked simplicity and convenience of operation of such a viscometer has made it attractive for undergraduate laboratory experimentation [853].

Trautz and Weizel [854] initiated a different variant of this general principle of transpiration of gas through a capillary to determine viscosity. They allowed the gas to flow through the capillary into the atmosphere from a reservoir whose volume was not kept constant; instead a known volume of gas from it is pushed by increasing the pressure and the time is recorded. Thus, both pressure and volume of the gas at the inlet side of the capillary change with time. The integration of the basic flow equation thus becomes somewhat difficult because of the variation in both pressure and volume, and consequently this procedure has been preferred for relative measurements.

Rankine [855, 856] devised a very clever capillary transpiration viscometer which is simple, employs a very small quantity of gas, and can be readily adopted for relative measurements. It consists of a closed glass loop of which one vertical side is wide while the other is a capillary. A mercury pellet descending in the wide leg exerts a known force and forces the gas up through the capillary. The pressure difference across the capillary remains constant because it is due only to the mercury pellet. At high pressures it is necessary to account for the buoyancy effect for the pellet. The volume rate of gas flow through the capillary is computed by timing the descent of the pellet between two masks on the wide tube. The viscometer is symmetrical about a horizontal axis and can be rotaind to allow the movement of the pellet in the opposite direction. The surface tension of the mercury

26a

pellet plays a very important role, particularly if the gases are not quite inert. Rankine and Smith [859] corrected for such a possibility by taking observations for each case both with the pellet intact and then broken into two or three segments. It is assumed that the capillary effect is doubled and tripled in a pellet broken into two and three segments, respectively. Rankine [860, 861] has used this technique extensively to determine the viscosity of gases and vapors as a function of temperature at ordinary pressures, in order to determine molecular sizes.

Comings and Egly [862] and Baron, Roof, and Wells [863] suitably modified the original design of the Rankine viscometer so that measurements at elevated pressures and temperatures may be made. Comings and Egly's [862] work covers ethylene and carbon dioxide at 40 C and extends up to a maximum pressure of 137.1 atm. They claim a maximum probable uncertainty of 2% for measurements below 89 atm, and 4% above this pressure. Baron, Roof, and Wells [863], on the other hand, took measurements on nitrogen, methane, ethane, and propane in the pressure range 100–8000 psi and at temperatures of 125, 175, 225, and 275 F. The precision of their data is better than 1%.

Heath [864] used a glass Rankine viscometer and made relative measurements at 18 C and 70 cm Hg pressure for various mixtures of helium-argon, helium-nitrogen, helium-carbon dioxide, hydrogen-argon, hydrogen-nitrogen, and hydrogen-carbon dioxide. A similar viscometer was used to measure the viscosity of rare gas mixtures within an accuracy of $\pm 1.0\%$ at about 18 C and 70 cm Hg pressure [865–867].

Williams [845], in his experiment, displaced a known volume of gas but controlled the flow rate so that the gas inlet pressure and the pressure difference across the capillary were constant throughout the experiment. Anfilogoff and Partington [778] have described in detail the design of such a viscometer and in recent years Raw and co-workers [868-870] have employed an apparatus of the same general principle and measured viscosities of gases and gaseous mixtures up to a maximum temperature of 1000 C with an estimated uncertainty of 1%.

A number of capillary viscometers have been designed to obtain viscosity values 'Native in most cases) of gases over wide temperature and pressure ranges through the basic Hagen-Poiseuille equation. The pressure difference across the capillary is kept constant and the flow rate of the gas transpiring through the capillary is measured accurately. Some

important efforts of this type are by Timrot [878], Makavetskas, Popov, and Tsederberg [879, 880], Vasilesco [881], Lazarre and Vodar [882, 883], Luker and Johnson [884], Andreev, Tsederberg, and Popov [885], Rivkin and Levin [886], Lee and Bonilla [887], Masiá, Paniego, and Pinto [1147], etc. Flynn, Hanks, Lemaire, and Ross [840] and Giddings, Kao, and Kobayashi [841] have developed very accurate absolute viscometers, and reported data on gases as a function of temperature and pressure with an accuracy of a few tenths of a percent. The measurements of Ross et al. cover a maximum and a minimum temperature of 150 C[888] and -100 C[889], respectively, and pressures up to a maximum of 250 atm. The measurements of Kobayashi et al. [841, 890] cover the temperature range -90 to 137.78 C and the pressure range 6.8-544.4 atm.

A very important variation in the general capillary method was introduced by Michels and Gibson [891] in 1931 while engaged in measurements at high pressures. A known pressure difference is imposed across the capillary and the flow rate is determined under the decreasing pressure head. Several alternative procedures have been developed to obtain this type of operation and these unsteady state viscometers will be mentioned below. Careful interpretation of the observed data leads to very accurate absolute values of viscosity. Michels and Gibson's [891] measurements on nitrogen at 25, 50, and 75 C and up to 1000 atm have been extended up to 2000 atm on hydrogen and deuterium [892], argon [893], and carbon dioxide [894]. Trappeniers, Botzen, Van Den Berg, and Van Oosten [895] have recently revived this work and measured the viscosity of neon at 25, 50, and 75 C and at pressures up to 1800 atm, for krypton [896] at these temperatures and pressures up to 2050 atm, and at 125 C at pressures between 1300 and 1900 atm. Some other workers who have employed this general principle to measure viscosity over a limited temperature range at ordinary pressures are; Bond [897], Rigden [898], Thacker and Rowlinson [899], Chakraborti and Gray [900, 901], and Lambert et al. [902]. In most cases these measurements are relative.

Shimotake and Thodos [839] developed a viscometer and, based on this unsteady-state method, determined the viscosity of ammonia. Their [839] relative measurements cover the pressure range 250-5000 psia and temperatures of 100, 150, and 200 C. Thodos and co-workers have also done careful measurements on sulfur dioxide [903], argon, krypton, and xenon [904], and helium, neon, and

nitrogen [907]. Eakin and Ellington [908] and Starling, Eakin, and Ellington [909] developed another design for a viscometer on this very principle, and reported data on the viscosity of propane within an estimated accuracy of $\pm 0.5\%$ for nine temperatures between 77 and 280 F and for pressures in the range 100-8000 psia. On the basis of this viscometer a large body of data was developed which is of special practical interest to the petroleum industry [753, 910-916]. Guevara, McInteer, and Wageman [1208] determined relative values of viscosity employing a capillary viscometer in the temperature range 1100-2150 K at atmospheric pressure with an accuracy of $\pm 0.4\%$ and precision of $\pm 0.1\%$. The data are reported on viscosity ratios for hydrogen, helium, argon, and nitrogen [1208], krypton [1209], neon [1210], and xenon [1211].

b. The Oscillating-Disk (Solid-Body) Method

This method, like the capillary-flow method, has a long history following the pioneer work of Maxwell [918] in 1870. This method in many respects is the opposite of the capillary-flow method. Here the test fluid is kept stationary while a solid body oscillates and the effect of shearing stresses on the oscillations makes possible, if properly analyzed, the determination of viscosity. It may be recalled that in the capillary-flow method it is the test fluid which moves and the knowledge of flow rate and associated pressure difference permit the calculation of viscosity. The principle of the solid-body method involves the measurement of the period and amplitudes of the damped oscillations of a suitable solid body suspended from an elastic wire in the test fluid and then in vacuum. The latter makes possible correction for the damping due to the torsion of the suspension wire in a straightforward manner. However, the exact theoretical description of the velocity field around the oscillating body in the test fluid is not simple; this is the major limiting feature of this method. These complications and their theoretical resolution for various shapes of the oscillating body have been understood only in recent years; this is reviewed by Kestin [835]. In particular, the shapes which have been adopted are a sphere or a thin cylindrical disk oscillating freely in the fluid, or a thin disk oscillating between two fixed parallel disks with finite spacing. This latter alternative has received wide use for the determination of viscosity both relative and absolute. Craven and Lambert [919] employed a sealed quartz bulb pendulum drawn out from a 1-cm-diameter tubing. The lower end was drawn out to form a pointer. The pendulum was set into oscillations and

the damping time was measured as a function of pressure of the gas. The measurements were taken relative to air with an estimated error of 1%, as the pressure independent damping times were taken to be directly proportional to the viscosity of the gas. A detailed discussion of the various efforts made to theoretically and experimentally examine this method is beyond our scope, and we refer the reader to the article of Kestin [835] and to the number of original articles referred in it. We will briefly review below some of the recent efforts and point out developments which have helped considerably in improving the potential of the technique and work which has produced a large body of data.

The KammerlinghOnnes Laboratory at Leiden initiated experimental and theoretical studies of this oscillating-disk-type apparatus: Van Itterbeek and Claes [920, 921], Van Itterbeek and Keesom [922, 929], Van Itterbeek and Van Paemel [923, 924, 930], Keesom and Macwood [925, 926], and Macwood [927, 928]. In more recent years Van Itterbeek and his co-workers [931-933] have also measured the viscosity of binary mixtures of monatomic and diatomic gases in the temperature range 72.0-291.1 K with an estimated error of 1%. The viscosity calculation was made from the equation

$$\mu = C\left(\frac{\lambda}{\tau} - \frac{\lambda_0}{\tau_0}\right) \tag{52}$$

where C, a constant of the apparatus, is obtained from

$$C = \frac{4I}{\pi R^4} \frac{d_1 d_2}{d_1 + d_2} \tag{53}$$

Here I is the moment of inertia of the oscillating disk, R the radius of the oscillating disk, d_1 and d_2 the distances between the oscillating and fixed disks, λ and λ_0 the logarithmic decrements of the oscillations in the test fluid and vacuum, respectively, and τ and τ_0 the periods of the oscillations in the test fluid and vacuum, respectively. Two types of oscillation systems have been employed. In one the distance between the fixed disks could not be changed, while in the second it was adjustable. These authors [934–937] have also measured the viscosity of light gases and their mixtures down to temperatures as low as 14 K.

Mason and Maass [939] developed a design of the oscillating-disk viscometer somewhat similar to that of Sutherland and Maass [938], to measure the viscosity of gases in the critical region. They [938] claim a differential accuracy of 1 in 3000 and an absolute accuracy of 1 in 1000 in measurements over a temperature range 0-100 C and for pressures up to 150 atm. The calculation procedure is the same as described above. Johnston and McCloskey [940] also built a viscometer of the same general pattern [938] and measured the viscosity of a number of gases [940, 941] between room and liquid-oxygen temperature with an accuracy of 0.3% at 300 K to about 0.8% at 90 K.

Kestin and Pilarczyk [942] measured the viscosity of gases by an accurately built oscillating-disk viscometer and pointed out the necessity of improving the theory of this apparatus if highly precise values are to be obtained. Kestin and Wang [943] succeeded in semiempirically developing the edge correction factor arising because of the finite size of the disk and reevaluated [944] the earlier measurements [942]. Kestin, Leidenfrost, and Liu [945] further examined the edge correction factor and verified experimentally the procedure of relative measurements in such a viscometer for moderate spacings. This provides considerable confidence in the measurements of Kestin and Leidenfrost [946, 947] on pure gases, which were taken on a modified version of the apparatus of Kestin and Moszynski [948].

Around this time a number of additional improvements in the theory of such a viscometer appeared: Mariens and Van Paemel [949], Dash and Taylor [950], and Newell [951]. These made it possible to evaluate the experimental information on an absolute basis to get very accurate values of viscosity. Kestin and Leidenfrost [952, 953] thus succeeded in determining the absolute values of viscosity of gases and gas mixtures at 20 C over a range of pressure values, using their earlier viscometer [947] with a very high degree of accuracy. Kestin and co-workers [954-961] have reported data at 20 and 30 C for a large number of binary systems and pure gases as a function of pressure from 1 to about 50 atm with an estimated accuracy of the order of 0.2%, and an uncertainty of no more than 0.04% for the relative values of the mixtures in comparison with the pure gases. Di Pippo, Kestin, and Whitelaw [962] have also designed an absolute high-temperature viscometer appropriate at atmospheric pressure in the temperature range 20-950 C. In recent years Kestin and co-workers [1213-1215] have employed an oscillating-disk viscometer and reported the relative measurements of the viscosity of pure gases and their binary mixtures in the temperature range 25-700 C and at atmospheric pressure with a precision of $\pm 0.1 \%$.

Clifton [963] measured the viscosity of krypton in the temperature range 297 to 666 K and calibrated his viscometer with helium. He also found that the rigorous theory [951], with approximate geometrical dimensions of the viscometer, gave the calibration factor within about 3%. Thus he provided another very much needed experimental proof of the theory of viscometer as well as the calibration procedure which forms the basis of all relative measurements. Pal and Barua [964] constructed a metal viscometer and determined the viscosity of H₂-N₂ and H₂-NH₃ gas mixtures in the temperature range 33-206 C at one atmosphere pressure. They calibrated their apparatus according to the procedure pointed out by Clifton [963] employing the viscosity data for H, and N2 of Barua et al. [888] and Kestin and Whitelaw [965]. Pal and Barua [966-969] have reported data on a number of other pure gases and binary gas systems in this temperature range. A similar approach has been adopted by Gururaja, Tirunarayanan and Ramachandran [970] who have reported data on binary and ternary mixtures at ambient temperature and pressure.

c. The Rotating-Cylinder (Sphere or Disk) Method

The uniform rotation of a sphere, disk, or cylinder in concentric spherical shells, fixed parallel planes, or a fixed concentric cylinder, respectively, is used to determine the viscosity of the fluid enclosed between the two surfaces. A historical account of this method is to be found in reference [833]. Because of practical convenience, the coaxial cylinder geometry has been preferred by most of the workers with this method. A brief review of such efforts will be given here, with special reference to work which has appeared since the review of Barr [833]. In its most commonly used variant, the angular deflection, Φ , of the inner cylinder is noted when the outer cylinder is rotated with a constant angular velocity of ω . Let r_i and r_o be the radii of the inner and outer cylinders, respectively, and l the length of the inner cylinder where the test fluid is enclosed between the two cylinders. If the end effects which arise because of the finite length of the inner cylinder are ignored, the viscosity is obtained from a rather simple relation

$$\mu = \frac{\pi \Phi I (r_o^2 - r_i^2)}{r_i^2 r_o^2 \tau^2 \omega l}$$
 (54)

Here I and τ are the moment of inertia and period of vibration of the inner cylinder and Φ is obtained by noting the steady-state deflection as read on a straight

scale located at a distance d from the mirror and attached to the suspension system of the inner cylinder so that

$$\tan \Phi = s/2d \tag{55}$$

It may also be remarked that the speed of the rotating cylinder must be so chosen that the fluid flow remains viscous and radial or eddy motion does not occur [833]. The mathematical theory for the correction of end effects has not yet been developed, but these are reduced by providing "guard rings" above and below the suspended cylinder. These are the major considerations which limit the absolute nature of this method and impair the accuracy. In principle, either of the two cylinders can be rotated with a constant angular velocity, though consideration of the instability of motion suggests a preference for the outer cylinder to be rotated [835].

Gilchrist [971] built a constant deflection type coaxial cylinder apparatus, having guard cylinders both at the top and bottom, and measured the viscosity of air. He used a bifilar phosphor bronze strip for suspension. Later Harrington [972] tried to improve upon this design. He used quartz fibers instead of phosphor bronze and very accurately determined the geometrical constants of the apparatus and the moment of the inertia of the inner cylinder. His results on air at about 23 C are claimed to be accurate within a maximum uncertainty of 0.04%. He also claimed that for his apparatus at ordinary pressures the correction amounts to about 2 parts in 100,000. Yen [973] and Van Dyke [974] used this apparatus to determine the viscosities of oxygen, nitrogen, hydrogen, and carbon dioxide. The adaption of this apparatus for operation at low pressures and the theory of slip are discussed by Millikan [975], Stacy [976], Van Dyke [974], States [977], and Blankenstein [978]. Several other efforts have been made to build improved versions of the basic Harrington-Gilchrist apparatus to measure viscosities of normal pentane and isopentane [979] and air [980,

Reamer, Cokelet, and Sage [982] built a rotating cylinder viscometer for measurements at pressures up to 25,000 psia in the temperature range 0-500 F. They reported data on *n*-pentane with an estimated accuracy of 0.4%. Additional measurements have been reported on this apparatus for ethane [983] and ammonia [984] and mixtures of nitrogen-*n*-heptane, nitrogen-*n*-octane [985], and methane-*n*-butane [986].

d. The Falling-Sphere (Body) Method

The principle of this method, its scope and limitations, and many of the experimental attempts made are described in references [833] and [835]. The basis for this method is in Stokes' law, according to which the viscous drag, W, on a rigid sphere of radius a, falling in an infinite homogeneous fluid which has attained a uniform velocity of v (free from accelerations) is

$$W = 6\pi\mu av \tag{56}$$

Furthermore, under these conditions, W is equal to the apparent weight of the sphere so that

$$W = \frac{4}{3}\pi a^3 (\rho_s - \rho_f) g \tag{57}$$

Here ρ_s and ρ_f are the densities of the sphere and the fluid respectively, and g the acceleration due to gravity. Combining these two equations

$$\mu = \frac{2}{9} \frac{(\rho_s - \rho_f)g}{v} a^2$$
 (58)

This relation is valid only for extremely low Reynolds numbers, though modifications to this law have been proposed for higher Reynolds numbers [833, 835]. For bodies other than spheres Stokes' law is modified so that

$$W = 6\pi \mu a v/\delta \tag{59}$$

where the value of δ depends upon the shape of the body [833].

Ishida [987] employed this principle and by observing the rate of fall of charged droplets in the test gas determined the viscosity of the latter. It is necessary to consider the effect of slip in view of the small size of the drops, and further, it is implied that the electric field of the drops does not alter the viscosity of the test gas.

Hawkins, Solberg, and Potter [988] described a falling-body viscometer similar to that which Lawaczeck developed in 1919. It consists of a metal cylindrical weight falling through the test fluid contained in a vertical tube closed at the lower end and having a diameter slightly greater than that of the weight. Under certain conditions the simple measurement of the time t needed for the weight to fall through a fixed distance is a measure of the viscosity so that

$$\mu = C(\rho_2 - \rho_f)t \tag{60}$$

Here C is a constant dependent on the dimensions of the apparatus and can be determined if an experiment is made with a fluid of known viscosity. These workers [988] described a viscometer appropriate for measurements up to pressures of 3500 psi and temperatures of 1000 F. The viscometer was rotated through 180° to permit the body to fall in the tube in the opposite sense and the measurements repeated.

A combination of an inclined tube and a rolling ball has been used as a convenient, simple empirical method for the last fifty years to determine the viscosity of fluids. Hubbard and Brown [989] derived general relations, through the use of dimensional analysis, between the variables involved and the simple calibration for the rolling ball viscometer, in the streamline region of fluid flow. An empirical correlation is also given which enables viscosity to be estimated from data taken in the turbulent region of flow. The correlating functions were evaluated from data taken on a viscometer consisting of a precisionbore inclined glass tube, and times to traverse a known distance were determined with an automatic photoelectric device. This design was further modified by Smith and Brown [747].

Bicher and Katz [990] employed a rolling-ball inclined-tube viscometer and measured the viscosities of methane, propane, and their mixtures with an average error of 3.2%. The ranges of pressure and temperature examined were 400-5000 psia and 77-473 F, respectively.

Swift, Christy, Heckes, and Kurata [991] designed a falling-body viscometer and have reported viscosities of liquid methane, ethane, propane, and n-butane [992]. Huang, Swift, and Kurata [993] modified the design of the viscometer [992] so that measurements were possible up to as high a pressure as 12,000 psia. They [993] reported measurements on methane and propane at pressures to 5000 psia and went down to the lowest temperature of $-170 \,\mathrm{C}$ with an estimated precision of $\pm 1.2 \,\%$. These authors have also extended the measurements to the mixtures of methane and propane [994].

Stefanov, Timrot, Totskii, and Chu Wen-hao [1150] have employed an improved falling-weight viscometer to measure the viscosity of the vapors of sodium and potassium as a function of temperature and pressure.

e. The Less-Developed Methods: Based on Ultrasonic, Shock Tube, and Electric Arc Measurements

Recent interest in the exploration and understanding of outer space have led to the development of methods which may give viscosity values at high temperatures up to about 15,000 K. A very limited amount of experimental work has been done and many difficulties are not resolved, the techniques are not entirely satisfactory. A considerable amount of theoretical and experimental work is needed to establish the techniques so that reliable data may be obtained. In view of the unsatisfactory state of the art only a brief account of the efforts made so far will be sufficient.

Measurements of the velocity of sound in a gas permit its temperature to be determined [995]. Carnevale et al. [996-998] employed this principle and measured the viscosity at high temperatures from the knowledge of the velocity and absorption of ultrasonic waves in the test gas. In particular, they [998] determined the viscosity of helium up to 1300 K and of argon up to 8000 K at one atmosphere. This attempt has been extended to include polyatomic gases and temperatures as high as 17,000 K [999], and high pressures up to 100 atm [1000, 1001]. Besides experimental difficulties, there still remain many theoretical questions to be answered. A critical evaluation of this ultrasonic technique has been given by Ahtye [1002], who has included in the theory of ultrasonic absorption, in addition to components due to viscosity and thermal conductivity, also terms which arise due to chemical relaxation and radiative heat transfer. Madigosky [1003], while discussing his results of ultrasonic attenuation in gases at high densities, has pointed out the need for considering a significant absorption resulting from the bulk viscosity, in addition to shear viscosity, thermal conductivity, etc.

Measurement of the heat transfer to the side wall of a shock tube is used in conjunction with a suitable equilibrium boundary layer theory to determine viscosity of shock heated gases. Carey, Carnevale, and Marshall [1004] thus determined the viscosities of argon, oxygen, nitrogen, and carbon dioxide up to 4000 K. Hartunian and Marrone [1005] used this principle to determine the viscosity of dissociated oxygen with an estimated accuracy of $\pm 4\%$.

Theoretical understanding and experimental techniques have been developed to the point that measurements on a confined electric arc are capable of yielding fairly accurate data on viscosity and other properties of the gas [1006]. Schreiber, Schumaker, and Benedetto [1007] have recently described the details of an argon-plasma source and related instrumentation, along with some preliminary measurements of a continuing program. Schreiber, Hunter, and Bene-

detto [1144] have measured the viscosity of an argon plasma at one atmosphere and in the temperature range 10,000-13,000 K.

Dedit, Galperin, Vermesse, and Vodar [1145]

have described an apparatus in which the record of displacements of a column of mercury as a function of time is employed to determine viscosity of a gas compressed to varying pressures.

Viscosity of Liquids and Liquid Mixtures

1. INTRODUCTION

In the preceding sections a brief discussion is given of the theoretical status, estimation procedures, and experimental techniques for gases and gas mixtures at ordinary as well as at high pressures before condensation occurs. We will now review the similar art in relation to pure liquids and their mixtures. Many of the ideas developed in connection with the studies on gases are still valid, either as such or with appropriate modifications, and consequently, our present discussion will be essentially a continuation specialized for liquids and consistent with our overall plan to be brief but relatively complete in references. The work on liquids is less extensive than that on gases, though in recent years more attention has been paid to the former.

Many monographs are available which describe the different theories developed to explain the liquid state and the different thermodynamic and transport properties. Some of these are by Frenkel [1008], Green [1009], Rice and Gray [1010], Kirkwood [1011], and Hirschfelder, Curtiss, and Bird [28]. Many excellent review articles have also appeared, e.g., Rice [1012], Kimball [1013], Lebelt and Cohen [1014], Brush [1015], Partington [1016], Hildebrand [1017], and deBoer [1064]. These describe the status of the current theory and its ability to explain the observed experimental facts. In the next section we mention the theoretical efforts made to describe the mechanism of momentum transfer in liquids, and hence, the coefficient of viscosity. The next two sections describe the empirical approach to estimating and experimentally measuring the viscosity of liquids. It may be pointed out that very often the term fluidity is used in literature to represent the reciprocal of viscosity. The reason for this is that for liquids the fact to explain is not their viscosity, i.e., their tendency to offer resistance under the influence of a shearing stress, but their fluidity, i.e., their capability of yielding to such a stress [1008].

2. THEORETICAL METHODS

A. Introduction

Although the liquid state is intermediate between the solid and gaseous states, most materials have properties in the liquid state which are close to those of one or the other of these two states. For a simple example, liquids, like gases, adopt the shape of the container—they lack rigidity. Similarly, liquids, like solids, are hard to compress, in sharp contrast with gases. From the molecular point of view, the molecules are closely packed in solids and in liquids, while in gases the intermolecular separations are so large that the molecular motion is random and free from the influence of the other molecules for most of the time. In liquids, on the other hand, molecules are so closely packed that the molecular motion is much more limited in space and is controlled by the influence of many neighboring molecules. Thus, the transport of momentum in liquids takes place, in sharp contrast with gases at ordinary pressures, not by the actual movement of molecules, but by the intense influence of intermolecular force fields. It is this basic difference in the mechanism of momentum transfer which is responsible for the opposite qualitative dependence of viscosity on temperature for gases and liquids. The viscosity of gases increases with temperature, while that of liquids decreases with temperature. This simple concept can be developed to give an appreciation of the mechanism of transport of momentum, and hence, of the coefficient of viscosity. We will now discuss the various theories developed to explain the phenomenon of viscosity in liquids.

B. The Simple Theories

It seems from the above brief description of the viscous nature of liquids that formulation of a simple theory to explain it has very little promise. Nevertheless, some efforts at the early stages of the development of the subject were made by ingeniously interpreting

33a

the motion of molecules and by associating special mechanisms of momentum transfer during collision, as reviewed by Frenkel [1008] and Andrade [1018]. By considering the forces of collision to be the only important factor, J. D. van der Waals derived the following expression for the coefficient of viscosity μ [1018]:

$$\mu = \frac{8\sqrt{\pi}}{15} n^2 d^4 m^{1/2} k^{1/2} \frac{v}{v - h} T^{1/2} e^{-\epsilon/RT}$$
 (61)

Here n is the number of molecules of mass m and diameter d per square centimeter, ϵ is the difference between the amount of potential energy that the molecules of the liquid possess on an average and the amount which they possess at the moment of a collision, v represents volume, and b is the van der Waals constant. This theory predicts $(1/\mu)(d\mu/dT)_v$ to be positive, although experiments lead to negative values for this factor.

The theory of Andrade [1018, 1019] may be mentioned because many of its predictions have survived the experimental checks to some extent. He attempted to develop the theory from the solid state point of view. Assuming that at the melting point the frequency of vibration is equal to that in the solid state, and that one-third of the molecules are vibrating along each of the three directions normal to one another, Andrade [1018] showed that

$$\mu = 5.1 \times 10^{-4} (AT_m)^{1/2} (V_A)^{-2/3} \tag{62}$$

Here A is the atomic weight, T_m is the melting point, and V_A is the volume of a gram atom at temperature T_m . The above formula checked well against the data on monatomic metals at the melting point. The predictions were less satisfactory for liquid halogens, oxygen, and hydrogen.

Andrade [1019] also extended his theory to explain the temperature and pressure dependence of viscosity. Assuming the frequency of vibration of the liquid molecules, v, to be constant, Andrade [1019] showed that the temperature dependence of viscosity is given by

$$\mu = A \exp(c/T) \tag{63}$$

where A and c are constants. By including the temperature dependence of volume he found [1019], instead of the above expression, a more complicated result,

$$\mu v^{1/3} = A \exp[cf(v)/T] \tag{64}$$

Here v is the specific volume. When the molecular interaction potential is approximated by the van der

Waals relation, the above relation becomes

$$\mu v^{1/3} = A \exp(c/vT) \tag{65}$$

If the temperature dependence of the frequency ν is also considered, equation (64) becomes

$$\mu v^{1/6} = (A'/\sqrt{k_1}) \exp(c'/vT)$$
 (66)

Here A' and c' are constants and k_1 is the adiabatic compressibility. Checks against the experimental data showed that equation (64) leads to values which are in better agreement with the experimental results than equation (66). This is interpreted as indicating that some compensating effect is responsible for the superiority of equation (65) in representing the observed data. Andrade [1019] also argued that equation (66) will give the pressure dependence of μ if k_1 and v are given appropriate values corresponding to the pressure under consideration. Consequently,

$$\frac{\mu_p}{\mu_1} = \left(\frac{v_1}{v_p}\right)^{1/6} \sqrt{\frac{k_{1,1}}{k_{1,p}}} \left[\exp\left\{\frac{c}{T} \left(\frac{1}{v_p} - \frac{1}{v_1}\right)\right\} \right]$$
 (67)

Here the subscripts on μ , v, and k_1 refer to the pressure, p, or the pressure at one atmosphere at which these quantities are to be interpreted. Andrade [1019] found the above relation to be satisfactory up to about 3000 atm. Andrade also suggested that in the absence of adiabatic compressibility, isothermal compressibility values may be used. The constant c is to be obtained from equation (64). Andrade [1066] has given additional comments on the scope of these formulas and assessed them against experimental data.

Frenkel [1008] has discussed simple approaches to derive expressions for μ . Considering the molecules of a liquid to be spheres of radius a, he takes the resistance F suffered by a molecule as it moves with an average velocity \bar{v} with respect to the surrounding molecules, on the basis of Stokes' law to be

$$F = 6\pi a \mu \bar{v} = \alpha^{-1} \bar{v} \tag{68}$$

where α is the mobility of the molecule. α is related to the self-diffusion coefficient D by Einstein's relation

$$\alpha = D/kT \tag{69}$$

Here k is the Boltzmann constant. The dependence of the mean life of an atom τ in an equilibrium position on temperature is given by

$$\tau = \tau_0 \, e^{W/kT} \tag{70}$$

where W is the activation energy and τ_0 is a constant. The average velocity of translation of the molecules

through the whole volume of the liquid is

$$w = \delta/\tau = (\delta/\tau_0) e^{-W/kT}$$
 (71)

and the self-diffusion coefficient, which determines the rate of their mixing together is

$$D = \delta^2/\sigma\tau = (\delta^2/\sigma\tau_0) e^{-W/kT}$$
 (72)

Substituting these relations one gets

$$\mu = (kT\tau_0/\pi a\delta^2) e^{W/kT} \cong A e^{W/kT}$$
 (73)

The above relation successfully accounts for the experimentally observed temperature trend of μ , though the absolute computed values are 10^2 to 10^3 times greater than the experimental values. This disagreement is explained by the decrease of W with increasing T. If this dependence is assumed in terms of a parameter γ , such that

$$W = W_0 - \gamma kT \tag{74}$$

the value of A then changes to

$$A = \frac{kT\tau_0}{\pi a \delta^2} e^{-\gamma} \tag{75}$$

The μ values are thus reduced by a factor of e^{γ} . Similarly, if the pressure dependence of W is included according to the relation

$$W = W_0 + (\beta v_0 P/K) \tag{76}$$

where if v is the volume of an atom, v_0 is the value of v for P = 0, and K is the bulk modulus, then the factor A comes out to be an exponential function of pressure

$$A = A_0 e^{Py/\alpha'KT} = A_0 e^{P/P_0} (77)$$

Here A_0 is the value of A for P=0, and α' is the coefficient of thermal expansion, and P_0 is that characteristic pressure where viscosity has increased by a factor of e. This exponential increase of viscosity with pressure is in accord with the experimental data. The above analytical treatment is valid only for moderate values of pressures where $\gamma = v_0 \alpha' \beta/k$.

Furth [1038] derived a formula for the viscosity of a liquid by assuming the momentum transfer to take place by the irregular Brownian movement of the "holes" [1039]. These "holes" were likened to clusters in a gas and thus, in analogy with the gas theory of viscosity and with the assumption of the equipartition law of energy, he [1038] showed that

$$\mu = 0.915 \frac{RT}{V} \sqrt{\frac{m}{\sigma}} e^{A/RT} \tag{78}$$

where R is the universal gas constant, σ the surface tension, and A the work function at the melting point.

He [1038] compared his theory with experiments as well as with the theories of Andrade [1019] and Ewell and Eyring [1022]. Furth [1039] developed the concepts of the hole theory of liquids from basic principles of classical statistical mechanics and found he was able to quantitatively reproduce the thermodynamic properties. Auluck, De, and Kothari [1106] further refined the theory and successfully explained the variation of viscosity with pressure.

A good critical review of these simple theories and their abilities to explain momentum transport in liquid is given by Eisenschitz [1065].

C. The Reaction-Rate Theory

Eyring [1020] developed an interesting pictorial description of the liquid state and derived an explanation for the phenomenon of viscosity by the application of the theory of absolute reaction rates [1021]. In a liquid, if a molecule is assumed to be bound to others by bonds of total energy E, then to vaporize a single molecule will require an energy equal to E/2 provided no hole is left behind in the liquid. This is because each bond is shared between two molecules. However, if a hole is created in the liquid while vaporizing a molecule, an energy of E will be required. Now, if we return this gas molecule to the liquid we get back an energy E/2 only. Using this picture of a liquid, Eyring [1020] concluded that it takes just the same energy to create a hole in a liquid the size of a molecule as to vaporize a single molecule without leaving a hole. Like a gas molecule in empty space, a hole in the liquid can take up a great number of different positions. Whenever a hole is created in the liquid, a neighboring molecule jumps into it leaving behind an empty lattice point, and this process goes on. Consequently, each hole contributes essentially a new degree of translation to the liquid [1020], by permitting the relative motion of molecules near the hole with a minimum of disturbance to other molecules.

Viscous flow was considered as a chemical reaction in which a molecule moving in a plane occasionally acquires the activation energy necessary to slip over the potential barrier to the next equilibrium position in the same plane. The average distance between these equilibrium positions in the direction of motion is λ while the distance between neighboring molecules in the same direction is λ_2 , which may or may not be equal to λ . The distance from molecule to molecule in the plane normal to the direction of motion is λ_3 , λ_1 is the perpendicular distance between two neighboring layers of molecules in relative motion. Eyring [1020] showed that the viscosity of

the liquid is given by

$$\mu = \frac{\lambda_1 h F_n}{K \lambda^2 \lambda_2 \lambda_3 F_a^*} \exp \frac{\Delta E_{\text{act}}}{kT}$$
 (79)

Here K is the transmission coefficient and is the measure of the chance that a molecule having once crossed the potential barrier will react and not recross in the reverse direction. K is usually unity for chemical reactions and will be given this value in the present work. F_n is the partition function of the normal molecule and F_a^* that of the activated molecule with a degree of freedom corresponding to flow. ΔE_{act} is the activation energy for the flow process and h is Planck's constant. Further simplification results if $\lambda = \lambda_1$, for then

$$\lambda_1/\lambda^2\lambda_2\lambda_3 = N/V \tag{80}$$

Here N is Avogadro's number and V is the molar volume. If the degree of freedom corresponding to flow is assumed to be a translational one, while the other degrees of freedom are the same for the initial and activated states, the ratio of the partition functions [1022, 1023] is

$$F_{\pi}/F_{\alpha}^{*} = (2\pi mkT)^{1/2} (V_{f}^{1/3}/h)$$
 (81)

where V_f is the free volume. Eyring and Hirschfelder [1023] have shown that

$$V_f^{1/3} = \frac{bRT}{V^{2/3}N^{1/3}(P + a/V^2)}$$
 per molecule (82)

Here a and b are constants. If ΔE_{vap} is the energy of vaporization,

$$\frac{a}{V^2} = \frac{\Delta E_{\text{vap}}}{V} \gg P \tag{83}$$

so that

$$V_f^{1/3} = \frac{bRTV^{1/3}}{N^{1/3}\Delta E_{vap}}$$
 (84)

b = 2 for simple cubic packing and varies weakly with temperature and for other types of packing.

Ewell and Eyring [1022] argued that for a molecule to flow into a hole, it is not necessary that the latter be of the same size as the molecule. Consequently, they write $\Delta E_{\rm act} = \Delta E_{\rm vap} n^{-1}$ for viscous flow, because $\Delta E_{\rm vap}$ is the energy required to make a hole in a liquid of the size of a molecule. Combining all these relations one finally gets

$$\mu = \frac{Nh}{V} \frac{(2\pi mkT)^{1/2}}{h} \frac{bRTV^{1/3}}{N^{1/3} \Delta E_{\text{vap}}} \exp \frac{\Delta E_{\text{vap}}}{nRT}$$
 (85)

The above relation is used by Ewell and Eyring [1022] to analyze the viscosity data as a function of

temperature for a number of liquids with choices for n varying between 2 and 5. It was found that the theory could reproduce the trend in the temperature dependence of μ but the computed values are greater than the observed ones by a factor of 2 or 3 for most liquids. Many possibilities exist which may be responsible for this discrepancy. Any departure of K from unity will further worsen the agreement between theory and experiment. The packing factor cannot explain this large discrepancy. A good possibility is advanced in the "persistence of velocity theory," that a moving molecule after acquiring the necessary activation energy may move more than one intermolecular distance, so that λ may be equal to $\lambda_1, 2\lambda_1, 3\lambda_1, \ldots$, for any individual elementary process. A strong possibility is that the flow process is bimolecular rather than a unimolecular one [28, 1022, 1024]. Thus, two molecules in adjacent layers which are in relative motion temporarily form a pair, rotate through approximately 90°, and then separate. During the rotation the two molecules will sweep out an extra volume which would be of the order of onethird of the molecular volume.

In order to account for the pressure dependence, Ewell and Eyring [1022] argued that in the above formula one should substitute

$$\Delta E_{\rm vap} = V(P_{\rm int} + P_{\rm ext}) \tag{86}$$

 $P_{\rm int} = (\partial E/\partial V)_T$ must therefore be known to account for the pressure dependence of μ . These authors [1022] used the μ data to compute a consistent set of $P_{\rm int}$ values and compared them with those obtained from the thermodynamic relation

$$P_{\rm int} = (\partial E/\partial V)_T = T(\partial P/\partial T)_c - P \tag{87}$$

 ΔE_{vap} is related with the more familiar enthalpy of vaporization, ΔH_{vap} , such that [28]

$$\Delta H_{\rm vap} = \Delta E_{\rm vap} + RT \tag{88}$$

Furthermore, the energy of vaporization can be estimated according to the Trouton's rule [28]

$$\Delta E_{vap} = 9.4RT_b \tag{89}$$

where T_h is the boiling point at one atmosphere.

Kincaid, Eyring, and Stearn [1143] have summarized all the working relations and the underlying theory needed to calculate the viscosity of any normal liquid as a function of temperature and pressure.

D. The Significant-Structure Theory

Eyring and co-workers [1026-1029] improved the "holes in solid" model theory [1024, 1025] to

37a

picture the liquid state by identifying three significant structures: (i) solid-like degrees of freedom because of the confinement of a molecule to an equilibrium position as a result of its binding by its neighbors: (ii) positional degeneracy in the solid-like structure due to the availability of vacant sites to a molecule. in addition to its equilibrium position; and (iii) gas-like degrees of freedom for a molecule which escapes from the solid lattice. A liquid molecule, according to significant-structure theory, possesses both solid-like and gas-like degrees of freedom, the relative contribution of the two types being V_{\cdot}/V and $(V - V_s)/V$ respectively. Here V_s is the molar volume of the solid at the melting point and V is the molar volume of the liquid at the temperature of interest. In brief, a molecule has solid-like properties for the short time it vibrates about an equilibrium position and then it assumes instantly the gas-like behavior on jumping into the neighboring vacancy.

The above method of significant structures leads to the following relation for the viscosity of a liquid [1030, 1031]:

$$\mu = \frac{V_s}{V} \mu_s + \left(1 - \frac{V_s}{V}\right) \mu_g \tag{90}$$

Here μ_s and μ_g are the viscosity contributions from the solid-like and gas-like degrees of freedom, respectively. The expressions for μ_s and μ_g are given by Carlson, Eyring, and Ree [1031]. Eyring and Ree [1032] have discussed in detail the evaluation of μ_s from the reaction rate theory of Eyring [1020], assuming that a solid molecule can jump into all neighboring empty sites. They [1032] give an expression for μ which in a more general form is [1033]

$$\mu = \frac{Nh}{Zk} \frac{6}{\sqrt{2}} \frac{\Psi}{V - V_s} \exp\left[\frac{a'E_sV_s}{(V - V_s)RT}\right] \times \exp\frac{-P(V - V_s)}{RT} + \frac{V - V_s}{V} \frac{2}{3d^2} \left(\frac{mkT}{\pi^3}\right)^{1/2}$$
(91)

Here N is the number of nearest neighbors, E_s is the energy of sublimation, Ψ is the partition function for the oscillator under consideration, a' is the proportionality constant, m is the molecular mass, and d is the molecular diameter, $a'E_sV_s/(V-V_s)$ is the activation energy for jumping. The second exponential is introduced in order to take care of the effect of pressure. At higher pressures, the kinetic energy of molecules becomes correspondingly large and thus the activation free energy is reduced by the kinetic energy.

Lu, et al. [1034] have extended the scope of the significant-structure theory to include the molten

salts also. The μ expression is of the general form (90), where

$$\mu_{s} = \frac{Nh}{Zk} \frac{V}{V_{s}} \frac{6}{\sqrt{2}} (V - V_{s})^{-1} [1 - \exp(-\theta/T)]^{-1}$$

$$\times \exp\left[-\frac{a'E_{s}(V/V_{s})^{1/3}}{2RT(V - V_{s})/V_{s}}\right] \exp\left[-\frac{P(V - V_{s})}{RT}\right]$$

$$(92)$$

$$\mu_{g} = [n_{1}/(n_{1} + n_{2})]\mu_{g_{1}} + [n_{2}/(n_{1} + n_{2})]\mu_{g_{2}}$$

$$(93)$$

$$u_{g_{1}} = d_{1}^{-2}(m_{1}kT/\pi^{3})^{1/2}$$

and

$$\mu_{\rm g_2} = d_2^{-2} (m_2 kT/\pi^3)^{1/2}$$

 μ_{g_1} and μ_{g_2} are the viscosities contributed by monomer and dimer gas-like molecules respectively, d_1 and d_2 are the diameters of the monomer and dimer gas-like molecules respectively, m_1 and m_2 are the molecular weights of monomer and dimer species, n_1 and n_2 are the number of molecules of monomer and dimer species respectively, and θ is the Einstein characteristic temperature.

E. The Cell or Lattice Theory

Lennard-Jones and Devonshire [1035, 1036] introduced a simple model to describe the critical phenomena in gases [1035] and in liquids [1036], which is referred to in the literature by various names such as cell, lattice, cage, free-volume, or one-particle model. In this model each particle is confined to a cell or cage by its nearest neighbors. These cells are assumed to be spherical in shape, and the particles remain in their mean lattice positions, except the one under consideration which roams or wanders under the influence of a spherically symmetric potential in the cage. Thus, the mathematical formulation was made tractable on intuitive grounds by effectively reducing the description to a one-particle model. This concept was regarded as an improvement over the empirical hole theory of Eyring [1020] in as much as a more quantitative description was given in the model, in the size of the cell, the motion of each molecule within its cell, the distribution of lattice sites, etc. Pople [1037] further expanded these ideas by considering the influence of noncentral forces. He considered the polar liquids HCl, H2S, and PH3, and assumed that the rotational and translational motions of the molecules can be treated separately. The molecules were regarded to be fixed in position at the center of their cells, but at the same time free to rotate in the field of the others.

389

Eisenschitz [1040] employed the cell model and developed a theory for viscosity by considering the motion of the representative molecule to be Brownian and their distribution according to the Smoluchowski equation. The force within the cell was assumed to be proportional to the distance from the center and increasing from the center to the surface of the cell, but to remain constant outside the surface, the final expression being

$$\mu = \frac{27}{40\sqrt{2\pi}} [m\beta(kT)^{5/2}/R^6G^{5/2}] \exp(GR^2/2kT)$$
(94)

Here β is the friction constant, m is the molecular mass, G is the force constant of potential energy, and R is the cell radius. If the friction constant, β , is assumed to depend weakly on temperature, the above formula gives a good representation of the temperature dependence of μ on T in spite of the fact that a somewhat unrealistic parabolic potential-energy form is assumed in the formulation. Many of the short-comings of this derivation have been overcome by the author in a subsequent publication [1068] which, however, does substantiate the final results of his earlier work [1040].

Mention may be made of some efforts to extend and modify the cell theory to give a better appreciation of the properties of liquids. Wentorf et al. [1041] showed that the theory of Lennard-Jones and Devonshire is not adequate for fluid densities below and near the critical point but improves at higher densities. Kirkwood [1042] developed a formulation of the free-volume theory from the general principles of statistical mechanics under well-defined approximations. This theory [1042] leac to the results of Lennard-Jones and Devonshire [1035, 1036] in the first approximation. The assumption of empty and multiple occupancy of the cells, and the calculation of their volume, etc., are discussed by a number of workers in relation to the thermodynamic properties, which lie outside the scope of our present effort. Good discussion and reviews of many such efforts are given in the articles of Rowlinson and Curtiss [1043] and Buchler et al. [1044].

Dahler, Hirschfelder, and Thacher [1045] started with the nonlinear integral equation for the free volume of a liquid given by Kirkwood [1042] and numerically solved it for the Lennard-Jones (12-6) potential [1046]. In order to achieve this solution they [1046] spherically symmetrized the free volume and employed a Boltzmann type of averaging for the

pair interaction. However, the quantitative predictions of thermodynamic properties were unsatisfactory [1046]. This deficiency of the improved theory was attributed to the neglect of spatial correlations between the motions of the molecules in neighboring cells. Chung and Dahler [1047] have given an approximate theory of molecular correlations in liquids. De Boer and co-workers [1014, 1048, 1049] have made extensive studies of this nature, which resulted in a theory for the liquid state which is referred to as the "cell-cluster theory." Dahler and Cohen [1050] have developed the cell-cluster theory for a binary liquid solution. These theories have not been employed to formulate the transport properties. A possible check of the cell model is provided by the work of Dahler [1076] who computed the radial distribution function for liquids on such an approach. Levelt and Hurst [1083] have developed a quantum-mechanical treatment for the cell model but considered calculations of only the macroscopic thermodynamic properties. Collins and Raffel [1051] presented an approximate treatment of the viscosity of a liquid of rigid sphere molecules employing simple ideas of the free volume theory and concerning themselves with the collisional transport of momentum. They have introduced a correction for the blocking effect of third neighbors. Their final result for the collisional contribution to shear viscosity is

$$\mu_{c} = \frac{2d(mkT)^{1/2}}{5\sqrt{\pi}v[1 - (v_{0}/v)^{1/3}]}$$
(95)

Here d is the diameter of the molecule; the quantity v_0/v , the ratio of the incompressible volume to the molecular volume, is recommended by the authors [1051] to be computed from the following relation [1067]:

$$u_s = \frac{1 - \frac{2}{3}(v_0/v)^{1/3}}{1 - (v_0/v)^{1/3}} \left\{ \frac{C_p RT/M}{C_p [1 - \frac{2}{3}(v_0/v)^{1/3}] - R} \right\}^{1/2} (96)$$

 C_p is the molar specific heat, M is the molecular weight, and u_r is the velocity of sound in the liquid. The calculated μ_c values are found to be of the order of a quarter to a half of the experimental viscosity values for various low-molecular-weight liquids [1051].

F. The Statistical-Mechanical Theory

The foundation of the statistical-mechanical theory of liquids was laid by the efforts of Kirkwood [48, 1011], Mayer and Montroll [1052], Mayer [1053], Born and Green [1054], and others. These workers have derived integral equations, the solutions of

which give the distribution functions for the molecules in the liquid. The functions involve the position, velocity of the molecules, derivatives of these quantities with respect to time, and intermolecular potentials. We will now refer briefly to some of the specific work in the following.

Born and Green [1054, 1055] developed from general kinetic theory an expression for the coefficient of viscosity as

$$\mu = \frac{1}{30} \int v(r) \Phi'(r) r^3 dr - \frac{1}{15} m \int \Phi_2(v) v^4 dv \quad (97)$$

Here $\Phi'(r)$ is the interaction potential at a separation distance r, v and Φ_2 are functions of r, v is the velocity, and m the molecular mass. The first term in the above expression is due to the intermolecular forces and is much greater than the second term due to the thermal motion of the molecules. In an effort to derive a simple expression for μ , Born and Green [1055] dropped the second term and through a series of approximations found for a face-centered-cubic structure and for a Lennard-Jones (12–6) intermolecular potential that

$$\mu = \frac{\pi^2}{315} (42\pi)^{1/2} \left(\frac{r_0}{r_1}\right)^5 \frac{mv_0}{r_0} e^{-\Phi(r_1)/kT}$$
 (98)

Here v_0 is the molecular vibrational frequency near the equilibrium point r_0 , and r_1 is the distance of nearest neighbors from a given molecule. Thus the work of Born and Green [1055] provided an explanation from kinetic theory of the empirical expressions for μ discussed before [1018, 1019, 1038]. However, Born and Green's work [1054–1056] did not include explicit expressions for the distribution functions, and the difficulty of numerical computations for liquids prevented any theoretical estimation of μ .

Kirkwood, Buff, and Green [1058] derived the following general expression for the coefficient of viscosity based on the statistical mechanical theory of transport processes developed by Kirkwood [48]:

$$\mu = \rho_{\rm m} \frac{kT}{2\zeta} + \frac{\pi \zeta}{15kT} \frac{N^2}{V^2} \int_0^\infty R^3 \frac{d\Phi(R)}{dR} \Psi_2(R) g_0^{(2)}(R) dR$$
(99)

Here $\Phi(R)$ is the intermolecular pair potential, N is the Avogadro number, V is the molar volume, ζ is the Brownian motion friction constant arising from the total force acting on a molecule, ρ_m is the mass density at a point R in a fluid, $g_0^{(2)}(R)$ is the equilibrium radial distribution or pair correlation function, and $\Psi_2(R)$ is obtained from the solution of a differential

equation. Implicit in the determination of these functions is the knowledge of the intermolecular potential. The general statistical-mechanical theory of distribution functions in liquids is given by Kirkwood [1011, 1058] and Kirkwood and Salsburg [1059] and an integral equation is formulated, the solution of which gives the radial distribution function [1060]. Explicit solutions of the integral equation for nonpolar liquids composed of rigid spherical molecules are obtained by Kirkwood and Boggs [1061] and Kirkwood, Maun, and Alder [1062]. In the latter work, the theory of Kirkwood [1058] and the slightly different formulation of Born and Green [1054] are considered, to bring out the relative differences in the two theories. Kirkwood, Lewinson, and Alder [1063] further extended the work of Kirkwood, Maun, and Alder [1062] by considering a more realistic intermolecular force field of the Lennard-Jones type.

Kirkwood, Buff, and Green [1057] computed μ for liquid argon at its normal boiling point on the basis of the above expression, the Lennard-Jones interaction potential, and an approximate radial distribution function obtained from the intensity measurements of x-ray scattering. Their [1057] result involving the friction constant is

$$\mu = \frac{8.53 \times 10^{-15}}{\zeta} + 2.63 \times 10^{6} \zeta \tag{100}$$

Here μ is in poises and they estimated $\zeta = 4.84 \times 10^{-10}\,\mathrm{g\,sec^{-1}}$. The above result clearly shows that the contribution to μ arising from the momentum transport (first term) is of less importance than the contribution of intermolecular forces (second term). This result is valid for liquids and is in sharp contrast to that for gases. Zwanzig et al. [1082] further improved the calculation by employing a more accurate equilibrium-radial distribution function and the friction constant.

Rice and Allnatt [1010, 1012, 1069, 1070] developed a model from dense-fluid kinetic theory in which it is no more necessary to assume, as Kirkwood's theory [48] does, that the momentum transfer during collision between particles is small. They approximated the pair-interaction potential by an impenetrable rigid core and a soft attraction. In such a model liquid, a moving molecule undergoes a collision similar to that between two rigid cores, followed by a Brownian motion under the influence of the soft potential of the neighboring molecules. The singlet and doublet distribution functions are calculated for this model [1069–1071]. The shear

viscosity has a kinetic component given by [1069, 1072]

$$\mu_{k} = \frac{5kT}{8g^{(2)}(\sigma)} \frac{\left[1 + \frac{4}{15}(\pi \rho \sigma^{3})g^{(2)}(\sigma)\right]}{\left[\Omega^{(2,2)} + \left\{5\zeta_{s}/4\rho mg^{(2)}(\sigma)\right\}\right]}$$
(101)

where

$$\Omega^{(2,2)} = (4\pi kT/m)^{1/2}\sigma^2$$

Here σ is the hard-core diameter, ζ_s is the friction constant arising from the autocorrelation of the soft force on a molecule, ρ the number density, and $g^{(2)}$ is the pair correlation function.

The intermolecular-force contribution to viscosity for $R_{12} = \sigma$ (collisional contribution) is given by [1072]

$$\mu_n = \mu_n^{(1)}(\sigma) + \mu_n^{(2)}(\sigma) + \mu_n^{(3)}(\sigma) \tag{102}$$

The expressions for $\mu_v^{(1)}(\sigma)$, $\mu_v^{(2)}(\sigma)$, and $\mu_v^{(3)}(\sigma)$ are complicated and will not be reproduced. For the region $R_{12} > \sigma$, the soft-potential contribution to viscosity is [1072]

$$\mu_{\nu} = \frac{\pi \zeta_{s} \rho^{2}}{15kT} \int_{\sigma}^{\infty} R_{12}^{3} \frac{d\Phi}{dR_{12}} g_{0}^{(2)}(R_{12}) \Psi_{2}(R_{12}) dR_{12}$$
(103)

Here $\Psi_2(R_{12})$ is the coefficient of Legendre polynomials of order two arising from the shear components of the rate of strain.

Wei and Davis [1073] extended the theory of Rice and Allnatt to mixtures. They [1073] derived the singlet distribution functions and obtained the kinetic contribution to shear viscosity. In a subsequent paper these authors [1074] report the doublet distribution functions and a complete expression for the shear viscosity involving kinetic, collisional, and soft-potential contributions. A comparison of their results [1074] with the corresponding formulation of Rice and Allnatt [1069, 1070] is also given. For further details, the original papers must be consulted.

Longuet-Higgins and Valleau [294] and Davis, Rice, and Sengers [1077] have worked out the theory of shear viscosity for a square-well potential. This theory is further discussed by Davis and Luks [1078], who also present numerical results for liquid argon. The theoretical expression is [1078]

$$\mu = \frac{5}{16\sigma_1^2} \left(\frac{mkT}{\pi} \right)^{1/2} \left\{ \frac{\left[1 + \frac{2}{3}b\rho(\mathbf{g}(\sigma_1) + R^3\mathbf{g}(\sigma_2)\Psi) \right]}{\mathbf{g}(\sigma_1) + R^2\mathbf{g}(\sigma_2)[E + \frac{1}{6}(\epsilon/kT)^2]} + \frac{48}{25\pi} (b\rho)^2 (\mathbf{g}(\sigma_1) + R^4\mathbf{g}(\sigma_2)E) \right\}$$
(104)

Here

$$\Psi = 1 - e^{\epsilon/kT} + \frac{\epsilon}{2kT} \left[1 + \frac{4}{\pi} e^{\epsilon/kT} \int_{\sqrt{\epsilon/kT}}^{\infty} e^{-x^2} x^2 dx \right]$$

$$E = e^{\epsilon/kT} - \frac{\epsilon}{2kT} - 2 \int_{0}^{\infty} x^2 (x^2 + \epsilon/kT)^{1/2} e^{-x^2} dx$$

$$b = (2/3)\pi\sigma_1^3, \qquad R = \sigma_2/\sigma_1$$

where σ_1 , σ_2 , and ϵ are the potential parameters of the square-well intermolecular potential and $g(\sigma_1)$ and $g(\sigma_2)$ are the equilibrium radial distribution functions. These authors suggest that one determine the repulsive and attractive radii and the depth of the attractive square-well potential from the gaseous virial coefficient data. Furthermore, $g(\sigma_1)$ and $g(\sigma_2)$ were determined from the experimental thermal conductivity and equation of state data by fitting against the theoretical expressions. The agreement between the computed and experimental values for liquid argon was found to be satisfactory [1078]. However, these authors [1078] also outline an entirely theoretical procedure for computing the pair correlation functions. The numerical results for viscosity are given for argon, krypton, and xenon [1078, 1079] and the authors claim that a "square-well" fluid is an adequate first approximation to a real fluid [1084].

G. Correlation Function Theories

In this section, a brief reference is made to the use of the time-dependent correlation functions as a tool to determine viscosity. Kadanoff and Martin [1080] have given a good account of the state of the art and have pointed out the complications associated with such an approach. Their paper [1080] must be referred to for details and for references to some of the other work in this area. Fc ster, Martin, and Yep [1081] have described a moment method to calculate shear viscosity from the long-range (small wavevector k) and long-time (small angular frequency ω) part of the correlation function. In particular, their starting relation is

$$\mu = \lim_{\omega \to 0} \left[\lim_{k \to 0} (\omega/k^2) x_t^{11}(k, \omega) \right]$$
 (105)

where x_t^{11} is the double Fourier transform of the transverse current-current correlation function. They have evaluated the various parameters of this relation assuming a Gaussian spectral function, and have computed numerical results for argon which are found to be in reasonable agreement with the experimental data.

H. Theories for Liquids of Complicated Molecular Structures

In the above sections we have dealt with theories which have been developed for normal or simple composed of spherically symmetric monatomic molecules. Even for such simple liquids these theories predict viscosity values correct in most cases only within an order of magnitude. The viscosity of polyatomic, nonspherical, polar, and association liquids is harder to calculate and the task becomes increasingly harder as complicated organic and inorganic liquids, fused salts, glasses, polymers, etc. are considered. However, the practical engineering interest in such liquids is amazing. The present scope of our effort does not permit us to undertake a comprehensive review of the state of the art. Frenkel [1008] has referred to some earlier work in this field and many recent publications [1085-1089] include a good account of the present ability to deal with such nonideal liquids of special shaped molecules. Much remains to be done in both the theoretical and experimental areas.

3. ESTIMATION METHODS

A. Introduction

The inadequate state of the development of the theory of liquids has led to the generation of a number of correlative and predictive procedures for viscosity of liquids and their mixtures. Unfortunately, in almost all cases these are based on rather empirical or semiempirical approaches. We will refer to some of these below rather briefly because the domains of their applicability and the estimate of the extent of their uncertainties are still not known with enough reliance. What is conspicuously lacking is a good correlation of the existing data and its critical evaluation against procedures which at least appear to have been logically developed. Our efforts indeed are directed towards such an ultimate goal, but one must be content here with a brief statement of the procedures and a limited statement concerning their appropriateness to reproduce the available data. The data, in many cases, are taken at face value and are not representative of the entire stock of available information. For convenience in presentation, we have artificially divided the various procedures into three categories. This may be regarded as appropriate because of the provisional and to some extent incomplete nature of this section.

B. Procedures Based on the Principle of the Corresponding States

The principle of the corresponding states has been applied to liquids in the same way as to gases [28], the basic assumption being that the intermolecular potential between two molecules is a universal function of the reduced intermolecular separation. This assumption is a good approximation for spherically symmetric monatomic nonpolar molecules. For complicated molecules the principle becomes increasingly crude and many modified versions have very often been used with varying degrees of success. In general more parameters are introduced in the corresponding state correlations on somewhat empirical grounds in the hope that this modification in some way compensates for the lack of fulfillment of the above stated assumption. We may quote the work of Helfand and Rice [1090] and Rogers and Brickwedde [1091], who have discussed the classical and quantum versions of the principle of corresponding states in relation to the viscosity. Very briefly, the classical viscosity is

$$\mu = \mu(T, \rho, \epsilon, \sigma, k) \tag{106}$$

Here T is the temperature, ρ the density, ϵ the potential-well depth, σ the collision parameter, and k the Boltzmann constant. The reduced viscosity, $\mu^* = \mu \sigma^2 / \sqrt{m\epsilon}$, is a different universal function of reduced temperature, T^* , and reduced density, ρ^* , so that

$$\mu^* = \mu^*(T^*, \rho^*) \tag{107}$$

In quantum fluids we have

$$\mu = \mu(T, \rho, \epsilon, \sigma, k, h) \tag{108}$$

where h is Planck's constant. In reduced dimensionless form equation (104) becomes

$$\mu^* = \mu^*(T^*, \rho^*, \Lambda^*) \tag{109}$$

here Λ^* is a sort of reduced de Broglie wavelength associated with the molecule of a certain kinetic energy. In the limit of $\Lambda^* \to 0$ the quantum-mechanical equations reduce to the corresponding classical equations.

Rogers and Brickwedde [1091] have investigated the saturated-liquid viscosity of 3 He, 4 He, H₂, D₂, T₂, Ne, N₂, and Ar on the basis of the above equations. They [1091] correlate the properties of the heteronuclear isotopic molecules with the effective value of Λ^* obtained for the homonuclear molecules by the

following relation:

$$\Lambda_{\text{eff}}^* = \Lambda^* \left[1 + \frac{1}{6} \frac{(m_1 - m_2)^2}{m_1 m_2} \right]$$
 (110)

where m_1 and m_2 are the atomic masses of the two atoms of the heteronuclear molecule.

Boon and Thomaes [1092] and Boon, Legros, and Thomaes [1093] examined the validity of the principle of corresponding states in conjunction with the data on viscosity of many such simple liquids as Ar, Kr, Xe, O₂, N₂, CO, CH₄, and CD₄. Along the liquid-vapor equilibrium curve μ^* is a unique function of T^* . They found that plots of $\ln \mu^*$ against $1/T^*$ are approximately linear, although the data do not lie on one line for all liquids. Ar, Kr, and Xe data lie on one curve and the data points for N₂ and CO fall very close on the same reduced curve. Surprisingly, the oxygen viscosity data lie on a different curve, as do the data for CH₄ and CD₄. These authors [1094-1095] have also extended the principle to mixtures of two liquids and examined it against their own data. The logarithm of the relative kinematic viscosity, $v_R = (v/v_0)$, was plotted against 1/T for each binary mixture. Here, $v = \mu/\rho$ and the reference value vo was taken as that of argon at 88.98 K. The systems examined were Ar-Kr, Ar-CH₄, Kr-CH₄, Ar-O2, and CH4-CD4. The principle of corresponding states for binary mixtures of more complicated molecules, such as the normal alkane series, is discussed by Holleman and Hijmans [1097], though they do not consider the particular case of viscosity.

C. Semitheoretical or Empirical Procedures for Pure Liquids

Gambill [1098, 1099] in two review articles has referred to a large body of effort which has gone into the development of a number of correlating expressions to predict liquid viscosities and their variations with temperature and pressure. We recommend that readers consult his articles and the sixty-nine references quoted in them [1098, 1099]. Thodos and co-workers [759, 760, 762-764] in a series of articles have exmined the viscosity data of a number of substances in the gaseous and liquid states and have presented smooth plots of excess or residual viscosity, $\mu - \mu^*$, as a function of reduced density, ρ/ρ_c . μ^* is the viscosity of the fluid at one atmosphere pressure at the temperature of interest, and ρ_c is the value of ρ at the critical temperature, the critical density. Jossi, Stiel, and Thodos [771], from dimensional-analysis arguments, showed that $(\mu - \mu^*)\zeta$ is a function of ρ/ρ_c , where $\zeta=T_c^{1/6}/M^{1/2}P_c^{2/3}$ for nonpolar and polar liquids [771, 772]. Lennart and Thodos [1100] also related $(\mu-\mu^*)\zeta$ to $(\partial P_R/\partial T_R)_{\rho_R}$ for simple fluids, argon, krypton, and xenon. Here $P_R=P/P_c$, $T_R=T/T_c$, and $\rho_R=\rho/\rho_c$. Dolan et al. [1101] and Lee and Ellington [[1102] have also employed the principle of a unique plot between $\mu-\mu^*$ and density to correlate their own and other available data on n-butane and n-decane.

Swift et al. [992], while correlating their data on methane, ethane, propane, and n-butane suggested plotting

$$\frac{\mu}{\sqrt{M}} \frac{P_{c(x)}}{P_c} \frac{\rho_c}{\rho} P_R \text{ versus } T_R$$

Here $P_{c(x)}$ is the critical pressure, P_c , of the reference substance x. This was intended to be an improvement on an earlier practice where plots of

$$\frac{\mu}{\sqrt{M}} \frac{P_{c(x)}}{P_c} P_R \text{ versus } T_R$$

were employed to synthesize data. These authors [992] also confirm the relation

$$\mu_{\rm c} = K \left(\frac{\rho_{\rm c}^{2/3}}{M^{1/6}} \right) T_{\rm c}^{1/2} \tag{111}$$

where K is a constant independent of the fluid which Swift et al. [992] found to be equal to 0.00569. ρ_c is in g/cc, T_c is in degrees Kelvin, and μ_c is in centipoises. Swift et al. [992] chose ethane as the reference substance x, and their correlation predicts saturated liquid viscosities for normal paraffins from methane to n-octane within $\pm 5\%$ over the reduced temperature range from 0.65 to 0.95.

Othmer and Conwell [1103] suggested a linear correlation for viscosity of liquids as a function of temperature. They found that a log-log plot of viscosity against the vapor pressure of a reference material at the same temperature is linear. They [1103] have presented a semitheoretical analysis justifying such a correlation. Choosing the reference material as water, they have analyzed the data for eleven representative liquids. The plot using the vapor pressure of water at the same reduced temperature (T/T_c) instead of T is suggested by them as still more promising. Othmer and Silvis [1104] extended the approach to solutions of solids in liquids or of mixtures of liquids, and examined the case of caustic soda solutions in which the plots of the log of the mixture viscosity against the viscosity of water at the same temperature were found to be linear for different concentrations of the solutions.

(122)

Thomas [1105] found that the viscosity of a large number of liquids to be adequately correlated by

$$\mu = (0.1167 \,\rho^{0.5})10^a \tag{112}$$

where

$$\alpha = B(1 - T_R)/T_R$$

Here μ is in centipoises, ρ in g/cc, $T_R = T/T_c$, and B is a constant which depends upon the structure of the liquid and is tabulated by Thomas [1105]. This is based on an average correlation of the data, though in many cases the error can be almost an order of magnitude. The range of applicability of this equation is limited to $T_R \leq 0.7$.

Gambill [1098] suggested

$$\mu = \frac{17.05 \,\rho^{1.333} T_b}{\mu_{\text{max}}^{1.333} \Delta H_{\text{ph}}} 10^{\alpha} \tag{113}$$

where

$$\alpha = (M \Delta H_{\rm ph}/17.85T) - 1.80$$

Here μ is in centipoises, ρ is in g/cc, T_b is the normal boiling point in degrees Kelvin, M is the molecular weight, and ΔH_{vb} is the latent heat of vaporization at T_b in Btu/lb. For 12 different organic liquids in the temperature range 0-40 C, he found the average and maximum deviations between experimental and calculated viscosity values as 33% and 94%, respectively.

Gambill [1098, 1099] has given some other forms and generalized charts which have proven useful in representing the viscosity of liquids as a function of temperature and pressure. He particularly recommends the expressions of Andrade [1019] which are given earlier. Dunstan and Thole [831] also list many forms connecting the viscosity at a temperature, t, to that at a lower temperature, t_0 and the empirical constants:

$$\mu_t = \mu_{to}/(1 + \beta t)^n \tag{114}$$

or in a simplified form

$$\mu_t = \frac{A}{1 + \alpha t + \beta t^2} \tag{115}$$

or

$$\mu_{t} = \frac{A(T_{c} - t)}{t - t}.$$
(116)

where t_1 is a temperature below the melting point. A more complicated version is

$$\mu = A\sqrt{T} \frac{(t - t_1)^2 + C}{(t - t_0)^2 + C^1}$$
 (117)

Here α , β , A, C, and C^1 are constants.

Recently Das, Ibrahim, and Kuloor [1107] have suggested that the kinematic viscosity at 20 C and the atmospheric pressure of organic liquids is correlated well by molecular weight and the two empirical constants A and B by the following form:

$$(\mu_{20}/\rho) = AM^B \tag{118}$$

D. Semitheoretical or Empirical Procedures for Mixtures of Liquids

Gambill [1108] and Dunstan and Thole [831] have listed many forms which have been used to compute viscosities of miscible liquids at a fixed temperature and pressure. Some of these for binary mixtures are:

$$\mu_{\text{mix}}^{-1} = \mu_1^{-1} x_1 + \mu_2^{-1} x_2$$

$$\mu_{\text{mix}} = \mu_1 x_1 + \mu_2 x_2$$

$$\mu_{\text{mix}} = \mu_1 x_1 - \mu_2 x_2$$
(119)

and

$$\log \mu_{\text{mix}} = x_1 \log \mu_1 + x_2 \log \mu_2 \tag{120}$$

Here μ_{mix} is computed from the knowledge of pure components viscosities and composition only. If one value of μ_{mix} is known, relations with one adjustable parameter have been tried such as:

$$\log \mu_{\text{mix}} = x_1 \log \mu_1 + x_2 \log \mu_2 + x_1 x_2 d$$

$$\log \mu_{\text{mix}} = x_1^2 \log(\mu_1 \mu_2 / \mu_{12}^2) + 2x_1 \ln(\mu_{12} / \mu_2) + \ln \mu_2$$
(121)

Katti and Chaudhri [1109] suggest that

$$\log \mu_{\text{mix}} V_{\text{mix}} = x_1 \log \mu_1 V_1 + x_2 \log \mu_2 V_2 + x_1 x_2 (W \mu / RT)$$
 (123)

Here V is the molar volume and $W\mu$ is referred to as the interaction energy for the activation of flow; it is suggested that it be determined from the known value of μ_{mix} for an equimolar mixture at one temperature. These authors have confirmed the validity of such a procedure for a number of systems [1110–1112].

Heric [1113] suggested the following generalization for the kinematic viscosity, ν , of an *n*-component system:

$$\log v_{\text{mix}} = \sum_{i=1}^{n} x_{i} \log v_{i} + \sum_{i=1}^{n} x_{i} \log M_{i}$$

$$- \log \sum_{i=1}^{n} x_{i} M_{i} + \delta_{i...n}$$
(124)

where

$$\delta_{i...n} = \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} x_i x_j \alpha_{ij}$$

Here α_{ij} is an interaction parameter, with $\alpha_{ij} = \alpha_{ji}$ and $\alpha_{ii} = \alpha_{jj} = 0$. $\delta_{i...n}$ is a deviation function, representing departure from a noninteracting system. For a binary system

$$\delta_{12} = x_1 x_2 \alpha_{12} = x_1 x_2 (W \mu / RT) \tag{125}$$

For a multicomponent system, assuming binary interactions only, Heric [1113] suggested an improved relation,

$$\delta_{i...n} = \sum_{\substack{i=1\\i < j}}^{n} x_i x_j [\alpha_{ij} + \alpha_{ij}^1 (x_i - x_j)]$$
 (126)

as an example.

$$\delta_{12} = x_1 x_2 [\alpha_{12} + \alpha'_{12} + \alpha'_{12} (x_1 - x_2)] \quad (127)$$

 α_{12} and α'_{12} are to be determined from the experimental data as explained by Heric [1113]. Heric further suggested that inclusion of a term representing ternary interactions will be essential so that

$$\delta_{123} = \sum_{\substack{i=1\\i < j}}^{3} x_i x_j [\alpha_{ij} + \alpha'_{ij} (x_i - x_j)] + x_1 x_2 x_3 \beta$$
(128)

where β may be regarded as concentration independent or its variation may be accounted by the form

$$\beta = \beta_{123} + \beta'_{123}(x_1 - x_2) \tag{129}$$

Numerical calculations could not suggest which procedure is better, because composition-dependent β improved the reproduction only within the limits of uncertainty of the data.

Kalidas and Laddha [1114] simplified the following relation for the kinematic viscosity of a ternary mixture:

$$\log v = x_1^3 \log v_1 + 3x_1^2 x_2 \log v_{12} + 3x_1 x_2^2 \log v_{21}$$

$$+ x_2^3 \log v_2 - \log \left(x_1 + x_2 \frac{M_2}{M_1} \right)$$

$$+ 3x_1^2 x_2 \log \left(\frac{2 + M_2/M_1}{3} \right)$$

$$+ 3x_1 x_2^2 \log \left(\frac{1 + 2M_2/M_1}{3} \right) + x_2^3 \log \left(\frac{M_2}{M_1} \right)$$
(130)

By considering a simplified model for ternary molecular interactions these authors [1114] derived from the above equation, due to McAllister [1216], an

explicit expression with seven unknown constants for the kinematic viscosity of a three-component mixture. Six of these constants were obtained by analyzing the experimental data for the three binary systems possible with a three-component system. The seventh unknown parameter was adjusted while fitting the experimental data on a ternary system to the theoretical expression. Their [1114] experimental data on acetone-methanol-ethylene glycol mixtures at 30 C were found to be adequately correlated by their proposed theoretical expression.

Huang, Swift, and Kurata [1115] correlated their data on binary systems at higher pressures by plotting residual viscosity $\mu_{\text{mix}} - \mu_{\text{mix}}^{\circ}$ versus molar density. μ_{mix}° , the viscosity of the mixture at the atmospheric pressure, was obtained from the relation

$$\mu_{\text{mix}}^{\circ} = (x_1 \sqrt{M_1} \mu_1^{\circ} + x_2 \sqrt{M_2} \mu_2^{\circ}) / (x_1 \sqrt{M_1} + x_2 \sqrt{M_2})$$

$$+ x_2 \sqrt{M_2})$$
(131)

Saxena [1217] suggested an expression of the Sutherland-Wassiljewa form to correlate the data on viscosity of multicomponent mixtures, in analogy to the parallel work on gaseous mixtures. He found that the data on binary systems is very well represented by the following relation:

$$\mu_{\text{mix}} = \frac{\mu_1}{1 + \Psi_{12}(x_2/x_1)} + \frac{\mu_2}{1 + \Psi_{21}(x_1/x_2)}$$
(132)

where

$$\frac{\Psi_{12}}{\Psi_{21}} = \frac{M_2}{M_1} \cdot \frac{\mu_1}{\mu_2}$$

4. EXPERIMENTAL METHODS

A. Introduction

The viscosity of liquids is simpler to measure than that of gases primarily because of the convenience of handling; furthermore, fairly accurate values are determined with relative ease as liquids are much more viscous than gases. The technological interest in lubrication has encouraged detailed study of the subject as early as almost a century ago [1116]. Historically, more detailed attention is given to the determination of viscosity of liquids than to that of gases as is evident from the review accounts given in the monographs of Dunstan and Thole [831], Hatschek [832], Barr [833], and others. In addition to the development of different absolute methods already mentioned in connection with gases, many relative methods have been developed as quick and

fairly accurate alternatives in compliance with the practical demands. Partington [1016] has given a detailed reference to the various efforts made until almost twenty years back; in our brief review here we will mention some of the more recent work on the viscosity determination of Newtonian fluids. The survey here is unfortunately incomplete and constitutes what may be called a stray sampling of recent efforts in the literature. As the basic principles of the methods are already given while dealing with gases, a straightforward approach is followed below.

B. The Capillary-Flow Viscometers

A large variety of viscometers (or more appropriately viscosimeters) are developed on the general principle of liquid flow through a capillary. The designs of a large number of such viscometers in historical sequence are given by Hatschek [832] and Partington [1016]. We have referred to some work in connection with gases, and we will not repeat any reference to these efforts here. Many capillary viscometers have been developed to obtain data on liquid hydrocarbons. Lipkin, Davison, and Kurtz [1117] have described two such viscometers for work at low and high temperatures and pressures. They [1117] reported data on propane, butane, and isobutane with an accuracy of $\pm 2\%$. Lee and co-workers, whose work has been described earlier [453, 908-916], have measured the viscosity of liquid n-butane [1101] and n-decane [1102]. A number of workers have used an Ostwald-type capillary viscometer. Boon and Thomaes [1092-1096, 1118, 1119] have measured the kinematic viscosity of a number of liquids and their mixtures at saturation vapor pressure over a range of temperatures with a stated precision of 1%. Katti and Chaudhri [1109] measured viscosity of binary mixtures with an Ostwald viscometer having an accuracy of 0.5%. The measurements have been extended to many more binary systems [1110-1112]. Denny and Ferenbaugh [1120] developed a capillary-tube viscometer for superheated liquids and reported results for CCl4. An Ostwald viscometer is used by Mullin and Osman [1121] for viscosity of solutions; they reported results for nickel ammonium sulfate aqueous solutions in the temperature ranges 10-35 C with an estimated precision of $\pm 0.3\%$.

Swindells, Coe, and Godfrey [1122] determined the viscosity of water at 20 C with a high degree of accuracy with a capillary-flow viscometer, to provide a standard value for relative measurements. They found the value to be 0.010019 ± 0.000003 poise, which is appreciably different from the value 0.01005

poise taken so far as standard. Following this work, the National Bureau of Standards in the USA has adopted the absolute viscosity of water at 20 C as 0.01002 poise. Agaev and Yusibova [1157] have reported measurements of the viscosity of heavy water in the pressure range of 1-1200 kg/cm², and temperature range of 4-100 C.

C. The Oscillating-Disk Viscometers

Van Itterbeek, Zink, and Van Paemel [1123] measured the viscosity of liquid oxygen, nitrogen, argon, and hydrogen as a function of temperature using an oscillating-disk absolute viscometer. The viscosity is determined from the record of the logarithmic decrement of the amplitude of the oscillation. The measurements on liquids were further extended to pressures up to 100 atm [1124, 1125] and it was found that the viscosity increases linearly with pressure.

D. The Falling-Body Viscometers

Hubbard and Brown [1126] determined the viscosity of liquid n-pentane with a high pressure rolling-ball viscometer in the temperature range 25-250 C and at pressures up to 1000 psi. The measurements were relative and estimated to have a varying uncertainty of 5-10%. The data above 150 C are less accurate. As already mentioned while discussing measurements on gases, Swift et al. [991, 992] have employed a falling-cylinder viscometer to determine the viscosity of liquid hydrocarbons. Using a falling-ball viscometer Chacon-Tribin, Loftus, and Satterfield [1127] have determined the viscosity of vanadium pentoxide-potassium sulfate eutectic mixture at 461, 505, and 586 C. Riebling [1128] described a variant of this general type of viscometer, which is especially useful at high temperatures up to 1750 C. In this design, the ball does not freely fall, but its motion is controlled by attaching it to an analytical balance, and thus its effective weight and therefore its velocity can be suitably varied. The details of this improved counterbalanced sphere viscometer, along with its related instrumentation and necessary corrections, are described by the author.

E. The Coaxial-Cylinder Viscometers

Moynihan and Cantor [1129] measured the viscosity of molten BeF₂ by the fixed-cup rotating-cylinder method using Brookfield Synchro-Lectric viscometers. The temperature range covered is 573.7-979 C and the uncertainty in the viscosity value at any temperature level is estimated to be less than

 $\pm 3\%$. Cantor, Ward, and Moynihan [1130] determined the viscosity of molten BeF₂-LiF solutions covering the concentration range 36-99 mole% of BeF₂. The overall temperature range was 367-967 C, though for each mixture the temperature range was less extensive. The data at each composition was fitted to the form:

$$\mu = A \exp(E_u/RT) \tag{133}$$

and the constants A and E_{μ} are tabulated. The equation for pure BeF₂is

$$\mu = 7.603 \times 10^{-9} \exp[(52590/RT) + (1.471 \times 10^{6}/T^{2})]$$
(134)

Here μ is in poises and T in degrees Kelvin. It is shown that the viscosity of the mixtures at a fixed temperature, as well as the activation energy, decreases exponentially for this system.

F. Other Types of Viscometers

Cottingham [1131] described a viscometer suitable for relative measurements of viscosity of low melting point metals in the temperature range 20-600 C. Measured values for methanol, bismuth, and lead are compared with the existing values in the literature. The viscometer consists of a tank filled with the test liquid. The two flat end faces of the drum are in light contact with the sides of the tank, and only a small clearance separates the bottom of the drum and the tank. A scraper lightly pressed against the top of the drum forms two compartments in the tank and prevents any liquid flow from one compartment into the other as the drum is rotated. However, liquid is dragged through the narrow duct at the bottom and a head of liquid builds up in one compartment, which in turn forces a part of the liquid to flow back. A measure of the viscosity is the equilibrium value of the liquid head at the steady state, i.e., when equal volumes of liquid flow in opposite directions through the duct per unit time. The viscometer is designed to measure viscosities between one and more than a thousand centipoises, and the influence of the various variables on the viscosity measurement is analyzed.

Welber [1132] and Welber and Quimby [1133] have described in detail the principle and operation of a simple viscometer in which the electrical characteristics of a piezoelectric cylinder of quartz oscillating in a torsional mode are measured. The logarithmic decrement Δ of the system is defined as

$$\Delta = W^d/2W^v \tag{135}$$

Here W^d is the energy dissipated per cycle and W^v is the vibrational energy of the system. The resistance R in the neighborhood of the resonant frequency f_0 is given in terms of Δ by

$$R = KMf_0 \Delta \tag{136}$$

where M is the mass of the crystal and the constant K, dependent on the electrode geometry, is obtained experimentally. The product $\mu\rho$ is related to $(\Delta - \Delta_0)^2$ as in the oscillating-disk viscometers. Δ_0 is the value of Δ in vacuum and is referred to as nuisance decrement. Webeler and Hammer [1134–1136] have used this technique to measure viscosity of liquid helium at low temperatures. DeBock et al. [1137, 1138] have reported data on liquid argon as a function of pressure $(0-200 \text{ kg/cm}^2)$ and temperature (between the boiling and critical points) with an estimated accuracy of better than 3%.

Solov'ev and Kaplun [1139] describe a vibration viscometer for the measurement of viscosity of liquids within fractions of a percent and of a moving liquid within 1.5%. The design is appropriate for high temperatures and pressures and requires only a small quantity of the test fluid. A thin plate attached to a rod and suspended through an elastic element executes plane oscillations under the influence of a harmonic force. The equation of motion is analyzed for the frequency-phase and frequency-amplitude modes of operation, and it has been pointed out that the selection of the mode is dependent on the viscosity of the test liquid.

Krutin and Smirnitskii [1140] describe the theory of what they refer to as a vibrating-rod or probe viscometer. The forced longitudinal and torsional vibration characteristics of a slender rod (or probe) in a liquid are shown to depend upon the viscosity and density of the liquid, the density of the probe, the modulus of elasticity and interned loss coefficient in the probe material, the configuration of the probe cross section, and the driving frequency. By introducing the damping coefficient, a measure of the influence of damping of the fluid on the vibrational characteristics of the probe, appropriate analytical treatment is developed to guide proper selection of the various quantities for accurate viscosity measurement.

Andrade and Dodd [1141, 1142] used a rectangular channel formed between two plane steel surfaces as a viscometer for detecting small relative changes in viscosity (a few parts in a million) while investigating the influence of an electric field on viscosity.

Table 1. composition and temperature dependence of Ψ_{ij} on different schemes of computation

Gas Pair	Temp.	Mole Fraction of Heavier	First I		Second		Viscosity
Reference]	(K)	or neavier Component	₹ ₁₂	W ₂₁	412	¥21	(N s m ⁻² x 10 ⁻
Ar-He	72.0	0.0000			-		7.94
[165]		0.1590	0.2086	2.603	0.2496	2.206	
		0.2580	0.1905	2.377	0.2316	2.047	
		0.3570	0.1948	2.431	0.2400	2.121	
		0.3910	0.1924	2.401	0.2381	2.104	
		0.4585	0.1933	2.412	0.2406	2.126	
		0.5380	0.1900	2.371	0.2384	2.107	
		0.5570	0.1892	2.361	0.2378	2.102	
			0.1900	2.371	0.2402	2.122	
		0.6570	0.1807	2.255		2.122	
		0.8280 1.0000	0.1001	2.233	0.2316	2.041	6.35
4 11-							
Ar-He [165]	81.1	0.0000		0.004		0.000	⊴. 59
[165]		0.1590	0.2166	2.634	0.2588	2.228	
		0,2580	0.1968	2.394	0.2387	2.055	
		0.3570	0.2005	2.438	0.2462	2.120	
		0.3910	0.2005	2.439	0.2472	2.129	
		0.4585	0.1974	2.400	0.2451	2.110	
		0.5380	0.1983	2.411	0.2476	2.132	
		0.5570	0.1935	2. 353	0.2424	2.088	
		0.6570	0.1928	2.344	0.2432	2.094	
		0.8280	0.2177	2.647	0.2727	2.349	
		1.0000					7.05
Ar-He	90.2	0.0000					9.08
[165]		0.1590	0.2129	2.539	0.2536	2.141	
		0.2580	0.2050	2.444	0.2480	2.094	
		0.3570	0.2008	2.394	0.2462	2.079	
		0.3910	0.2018	2,407	0.2484	2.097	
		0.5380	0.1956	2.333	0.2444	2.064	
		0.5570	0.1953	2.329	0.2443	2.063	
		0.6570	0.1904	2,271	0.2404	2.030	
		0.8280	0.1551	1.849	0.2020	1.705	
		1.0000					7.60
Ar-He	192.5	0.0000					14.60
[165]		0.1055	0.2619	2.481	0.3039	2.039	21100
,		0.2000	0.2577	2.441	0.3027	2.031	
		0.3030	0.2527	2.394	0.3003	2.015	
		0.4110	0.2507	2.375	0.3008	2.018	
		0.4650	0.2559	2.425	0.3079	2.066	
		0.4940	0.2515	2.382	0.3034	2.036	
		0.6220	0.2551	2.416	0.3095	2.077	
		0.7110	0.2476	2.346	0.3027	2.031	
		0.8010	0.2414	2.287	0.2972	1.994	
		0.8055	0.2376	2.251	0.2931	1.967	
		0.8870	0.2317	2.195	0.2877	1.930	
		1.0000	0.251	2.100	0.2077	1.550	15. 38
Ar-He	229.5	0.0000					10.05
Ar-ne [165]	227.3	0.1050	0.2707	2.498	0.3138	2.051	16.35
(100)		0.1990	0.2645	2.441	0.3138	2.031	
		0.3010	0.2545	2.369	0.3042		
		0.4090		2.309	0.3042	1.988	
		0.5640	0.2578	2.319		2.015	
		0.5640 0.6210	0.2581	2.382	0.3098	2.025	
		0.8210	0.2532	2.337	0.3072	2.008 1.975	
			0.2473	2.282	0.3021		
		0.8000	0.2358	2.177	0.2910	1.902	
		0.8050	0.2390		0.2945	1.925	
		0.8865	0.2341	2.161	0.2903	1.897	

TABLE 1. COMPOSITION AND TEMPERATURE DEPENDENCE OF $\tilde{\Psi}_{ij}$ ON DIFFERENT SCHEMES OF COMPUTATION (continued)

Gas Pair	Temp.	Mole Fraction	First 1	Method	Second	Method	Viscosity
Reference]	(K)	of Heavier Component	4,2	¥21	4,2	¥21	(N s m-1 x 10-
Ar-He	288.2	0.0000					19.66
[211]		0.1922	0.2888	2,552	0.3376	2.113	20.00
		0.2915	0.2842	2.512	0.3347	2.095	
		0.5337	0.2791	2.467	0.3336	2.088	
		0.6119	0,2723	2.407	0.3274	2.049	
		0.6846	0.2852	2. 521	0.3420	2.141	
		0.7705	0.2770	2.448	0.3343	2.092	
		0.8074	0.2684	2,373	0,3256	2.038	
		0.8572	0.2697	2.384	0.3274	2.049	
		0.9093	0.2653	2.345	0.3233	2.024	
		0.9507	0.2706	2.391	0.3292	2.060	
		1.0000			*****		22. 20
Ar-He	291.1	0.0000					19.35
[165]		0.1590	0.2854	2.532	0.3326	2.090	
		0.2580	0,2795	2.479	0.3285	2.064	
		0.3570	0.2758	2.447	0.3267	2.052	
		0.3910	0,2697	2.393	0.3205	2.014	
		0.4585	0,2689	2,386	0.3211	2.017	
		0.5380	0.2610	2.315	0.3138	1.971	
		0.5570	0.2578	2.287	0.3106	1.951	
		0.6570	0.2620	2.324	0.3169	1.991	
		0.8280	0.2673	2.282	0.3141	1.973	
		1.0000	V12015	2.202	0.0111	1.010	21.77
Ar-He	291.1	0.0000					19.13
(165)	20212	0.1050	0,2891	2.540	0.3349	2.084	18.13
1200)		0.1990	0.2744	2.411	0.3202	1.992	
		0.3010	0.2678	2.353	0.3158	1.965	
		0.4090	0.2650	2.328	0.3154	1.962	
		0.4640	0.2608	2.292	0.3120	1.941	
		0.6210	0.2532	2.225	0.3067	1.908	
		0.7100	0.2447	2.150	0.2989	1.860	
		0.8000	0.2506	2.014	0.3066	1.907	
		0.8050	0.2465	2.166	0.3023	1.881	
		0.8865	0.2325	2.043	0.2884	1.795	
		1.0000	0. 2020	2.013	V. 2004	1.100	21.73
Ar-He	291.2	0.0000					19.40
[213]	24-12	0.0610	0.2987	2.629	0.3456	2.154	19.40
(=40)		0.2080	0.2863	2. 520	0.3349	2.134	
		0.2990	0.2811	2.474	0.3312	2.064	
		0.4380	0.2809	2.472	0.3339	2.081	
		0.5200	0,2751	2.421	0.3289	2.050	
		0.5740	0.2760	2.429	0.3307	2.061	
		0.6460	0.2751	2.421	0.3308	2.061	
		0.7200	0.2661	2.342	0.3221	2.007	
	•	0.7820	0.2698	2.374	0.3267	2.036	
		0.8440	0.2647	2.330	0.3220	2.007	
		0.9140	0.2687	2.365	0.3269	2.037	
•		1.0000	V. 2001	4.000	V. 320#	2.001	22.00
Ar-He	293.0	0.0000					19.73
[223]	200.0	0.5094	0.2782	2.478	0.3324	2.096	19.13
. 220)		0.5094	0.2782	2.478	0.3324 0.3286	2.096	
		1.0000	V. 2133	e. 101	U. 3460	2.012	22.11
Ar-He	373.0	0.000					
(223)	313.0	0.0000	0.0070	0.400	0.0405	0.001	23. 20
1260]		0.5094 0.6180	0.2878 0.2862	2.483 2.469	0, 3423 0, 3421	2.091 2.090	

COMPOSITION AND TEMPERATURE DEPENDENCE OF $\hat{\Psi}_{ij}$ ON DIFFERENT SCHEMES OF COMPUTATION (continued)

Gas Pair	Temp.	Mole Fraction	First l	Method	Second	Method	Viscosity
Reference)	(K)	of Heavier Component	¥12	W ₂₁	4,	W ₂₁	(N s m-1x10-
Ar-He	373.2	0.0000					23, 55
[211]		0.1922	0.3046	2.598	0.3554	2.146	
		0.2015	0.2852	2.432	0.3323	2.007	
		0.5337	0.2984	2.545	0.3541	2.138	
		0.6119	0.2910	2.482	0.3470	2.096	
		0.6846	0.2954	2.519	0.3525	2.129	
		0.7706	0.2941	2.508	0.3519	2.125	
		0.8074	0.2850	2.431	0.3428	2.070	
		0.8572	0.2841	2.423	0.3423	2.067	
		0.9093	0.2897	2.470	0.3485	2.104	
		0.9507	0.3161	2.696	0.3755	2.268	
		1.0000					27, 56
Ar-He	456.2	0.0000					26.91
[211]		0.1922	0.3158	2.629	0.3680	2.169	
		0.6119	0.3043	2.532	0.3609	2.127	
		0.6846	0.3019	2.512	0.3591	2.116	
		0.8074	0.2958	2.462	0.3539	2.086	
		0.8572	0.2939	2.446	0.3523	2.076	
		0.9093	0.3074	2.558	0.3665	2.160	
		0.9507	0.3485	2.900	0.4079	2.404	
		1.0000					32.27
Ar-He	473.0	0.0000					27.15
[223]		0.6180	0.2960	2.500	0.3523	2,108	
		1.0000					32.08
Ar-He	523.0	0.0000					29.03
(223)		0.6180	0.2975	2.500	0.3539	2.106	
		1.0000					34.48
Ar-Kr	291.2	0.0000					22.10
[278]		0.1090	0.7172	1.341	0.7551	1.263	
		0.2280	0.7221	1.350	0.7606	1,272	
		0.3300	0.7241	1.354	0.7629	1,276	
		0.4430	0.7256	1.356	0.7646	1,279	
		0.5460	0.7234	1.352	0.7624	1,275	
		0.6730	0.7228	1.351	0.7619	1.274	
		0.7770	0.7133	1.333	0.7524	1.258	
		0.8650	0.7954	1.375	0.7748	1,296	
		1.0000					24.80
Ar-Ne	72.3	0.0000					11.72
[180]		0.1613	0.4854	1.765	0.5179	1.700	
		0.3231	0.4858	1.767	0.5190	1.704	
		0.5011	0.4863	1.769	0.5202	1.707	
		0.6707	0.4858	1.767	0.5201	1.707	
		0.8300	0.4919	1.789	0.5267	1.729	
		1.0000					6.38
Ar-Ne {180}	90.3	0.0000	0.4000	1 600	0 5010	1 600	13. 52
(100)		0,1634 0,3265	0,4900 0,5014	1.692 1.732	0.5219 0.5350	1.627	
		0.4828	0.5014	1.732	0.5387	1.668 1.679	
		0.6713	0.4989	1.723	0.5335		
		0.8390	0.4772	1.648	0.5335	1.663 1.594	
		1.0000	0.4712	1.030	A. 2714	1.004	7.75
Ar-Ne	193.4	0.0000					23.52
[180]	100.4	0.1698	0.5408	1.647	0.5747	1.580	43, 32
,,		0, 3292	0.5414	1.649	0.5760	1.583	
		0.5024	0,5432	1.654	0.5783	1.500	
		0.6690	0.5552	1.691	0.5911	1.625	
		0.8298	0.5391	1.642	0.5748	1.580	
		1.0000	A. ACA, T		V. U. 10	4.000	

TABLE 1. COMPOSITION AND TEMPERATURE DEPENDENCE OF Ψ_{ij} ON DIFFERENT SCHEMES OF COMPUTATION (continued)

Gas Pair [Reference]	Temp. (K)	Mole Fraction of Heavier	First M	ethod V ₂₁	Second M	lethod V _{ži}	Viscosity (N s m ⁻² x 10~
		Component	 _				26, 70
Ar-Ne	229.0	0.0000	0.5496	1.614	0.5835	1.547	201.10
[180]		0.1654	0.5470	1.606	0.5813	1.541	
		0.3348		1.594	0.5774	1.531	
		0.4308	0.5430		0.5844	1.549	
		0.5017	0.5494	1.613		1.539	
		0.6507	0.5451	1.601	0.5804		
		0.8320 1.0000	0.5408	1.588	0.5764	1.528	18.00
							31.29
Ar-Ne	291.1	0.0000		4 500	0.5949	1.502	02.20
[180]		0.1693	0.5611	1.569	0.6022	1.520	
		0.3227	0.5673	1.587		1.509	
		0.4970	0.5627	1.574	0.5979		
		0.6757	0.5665	1.584	0.6023	1.520	
		0.8323 1.0000	0.5688	1.591	0.6050	1.527	22.15
		1.0000					30.70
Ar-Ne	291.2	0.0000	0.5795	1.601	0.6146	1.532	30.70
[213]		0.1570	0.5716	1.579	0.6062	1.512	
		0.2210			0.5913	1.475	
		0.3280	0.5573	1.540	0.5964	1.487	
		0.4360	0.5616	1.552	0.6095	1.520	
		0.5410	0.5738	1.585			
		0,6380	0.5732	1.583	0.6090	1.519	
		0.7260	0.5801	1.603	0.6164	1,537	
		0.8030	0.5548	1.533	0.5906	1.473	
		0.9000	0.5544	1.532	0.5904	1.472	
		1.0000					22.00
Ar-Ne	293.0	0.0000					30.92
[221]	20010	0,2680	0.5782	1.600	0.6136	1.532	
(241)		0.6091	0.5758	1.593	0.6117	1.527	
		0.7420	0.5735	1.586	0.6096	1.522	
		1.0000					22.13
Ar-Ne	373.0	0.0000					36.23
	310.0	0.2680	0.5973	1.591	0.6332	1.522	
[221]		0.6091	0.5965	1.589	0.6329	1.521	
			0.5939	1.582	0.6304	1.515	
		0.7420 1.0000	0.0000	1.002	0,000-	_,,,_,	26.93
	450.0	0.0000					42.20
Ar-Ne	473.0	0.2680	0.6068	1.573	0.6429	1.505	
[221]			0.6118	1.586	0.6486	1.518	
		0.6091		1.590	0.6501	1, 521	
		0.7420 1.0000	0.6132	1.000	V. 0001	1,011	32.22
							45.01
Ar-Ne	523.0	0.0000	0.6117	1.575	0.5481	1.507	
(221)		0.2680		1. 570	0.6462	1.502	
		0.6091	0.6096		0.6533	1,519	
		0.7420	0.6164	1.588	0.0000	1.010	34,60
		1.0000					*
Ar-Xe	291.2	0.0000	A 5000	1.736	0.5861	1.583	22.10
[324]		0.1090	0.5377		0.5727	1.547	
		0.2130	0.5252	1.696			
		0.3000	0.5257	1.697	0.5738	1,550	
		0.4050	0.5281	1.705	0.5771	1.559	
		0.4980	0.5227	1.687	0. 5719	1,544	
		0.5980	0.5254	1.696	0.5753	1.554	
		0.7010	0.5195	1.677	0.5696	1.538	
		0.7920	0.5186	1.674	0.5691	1.537	
		0.9050	0.5281	1.705	0.5793	1,564	
		1,0000					22, 50

COMPOSITION AND TEMPERATURE DEPENDENCE OF Ψ_{i} ON DIFFERENT SCHEMES OF COMPUTATION (continued) TABLE 1.

Gas Pair Reference]	Temp.	Mole Fraction	of Heavier First Method		Second	Method	Viscosity
Kelerence]	(K)	Component	¥12	¥21	4,2	W ₂₁	(N s m-2 x 10-
He-Kr	283.2	0.0000					
[325]		0.1021	0.1925	3.223	0,2302	2,442	19.52
		0.2046	0.1866	3, 124	0.2281	2,419	
		0.3086	0.1820	3.047	0.2265	2.403	
		0.4995	0.1790	2.996	0.2280	2,418	
		0.7098	0.1755	2,938	0.2275	2.414	
		0.8100	0.1723	2.884	0.2252	2,389	
		0.8845	0.1683	2.817	0.2217	2.352	
		0.9454	0.1498	2.508	0.2022	2,145	
		1.0000				-1240	24.41
He-Kr	291.2	0.0000					19.40
[278]		0.0690	0.1858	3.043	0.2182	2,264	19.40
		0.1510	0.1826	2.991	0.2197	2,279	
		0.2720	0.1760	2.882	0.2175	2,257	
		0.3530	0.1740	2.849	0.2181	2,263	
		0.4390	0.1739	2.848	0.2205	2,288	
		0.6000	0.1708	2.796	0.2205	2,288	
		0.6980	0.1618	2.650	0.2122	2,202	
		0.7970	0.1698	2.780	0.2223	2,307	
		0.8910	0.1587	2.599	0.2113	2.193	
		1.0000		2.000	V. 2110	4.190	24.80
He-Kr	373.2	0.0000					
[325]		0.1021	0.2072	3.301	0.2473	0.407	23, 35
		0.2046	0.1968	3.135	0.2373	2.497 2.413	
		0.3086	0.1957	3.118	0.2415	2,413	
		0.4995	0.1936	3.085	0.2415		
		0.7098	0.1890	3.012	0.2418	2.459 2.441	
		0.8100	0.1834	2.922	0.2369	2,392	
		0.8845	0.1835	2.924	0. 2379		
		0.9454	0.1962	3, 125	0.2515	2.401 2.539	
		1.0000	******	V- 140	0.2013	2.539	30.68
He-Ne	20.4	0.0000					
[179]		0.2560	0.4051			_	3, 50
•		0.4920	0.3952	2.036	0.4565	1.800	
		0.7200	0.3976	1.986	0.4483	1.768	
	•	1.0000	0.3876	1.999	0.4530	1.786	3, 51
He-Ne	65.8	. 0,0000					3. 31
[179]	30. 0	0.2580					7.45
			0.4686	1.684	0.5165	1.456	
		0.5090	0.4627	1.663	0. 5144	1.450	
		0.7610 1.0000	0.4601	1.653	0.5150	1.452	
He-Ne							10.45
11791	90.2	0.0000					9. 12
12101		0.2510	0.4884	1.663	0.5366	1.434	
		0.4910	0.4841	1.649	0.5358	1.431	
		0.7550 1.0000	0.4802	1.635	0. 5351	1.430	
u. v.	484.5						13, 50
He-Ne (179)	194.0	0.0000					14.93
		0.2440	0.5167	1.648	0.5658	1.416	
		0.4820 0.7590	0.5148	1.642	0.5670	1.419	
		1.0000	0.5121	1.633	0.5670	1.419	
He-Ne	nn4 -	•					23.60
10-Ne (325)	284.2	0.0000					19.29
10201		0.0340	0.6318	1.753	0.5824	1.506	
		0.2801	0.5199	1.714	0.5713	1.477	
		0.4995	0.51 59	1.700	0.5691	1.472	
		0.6804	0.5238	1.727	0.5789	1.497	
		0.7850	0.5228	1.723	0.5785	1.496	
		0.9091	0.5061	1.668	0.5625	1.455	
		0.9461	0.5062	1.669	0.5629	1.456	
		0.9900					25, 50

TABLE 1. COMPOSITION AND TEMPERATURE DEPENDENCE OF Ψ_{ij} ON DIFFERENT SCHEMES OF COMPUTATION (continued)

Gas Pair	Temp.	Mole Fraction of Heavier	First b	lethod	Second 1		Viscosity
Reference]	(K)	Component	<u> </u>	¥ ₂₁	¥12	¥21	(N s m-2 x 10
He-Ne	291.2	0.0000					19.20
[213]		0.1580	0.5234	1.645	0.5714	1.409	
		0.2500	0.5227	1.643	0.5720	1.410	
		0.3930	0. 5305	1.635	0.5715	1.409	
		0.5650	0.5222	1.641	0.5753	1.418	
		0.6550	0.5000	1.571	0. 5532	1.364	
		0.7830	0.5027	1.580	0.5575	1.374	
		0.8940	0.4540	1.427	0.5097	1.257	
		1.0000					30.80
He-Ne	293.0	0.0000					19.41
[221]		0.2379	0.5260	1.664	0.5758	1.430	
,		0.4376	0.5211	1.649	0.5730	1.423	
		0.7341	0.5061	1.602	0.5606	1.392	•
		1.0000					30.92
He-Ne	293.1	0.0000					19.61
1179]	400.1	0.2620	0.5263	1.680	0.5769	1.445	_
[119]		0.4980	0.5204	1.661	0.5731	1.435	
		0.7520	0.5166	1.649	0.5716	1.431	
		1.0000	0.0200				30.97
		0.0000					22.81
He-Ne	373.0	0.2379	0.5271	1.673	0.5773	1.437	-2.02
[221]			0.5271	1.650	0.5716	1.423	
		0.4376 0.7341	0.5076	1.611	0.5622	1.400	
		1.0000	0.5016	1.011	0.0022	1. 100	36.23
							23, 35
He-Ne	373.2	0.0000		1 700	0.5844	1.521	23. 30
[325]		0.0340	0.5331	1.768	0.5844 0.5697	1.482	
		0.2801	0.5183	1.719	0.5701	1.484	
		0.4995	0.5167	1.714	0.5695	1.482	
		0.6804	0.5146	1.707	0.5695	1.489	
		0.7850	0.5165	1.713 1.589	0.5722	1.393	
		0.9091	0.4791		1, 339	3.484	
		0.9461 0.9900	1.299	4.307	1, 339	3.701	35.49

He-Ne	473.0	0.0000	A 5050	1.677	0. 5755	1.441	26.72
[221]		0.2379	0.5253	1.653	0.5699	1.427	
		0.4376	0.5180	1.615	0.5605	1.404	
		0.7341 1.0000	0.5059	1.013	0.3603	1.104	42.20
He-Ne	523.0	0.0000		1 000	0.5737	1.438	28.53
[221]		0.2379	0.5237	1.673 1.642	0.5688	1.426	
		0.7341 1.0000	0.5140	1.042	0,0000	1.420	45.01
He-Xe	291.2	0.0000 0.0630	0.1296	3, 683	0.1568	2.638	19.40
[324]		0.1690	0.1293	3.673	0.1644	2.767	
		0.2010	0.1251	3, 555	0.1609	2.708	
		0.3040	0.1231	3.477	0.1619	2.725	
		0.4010	0.1224	3.412	0. 1621	2.727	
		0.4940	0.1201	3.367	0.1623	2.731	
		0.5940	0.1130	3, 210	0.1575	2,651	
		0.6870	0.1135	3.225	0.1594	2.682	
		0.7920	0.1142	3.245	0.1614	2.716	
		0.8980	0.0994	2.824	0.1450	2,440	
		1.0000	V. V-01				22.40

COMPOSITION AND TEMPERATURE DEPENDENCE OF Ψ_{ij} ON DIFFERENT SCHEMES OF COMPUTATION (continued)

Gas Pair	Temp.	Mole Fraction	First 1	Method	Second	Method	Viscosity
Reference]	(K)	of Heavier Component	¥12	₩ 21	¥12	¥21	(N s m ⁻² x 10 ⁻¹
Kr-Ne	291.2	0.0000					31.30
[278]		0.0650	0.3892	2.032	0.4344	1.832	02.00
•		0.1110	0.3898	2.035	0.4360	1.838	
		0.2290	0.3891	2.031	0.4372	1.843	
		0.3390	0.2916	2.044	0.4413	1.861	
		0.4380	0.3899	2.035	0.4404	1.857	
		0.5330	0.3892	2.032	0.4405	1.857	
		0.6470	0.3747	1.956	0.4258	1.796	
		0.7970	0.3702	1.932	0.4222	1.780	
		0.8890	0.3974	2.074	0.4512	1.902	
		1.0000					24.90
Kr-Xe	291.2	0.0000					24.70
[324]		0.1150	0.7470	1.285	0.7735	1.244	
•		0.2010	0.7500	1.290	0.7767	1.249	
		0.2960	0.7567	1.302	0.7838	1.260	
		0.3930	0.7554	1.299	0.7824	1.258	
		0.4910	0.7477	1.286	0.7745	1.245	
		0.5950	0.7590	1.306	0.7863	1.264	
		0.6930	0.7419	1.276	0.7688	1.236	
		0.7860	0.7600	1.307	0.7873	1.266	
		0.8960	0.7368	1.267	0.7639	1.228	
		1.0000					22.50
Ne-Xe	291.2	0.0000					31.00
[324]		0.1030	0.2787	2.510	0.3241	2.204	
,		0.1990	0.2734	2.462	0.3203	2.178	
		0.2850	0.2699	2.431	0.3182	2.164	
		0.3930	0.2711	2.442	0,3216	2.186	
		0.5040	0.2655	2.391	0.3167	2.154	
		0.5940	0.2672	2.406	0.3197	2.173	
		0.7940	0.2649	2.386	0.3190	2.169	
		0,9030	0.2568	2.312	0.3109	2.114	
		1.0000					22. 4 0
Ar-H.	293.0	0.0000					8.75
{226}		0.3485	0.2787	2.186	0.3189	1.598	
		0.5543	0,2708	2.124	0.3170	1.588	
		0.7058	0.2627	2.060	0, 3126	1.566	
		1.0000					22.11
Ar-H	373.0	0.0000					10.29
1226		0.3485	0.2817	2.140	0.3212	1.559	
		0.5543	0.2732	2.075	0.3189	1.548	
		0.7058	0.2702	2.053	0.3199	1.553	
		1.0000					26. 84
Ar-H,	473.0	0.0000					21.11
[226]		0.3485	0.3266	4.258	0.3870	3.225	
(5)		0.5543	0.2987	3.895	0.3546	2.954	
		0.7058	0.2909	3.794	0.3462	2.884	
		1.0000	*****	*****	******	_,,,,,	32.08
Ar-Ha	523.0	0.0000					12, 96
[226]		0.3485	0, 2929	2.182	0. 3332	1,585	
		0.5543	0.2840	2.115	0, 3299	1.570	
		1.0000	******		********	2.0.0	34.48
He-H,	273.2	0.0000					8.41
[74]		0.1881	1.098	0.9690	1.134	0.9029	0.41
1 - 23		0.3986	1.094	0.9655	1.130	0.8993	
		0.5972	1.101	0.9715	1.136	0.9048	
		0.7509	1.095	0.9661	1.130	0.8993	
		0.8640	1.093	0.9644	1.128	0.8977	
		0.8957	1.171	1.033	1. 205	0.9595	
		0.9609	1.054	0.9298	1.089	0.8665	
		1,0000		- 1			18.92

TABLE 1. COMPOSITION AND TEMPERATURE DEPENDENCE OF $\tilde{\Psi}_{ij}$ ON DIFFERENT SCHEMES OF COMPUTATION (continued)

Gas Pair	Temp.	Mole Fraction	First N	fet hod	Second	Method	Viscosity
Reference]	(K)	of Heavier Component	¥12	¥21	¥12	¥21	(N s m-1 x 10-
Не-Н,	288.2	0.0000					8, 78
[74]		0.1881	1.105	0.9820	1.142	0.9154	••••
		0.3986	1.108	0.9843	1.144	0.9171	
		0.5972	1,112	0.9877	1.147	0.9197	
		0.7509	1.113	0.9888	1.148	0.9202	
		0.8640	1.128	1.002	1.162	0.9319	
		0.8957	1.100	0.9772	1.134	0.9094	
		0.9609 1.0000	1.089	0.9681	1.124	0. 9 011	19.61
		1.000					19.01
He-H ₂	291.7	0.0000	1 110				8.81
[327]		0.1890	1.113	0.9886	1.150	0.9218	
		0.3530	1.145	1.017	1.183	0.9484	
		0.5030	1.169	1.039	1.207	0.9677	
		0.5650	1.193 1.192	1.060	1.231	0.9868	
		0.6830	1.192	1.059 1.091	1.229 1.263	0.9851 1.013	
		0.8110 1.0000	1.228	1.091	1.263	1.013	19.69
He-H ₂	293.0	0.0000	1.127	0.9921	1.164	0.9246	8.75
[221]		0.3082 0.3931	1.127	0.9921	1.164	0.9246	
		0.4480	1.118	0.9837	1.154	0.9258	
		1.0000	1.110	0.9001	1.104	0.9102	19.74
He-H ₂	373.0	0.0000					10.29
[221]		0.3082	1.107	0.9751	1.143	0.9085	
		0.3931	1.120	0.9863	1.156	0.9189	
		0.4480	1.114	0.9807	1.150	0.9135	00.00
		1.0000					23. 20
He-H ₂	373.2	0.0000					10.45
[74]		0.1881	1.089	0.9653	1.125	0.8995	
		0.3986	1.096	0.9720	1.132	0.9054	
		0.5972	1.082	0.9591	1.117	0.8931	
		0.7509	1.090	0.9665	1.125	0.8999	
		0.8640	1.061	0.9408	1.096	0.8765	
		0.8957	1.046	0.9273	1.081	0.8643	
		0.9609 1.0000	1.114	0.9876	1.148	0.9184	23.41
He-H ₂	473.0	0.0000			1 140	0.0150	12.11
[221]		0.3082	1.111	0.9840 0.9964	1.148	0.9170	
		0.3931	1.125		1.162	0.9285	
		0.4480 1.0000	1.114	0.9864	1.150	0.9189	27.15
He-H ₂	523.0	0.0000					12.96
[221]		0.3082	1.111	0.9845	1.147	0.9175	
		0.3931	1.121	0.9933	1.157	0.9256	
		0.4480 1.0000	1.118	0.9913	1.155	0.9235	29.03
Ne-H ₂ [221]	290.4	0.0000 0.1610	0.5615	1.584	0.6017	1.201	8.78
[221]		0.3470	0.5420	1.529	0.5838	1.166	
		0.5050	0.5898	1.664	0.6373	1.272	
		0.6570	0.5216	1.471	0.5689	1.136	
		0.7950	0.4940	1.3935	0.5441	1.086	
		1.0000	0	_,,,,,,			31. 16
No U	902.0	0.0000					8, 75
Ne-H ₂ [221]	293.0	0.0000 0.2285	0.5482	1.553	0.5882	1.179	6.15
(441)		0.2285	0.5413	1.533	0.5870	1.177	
		0.7480	0.5319	1.507	0.5811	1.165	

TABLE 1. COMPOSITION AND TEMPERATURE DEPENDENCE OF Ψ_{ij} ON DIFFERENT SCHEMES OF COMPUTATION (continued)

Gas l'air	Temp.	Mole Fraction of Heavier	First !		Second		Viscosity
Reference]	(K)	Component	Ψ ₁₂	Ψ ₂₁	Ψ ₁₂	¥21	(N s m ⁻² x 10
Ne-H ₂	373.0	0.0000					10.29
[221]		0.2285	0.5450	1.549	0.5848	1.177	
		0.5391	0.5409	1.538	0.5867	1.181	
		0.7480	0.5242	1.490	0.5734	1.154	20 02
		1.0000					36. 23
Ne-H ₂	473.0	0.0000	0.5424		0.5825	1.184	12.11
[221]		0.2285 0.5391	0.5357	1.558 1.539	0.5825	1.182	
		0.7480	0.5249	1.508	0.5743	1.168	
		1.0000	0.3248	1. 505	0.5745	1.100	42.20
Ne-H ₂	523.0	0.0000					12.96
[221]	020.0	0.2285	0.5422	1.563	0.5824	1.188	12.00
[441]		0.5391	0.5395	1.555	0.5856	1.195	
		0.7480	0.5295	1.526	0.5790	1.181	
		1.0000	0.0293	1. 320	0.5750	1.101	45.01
Ar-NH,	298.2	0.0000					10.16
[134]	200.2	0.0540	1.080	1.142	1.129	1.050	10.10
1202)		0.1720	0.9952	1.052	1.036	0.9638	
		0.2740	0.9876	1.044	1.028	0.9562	
		0.3860	0.9701	1.026	1.009	0.9390	
		0.5010	0.9735	1.029	1.013	0.9425	
		0.5950	0.9786	1.035	1.013	0.9475	
		0.6910	0.9793	1.035	1.019	0.9482	
		0.7850	0.9880	1.045	1.019	0.9564	
		0.8520	0.9800	1.036	1.020	0.9489	
		1.0000	0.0000	1.030	1.020	0.5405	22.54
Ar-NH ₃	308.2	0.0000					10.49
[134]	00012	0.0380	1.162	1.238	1.221	1.145	*0.40
(101)		0.1680	1.001	1.066	1.042	0.9771	
		0.2950	0.9818	1.046	1.022	0.9578	
		0.3990	0.9734	1.037	1.013	0.9495	
		0.5190	0.9590	1.022	0.9981	0.9356	
		0.6190	0.9468	1.009	0.9859	0.9241	
		0.7020	0.9461	1.008	0.9854	0.9237	
		0.7950	0.9367	0.9978	0.9763	0.9152	
		0.8600	0.9331	0.9940	0.9730	0.9121	
		1.0000	0.9331	0.5540	0.8730	0.9121	23. 10
Ar-NH ₃	353.2	0.0000					11.98
[134]	000.2	0.0530	1.017	1.111	1.062	1.021	11.00
, 200,		0.1840	0.9696	1.060	1.010	0.9714	
		0.2780	0.9703	1.061	1.011	0.9721	
		0.3810	0.9646	1.054	1.005	0.9662	
		0.4910	0.9539	1.043	0.9934	0.9555	
		0.5940	0.9472	1.035	0.9868	0.9491	
		0.6840	0.9425	1.030	0.9822	0.9447	
		0.8600	0.9392	1.030	0.9794	0.9420	
		1.0000	v. 8382	1.061	0.0184	J. 512V	25.71
Ar-SO ₂	298.2	0.0000					22.45
[35]		0.1910	0.5862	1.602	0.6127	1.560	20.10
		0.2500	0.5839	1.596	0.6104	1.554	
		0.3140	0.5893	1.611	0.6161	1.569	
		0.4040	0.5018	1.618	0.6188	1.576	
		0.5000	0.5918	1.618	0.6189	1.576	
		0.6120	0.5991	1.638	0.6265	1.595	
		0.7200	0.6012	1.643	0.6287	1.601	
		0.7200	0.6159	1.683	0.6436	1.639	
		0.9540					
		0.9340	0.6868	1,877	0.7152	1.821	
		1.0000					13. 17

The state of the s

TABLE 1. COMPOSITION AND TEMPERATURE DEPENDENCE OF Ψ_{ij} ON DIFFERENT SCHEMES OF COMPUTATION (continued)

Gas Pair	Temp.	Mole Fraction of Heavier	First A		Second 1	Metbod	Viscosity
[Reference]	(K)	Component	Ψ ₁₃	¥i	Ψ_{i} ;	¥31	(N s m ⁻² x 10
Ar-SO2	308.2	0.0000					23. 10
[35]		0.0240	0.5374	1.499	0.5602	1.456	
		0.1500	0.5189	1.447	0.5414	1.407	
		0.2540	0.5124	1.429	0.5352	1,391	
		0.3620	0.5166	1.441	0.5403	1.404	
		0.4640	0.5088	1.419	0.5327	1.384	
		0.5810	0.4958	1.383	0.5198	1.351	
		0.6660	0.4871	1.359	0.5113	1.329	
		0.7620	0.4751	1.325	0.4993	1.298	
		0.8720	0.4373	1.220	0.4610	1.198	
		0.8930	0.4228	1.179	0.4461	1.159	
		1.0000					13.28
Ar-SO2	353.2	0.0000					25.71
[35]		0.0430	0.4984	1.349	0.5181	1.306	
		0.1630	0.5192	1.405	0.5413	1.365	
		0.2640	0.5162	1.397	0.5389	1.359	
		0.3870	0.5116	1.385	0.5349	1.349	
		0.4830	0.5074	1.574	0.5311	1.339	
		0.5860	0.4978	1.348	0.5218	1.316	
		0.6870	0.4896	1.325	0.5138	1.296	
		0.7810	0.4916	1.331	0.5163	1.302	
		0.8850	0.4838	1.310	0.5088	1.283	
		0.9200	0.4671	1.264	0.4918	1.240	
		1.0000	012012		4.102 0		15.23
C ₆ H ₆ -C ₆ H ₁₂	298.2	0.0000					605.90
(Liquid)	200.2	0.0967	1,582	1.188	1.591	1.182	000.00
[355]		0.2186	1.598	1.201	1.607	1.194	
10001		0.3530	1,595	1.198	1.603	1.191	
		0.5126	1,599	1.202	1.607	1.194	
		0.6636	1,598	1.201	1.605	1.192	
		0.7826	1.618	1.216	1.624	1.207	
		0.8718	1.662	1.248	1.667	1.239	
		1.0000	1.002	1.240	1.001	1.230	869.00
C 11	298.2	0.0000					605.90
C ₆ H ₆ -	250.2		0.0104	0.000	0.9266	0.000	000.00
H ₃ (CH ₂) ₄ CH ₃		0.1189	0.9164	2.036 2.066	0.9393	2.029	
(Liquid) [355]		0.2784 0.4296	0.9296	1.969	0.8948	2.057 1.960	
[333]		0.42#6	0.8862 0.8681	1.909	0.8761	1.960	
		0.7335		1.897	0.8611	1.886	
			0.8536				
		0.8719 1.0000	0.8231	1.829	0.8303	1.818	300. 80
GHg-OMCTS	291.2	0.0000					670.30
(Liquid)		0.0881	1.518	1.533	1.626	1.344	
[360]		0.3511	1.450	1.464	1.524	1.260	
		0.5997	1.445	1.460	1.501	1.241	
		0.7738	1.442	1.456	1.488	1.230	
		0.8529	1,436	1.450	1.478	1.222	
		0.9369 1.0000	1.433	1.447	1.471	1.216	2520.00
He-OMCTS	298.2	0.0000	. 400	4 849	1 500		602.40
(Liquid)		0.0341	1.477	1.543	1.590	1.359	
(360)		0.0699	1,451	1.516	1.555	1.330	
		0.1407	1.426	1.489	1.519	1.299	
		0.2235	1.410	1.472	1.493	1.277	
		0.2938	1.403	1.468	1.481	1.266	
		0.3751	1,392	1.454	1.462	1.250	
		0.4689	1.394	1.455	1.457	1.246	
		0.6211	1.391	1.452	1.445	1.236	
		0.6777	1.392	1.454	1.444	1.234	
		0.7510	1.349	1.409	1.396	1.194	
		0.8434	1,407	1.469	1.450	1.240	
		0.8753	1,397	1.459	1.439	1.230	
		0.9028	1.427	1.490	1.467	1.254	
		0.9291	1,390	1.452	1.430	1.222	
		1.0000	-,				2190.00

TABLE 1. COMPOSITION AND TEMPERATURE DEPENDENCE OF $\tilde{\Psi}_{ij}$ ON DIFFERENT SCHEMES OF COMPUTATION (continued)

Gas Pair [Reference]	Temp.	Mole Fraction of Heavier	First 1 V ₁₂	Method	Second V ₁₂	Method ¥2₁	Viscosity (N s m ⁻² x 10 ⁻⁶)
		Component	-17			-21	(1.0 11. 1.10)
C ₆ H ₆ -OMCTS	308.2	0.0000	1 040	1 405	1 440		523.50
(Liquid) [360]		0.0886 0.3517	1.349 1.322	1.485 1.455	1.442 1.392	1.300 1.254	
(300)		0.6020	1.323	1.456	1.378	1.241	
		0.7741	1.306	1.437	1.353	1.219	
		0.8544	1.330	1.463	1.373	1.237	
		0.9373	1.324	1.458	1.364	1.229	
		1.0000	1.021	11.200	11001	1. 220	1806.00
He-OMCTS	318.2	0.0000					460.30
(Liquid)		0.0888	1.301	1.502	1.393	1.316	
[360]		0.3526	1.259	1.454	1.327	1.254	
		0.6036	1.262	1.457	1.317	1.244	
		0.7763	1.263	1.458	1.310	1.238	
		0.8562	1.256	1.450	1.300	1.229	
		0.9134 1.0000	1.170	1.351	1.213	1.146	1514.00
CO2-H2	300.0	0.0000					8.91
[234]		0.1112	0.2057	2.679	0.2373	1.946	
		0.2150	0.2024	2.636 2.590	0.2394	1.964	
		0.4054	0.1988		0.2432	1.995	
		0.5871	0.1951	2.541	0.2440	2.002	
		0.8006 0.8821	0.1984 0.1892	2.585 2.465	0.2514 0.2431	2.063 1.994	
		1.0000	0.1052	2.700	0.2431	1.352	14.93
CO ₂ -H ₂	400.0	0.0000					10.81
[234]		0.1112	0.2163	2.626	0.2478	1.895	
		0.2150	0.2169	2.633	0.2545	1.945	
		0.4054	0.2111	2.562	0.2554	1.952	
		0.5871	0.2072	2.515	0.2561	1.958	
		0.8006	0.2084	2.529	0.2614	1.998	
		0.8821	0.1977	2.399	0.2516	1.923	
		1.0000					19.44
CO ₂ -H ₂	500.0	0.0000					12.56
[234]		0.1112	0.2261	2.634	0.2583	1.896	
		0.2150	0.2242	2.613	0.2618	1.921	
		0.4054	0.2191	2.553	0.2635	1.933	
		0.5871	0.2142	2.496	0.2631	1.930	
		0.8006	0.2043	2.381	0.2570	1.886	
		0.8821 1.0000	0.1998	2.328	0.2536	1.861	23, 53
CO ₂ -H ₂	550.0	0.0000					13,41
[234]	000.0	0.1112	0.2314	2.650	0.2643	1.906	10.41
(401)		0.2150	0.2289	2.621	0.2668	1.924	
		0.4054	0.2076	2.378	0.2502	1.805	
		0.5871	0.2201	2.520	0.2691	1.941	
		0.8006	0.2217	2.540	0.2748	1.982	
		0.8821	0.2144	2.456	0.2686	1.937	
		1.0000		•			25, 56
CO ₂ -N ₂	297.7	0.0000					17.80
[337]		0.2260	0.7307	1.363	0.7581	1.321	
		0.2770	0.7236	1.350	0.7506	1.308	
		0.3260	0.7285	1.359	0.7558	1.317	
		0.5800	0.7188	1.341	0.7458	1.300	
		0.7500	0.7114	1.327	0.7384	1.287	
		0.8000 1.0000	0.7591	1.416	0.7868	1.371	14.99
CO2-N2O	300.0	0.0000			0.000		14.93
{234∫		0.1087	0.9896	0.9929	0.9896	0.9929	
		0.1903	1.003	1.006 0.9961	1.003 0.9927	1.006 0.9961	
		0.3 96 7	0.9927		U. \$927	A. RADI	
		0.5976	0.9928	0.9962	0.9928	0.9962	

Table 1. Composition and temperature dependence of $\hat{\mathbf{w}}_{ij}$ on different schemes of computation (continued)

Gas Pair	Temp.	Mole Fraction of Heavier	First 1		Second		Viscosity
[Reference]	(K)	Component	Ψ ₁₂	¥ 2₁	Ψ ₁₂	<u> </u>	(N s m ⁻⁴ x 10 ⁻⁴
CO2-N2O	400.0	0.0000			<u> </u>		19.44
[234]		0.1087	0.9968	0.9974	0.9968	0.9974	
		0.1903	1.004	1.005	1.004	1.005	
		0.3967	0.9929	0.9934	0.9929	0.9934	
		0.5976	0.9927	0.9933	0.9927	0.9933	
		0.8003	0.9920	0.9926	0.9920	0.9926	
		1.0000					19.43
CO2-N2O	500.0	0.0000					23, 53
[234]		0.1087	0.9900	0.9892	0.9900	0.9892	
		0.1903	0.9940	0.9933	0.9940	0.9933	
		0.3967	0.9905	0.9897	0.9905	0.9897	
		0.5976	0.9909	0.9901	0.9909	0.9901	
		0.8003	0.9972	0.9964	0.9972	0.9964	
		1.0000					23, 55
CO ₂ -N ₂ O	550.0	0.0000					25, 65
[234]		0.1087	1.016	1.020	1.016	1.020	
		0.1903	1.013	1.017	1.013	1.017	
		0.3967	0.9956	0.9996	0.9956	0.9996	
		0.5976	0.9956	0.9996	0.9956	0.9996	
		0.8003	1.000	1.004	1.000	1.004	05.55
		1.0000					25, 55
CO2-O2	300.0	0.0000					20.80
[337]		0.1950	0.7674	1.464	0.7895	1.436	
		0.3060	0.7239	1.382	0.7443	1.354	
		0.3390	0.7189	1.372	0.7392	1.345	
		0.5600	0.6722	1.283	0.6914	1.258	
		0.7100	0.6920	1.321	0.7119	1.295	
		0.8000	0.7131	1,361	0.7333	1.334	
		0.9170 1.0000	0.6989	1.334	0,7191	1.308	14.99
CO2-C3H8	300.0	0.0000					14.93
[234]		0.2117	0.7177	1.314	0.7179	1.314	
		0.4224	0.7173	1.313	0.7174	1.313	
		0.5975	0.7159	1.311	0.7160	1.311	
		0.8106 1.0000	0.7154	1.310	0.7155	1.310	8,17
CO ₂ -C ₃ H ₈	400.0	0.0000	0.7100	1 005	0 5104	* 005	19.44
[234]		0.2117	0.7182	1.307	0.7184	1.307	
		0.4224	0.7188	1.309	0.7190	1.308	
		0.5975	0.7173	1.306	0.7174	1.306	
		0.8106 1.0000	0.7144	1.301	0.7146	1.300	10.70
	E00 0	0.0000					09 50
CO ₂ -C ₃ H ₈ [234]	500.0	0.0000	0.7070	1 011	A 707£	1 911	23, 53
[234]		0.2117	0.7273	1.311	0.7275	1.311	
		0.4224	0.7282	1.313	0.7283	1.312	
		0.5975	0.7332	1.322 1.348	0.7333 0.7481	1.321 1.348	
		0.8106 1.0000	0.7479	1.020	0.7401	1.340	13.08
CO2-C3H8	550.0	0.0000		1 000	0 8041	1 000	25. 56
[234]		0.2117	0.7342	1.322	0.7344	1.322	
		0.4224	0.7335	1.321	0.7336	1.321	
		0.5975	0.7335	1.321	0.7336	1.321	
		0.8106 1.0000	0.7293	1.313	0.72 94	1.313	14,22
ao a "	800.0						
CO-C3H4	300.0	0.0000		1 000			17.76
[227]		0.2632	0.7446	1,282	0.7447	1.282	
	•	0.4354 0.8062	0.7624 0.7897	1.313	0.7625	1.313	
		0. X082	0.7897	1.360	0.7898	1.360	

TABLE 1. COMPOSITION AND TEMPERATURE DEPENDENCE OF Ψ_{ij} ON DIFFERENT SCHEMES OF COMPUTATION (continued)

Gas Pair [Reference]	Temp, (K)	Mole Fraction of Heavier	First I V ₁₂	dethod	Second Ψ_{12}	Method	Viacosity (N s m ⁻² x 10
		Component	-12	-21	-12	721	110
CO-C3H4	400.0	0.0000					21.83
(227)		0.2632	0.3555	2.011	0.3986	1.870	
		0.4354	0.3605	2.039	0.4061	1.906	
		0.8062 1.0000	0.3667	2.074	0.4152	1.948	13.42
		1.0000					13.42
CO-C2H4	500.0	0.0000				1 000	25.48
(227)		0.2632	0.7817	1.230	0.7818	1.230	
		0.4354 0.8062	0.7932 0.8129	1.248 1.279	0.7933	1.248	
		1.0000	0.8129	1.279	0.8130	1.279	16.22
aa a	FF0 0						
CO-C ₃ H ₄ (227)	550.0	0.0000 0.2632	0.7906	1.226	0.7907	1.226	27,14
(221)		0.4354	0.1500	1.249	0.8055	1. 249	
		0.8062	0.8144	1.263	0.8145	1.263	
		1.0000	0.0144	1. 203	0.0140	1.203	17.53
CO-H ₂	293.3	0.0000					8.84
[327]	400.0	0.1190	0.3210	2.230	0.3596	1.683	0.04
(001)		0.1910	0.3212	2.231	0.3628	1.698	
		0.2740	0.3159	2.194	0.3596	1.683	
		0.3860	0.3088	2.145	0.3552	1.663	
		0.4940	0.3081	2. 140	0.3573	1.673	
		0.6130	0.3046	2.116	0.3564	1.668	
		1.0000	***************************************		******		17.68
CO-N ₂	300.0	0.0000					17.76
[227]	500.0	0.1629	1,007	1.004	1.007	1.004	10
,,,,		0.3432	1.005	1.002	1.005	1.002	
		0.6030	0.9990	0.9963	0.9990	0.9963	
		0.8154	0.9978	0.9951	0.9978	0.9951	
		1.0000	0.00.0	0.0001	0.5510	0.0001	17.81
CO-N2	400.0	0.0000					21.83
[227]	, 100.0	0.1629	1.002	0.9987	1.002	0.9987	21.00
(241)		0.3432	0.9959	0.9928	0.9959	0.9928	
		0.6030	1.006	1.002	1.006	1.002	
		0.8154	1.006	1.003	1.006	1.003	
		1.0000	2,000	2.000	2.000	11000	21.90
CO-N ₂	500.0	0.0000					25.48
[227]	000.0	0.1629	1.001	0.9962	1.001	0.9962	20.30
[44.]		0.3432	1.005	1,000	1.005	1.000	
		0.6030	1.000	0.9955	1.000	0.9954	
		0.8154	0.9994	0.9948	0.9994	0.9948	
		1.0000	0,000	***************************************	0.0001	***************************************	25.60
CO-N,	550.0	0.0000					27.14
[227]	00010	0.1629	0.9984	0,9938	0.9985	0.9938	21.24
(40.)		0.3432	0.9994	0.9948	0.9995	0.9948	
		0.6030	1.005	0,9998	1.005	0.9998	
		0.8154	1.007	1,002	1.007	1.002	
		1.0000	2	_,,,,,	2000		27.27
CO-O ₂	300,0	0.0000					17.76
[227]		0.2337	1.007	0.9936	1.017	0.9830	
J		0.4201	1.000	0.9863	1.009	0.9758	
		0.7733	0.9994	0.9858	1.009	0.9753	
		1.0000					20.57
CO-Uz	400.0	0.0000					21.83
[227]		0.2337	1.020	0.9901	1.029	0.9795	50
		0.4201	1.015	0.9858	1.024	0.9752	
		0.7733	1.012	0.9828	1.021	0.9723	
		1,0000					25.68

TABLE 1. COMPOSITION AND TEMPERATURE DEPENDENCE OF Ψ_{ij} ON DIFFERENT SCHEMES OF COMPUTATION (continued)

Gas Pair	Temp.	Mole Fraction of Heavier		Method	Second		Viscosity
(Reference)	(K)	Component	¥ ₁₂	¥21	Ψ ₁₂	4 21	(N s m = x 10
CO-O ₂	500.0	0.0000					25.48
[227]		0.2337	1.024	0.9884	1.034	0.9777	
		0.4201	1.020	0.9837	1.029	0.9731	
		0.7733	1.019	0.9835	1.029	0.9729	
		1.0000					30.17
Cl4-OMCTS	291.2	0.0000					1001.00
(Liquid)		0.1780	1.112	0.8515	1.142	0.7927	
[360]		0.3227	1.143	0.8752	1.175	0.8155	
		0.5718	1.171	0.8970	1.204	0.8359	
		0.7258	1.183	0.9063	1.216	0.8443	
		0.8618	1,185	0.9074	1.218	0.8451	
		0.9815	1,142	0.8749	1.175	0.8157	
		1.0000					2520.00
CL-OMCTS	298.2	0.0000					901.00
(Liquid)		0.1089	1.058	0.8392	1.086	0.7808	
[360]		0.1965	1.102	0.8743	1.133	0.8147	
		0.2890	1.120	0.8886	1.153	0.8285	
		0.4288	1.139	0.9034	1.172	0.8425	
		0.5841	1, 156	0.9171	1.190	0.8552	
		0.6590	1.158	0.9187	1.192	0.8566	
		0.8443	1,172	0.9296	1.205	0.8662	
		0.9264	1.179	0.9352	1.212	0.8711	
		0.9773	1.279	1.014	1.310	0.9420	
		1.0000				***************************************	2190.00
CL-OMCTS	308.2	0.0000					781.00
(Liquid)		0.1756	1.047	0.8727	1.076	0.8134	
[360]		0.3239	1.079	0.8998	1.111	0.8397	
(000)		0.5732	1, 106	0.9226	1.140	0.8613	
		0.7290	1.129	0.9418	1,163	0.8789	
		0.8636	1,125	0.9383	1.159	C. 8755	
		0.9817	1.084	0.9041	1.118	0.8447	
		1.0000					1806.00
Cl4-OMCTS	318.2	0.0000					686.60
(Liquid)		0.1779	1.009	0.8820	1.038	0.8228	******
[360]		0.3249	1.041	0.9105	1.073	0.8503	
		0,5816	1.082	0.9460	1.116	0.8840	
		0.7307	1,094	0.9565	1.128	0.8936	
		0.8652	1,113	0.9733	1.147	0.9087	
		0.9821	1,074	0.9392	1.108	0.8779	
		1.0000	2.0.2	0.0002	11100	0.0	1514.00
CF4-SF	303.1	0.0000					17.67
[339]		0.2460	0.8117	1.497	0.8461	1.446	- · · · · ·
-		0.5090	0.7815	1.441	0.8131	1.390	
		0.7430	0,7738	1.427	0.8045	1.375	
		1.0000					15. 9 0
CF4-SF6	313.1	0.0000					18. 17
[339]		0.2460	0.8129	1.498	0.8473	1.447	
		0.5090	0.7839	1.445	0.8156	1.393	
		0.7430	0,7727	1.424	0.8034	1.372	
		1.0000					16.36
CF4-SF6	329.1	0.0000					18.94
[339]		0.2460	0.8149	1.501	0.8495	1.451	
		0.5090	0.7838	0. 444	0.8154	1.392	
		0.7430 1.0000	0.7719	1.422	0.8026	1.371	17.06
CF4-8F6	342.0	0.0000	0.0144	1 504	0 0400	1 450	19.57
[339]		0.2460	0.8144	1.504	0.8490	1.453	
		0.5090	0.7798	1.440	0.8113	1.388	
		v.7430	0.7713	1.424	0.8019	1.372	
		1.0000					17.59

TABLE 1. COMPOSITION AND TEMPERATURE DEPENDENCE OF ψ_{ij} ON DIFFERENT SCHEMES OF COMPUTATION (continued)

Gas Pair	Temp.	Mole Fraction of Heavier	First I	dethod	Second	Method	Viscosity
Reference]	(K)	Component	Ψ_{12}	¥21	¥12	¥21	(Nsm-2x10-
Ce-H19-	298.2	0,000					869,00
C ₆ -H ₁₂ - I ₃ (CH ₂) (CH ₃		0.0966	0.7736	2,288	0.7758	2.287	
(Liquid)		0.2480	0.7637	2, 259	0.7658	2. 257	
13551		0.4127	0.7513	2,222	0.7533	2, 220	
(0.5502	0.7410	2.192	0.7428	2.190	
		0.7258	0.7218	2, 135	0.7235	2.133	
		0.8286	0.7079				
		1.0000	0.7079	2.094	0.7096	2.092	300,80
D 11	14.4						
D ₂ -H ₂ [179]	14.4	0.0000 0.2690	0.8117	1 050	0.0406		0.79
(119)				1.272	0.8496	1.202	
		0.5040	0.8126	1.274	0.8502	1.203	
		0.7600 1.0000	0.8493	1.331	0.8872	1.255	1,00
							2.00
D ₂ -H ₂ [179]	20.4	0.0000					1.08
[179]		0.3340	0.8020	1.254	0.8392	1.184	
		0.6770	0.7995	1.250	0.8366	1.181	
		1.0000					1.37
D2-H2	71.5	0.0000					3.24
[179]		0.2480	0.8316	1.204	0.8683	1.134	
		0.5020	0.8301	1.202	0.8669	1.133	
		0.7490	0.8430	1.220	0.8801	1.150	
		1.0000					4.44
Da-Ha	90.1	0.0000					3.86
D ₂ -H ₂ [179]	••••	0.2620	0.8294	1.192	0.8658	1.123	0.00
(2.0)		0.5020	0.8285	1.191	0.8651	1.122	
		0.7450	0.8361	1.201	0.8730	1.122	
		1.0000	0.0001	1.201	0.6730	1.132	5.33
.							
D ₂ -H ₂ [179]	196.0	0.0000					6.75
[179]		0.2510	0.8327	1.191	0.8691	1.122	
		0.4970	0.8347	1.194	0.8714	1.125	
		0.7530	0.8355	1.195	0.8724	1.126	
		1.0000					9.36
D_2-H_2	229.0	0.0000					7.57
[179]		0.2480	0.8335	1.200	0.8703	1.131	**
•		0.5050	0.8322	1.198	0.8690	1.129	
		0.7550	0.8448	1.217	0.8819	1.146	
		1.0000	0.0110	1.641	0.0010	1.140	10.43
D 11	000.1						
D ₂ -H ₂ [179]	293.1	0.0000	0.0000	1 101	0.0501		8.86
(414)		0.2460	0.8336	1.191	0.8701	1.122	
		0.5070	0.8392	1.199	0.8761	1.130	
		0.7530 1.0000	0.8363	1.195	0,8732	1.126	12.30
D ₂ -HD	14.4	0.0000					0.91
[179]		0.2610	0.8980	1.086	0.9164	1.062	
		0.4970	0.8846	1.070	0,9028	1.046	
		0.7160	0.8761	1.059	0.8 944	1.036	
		1.0000					1.00
D ₂ -HD	20.4	0.0000					1.27
(179)		0.2420	0.9074	1.086	0.9258	1.062	
-		0.5030	0.9189	1, 100	0.9377	1.075	
		0.7510	0.9092	1.088	0.9278	1.064	
		1.0000					1.41
D-HD	71.5	0.0000					9.00
D ₂ -HD (179)	11.0	0.2540	0.9362	1 001	0.0650	1 007	3.93
[715]		0.2540		1.091	0.9552	1.067	
			0.9348	1.090	0.9536	1.065	
		0.7550	0.9342	1.089	0,9529	1.065	
		1.0000			*******		4.48

こうとうこうかからいる

Table 1. Composition and temperature dependence of Ψ_{ij} on different schemes of computation (continued)

Gas Pair	Temp.	Mole Fraction	First l	1ethod	Second	Method	Viscosity
[Reference]	(K)	of Heavier Component	Ψ_{12}	¥21	Ψ_{12}	¥21	(N s m-2 x 10-4
D ₂ -HD	90.1	0.0000					4.74
[179]		0.2380	0.9290	1.084	0.9478	1.059	
		0.4920	0.9286	1.083	0.9473	1.059	
		0.7490	0.9227	1.076	0.9414	1.052	
		1.0000					5.40
D2-HD	196.0	0.0000					8, 22
[179]	200.0	0.2490	0.9306	1.081	0.9493	1.057	0,22
		0.5000	0.9281	1.079	0.9468	1.054	
		0.7500	0.9280	1.078	0.9467	1.054	
		1.0000					9.40
D2-HD	229.0	0.0000					9.10
[179]		0.2490	0.9315	1.075	0.9502	1.051	01.20
,,		0.4950	0.9324	1.076	0.9511	1.052	
		0.7550	0.9309	1.074	0.9495	1.050	
		1.0000	******				10.48
D ₂ -HD	293.1	0.0000					10.75
[179]	200.1	0.2580	0.9375	1.080	0.9563	1.056	10.10
12.01		0.5090	0.9347	1.077	0.9534	1.053	
		0.7360	0.9310	1.073	0.9496	1.048	
		1.0000	*******	21010	0.0200	2.010	12.40
C2H6-H2	293.0	0.0000					8.76
[229]	200.0	0.1485	0.2067	2.971	0.2490	2.386	0.10
(628)		0.5500	0.1912	2.748	0.2422	2.321	
		1.0000	0.1312	2.140	0.4422	2. 321	9.09
C 11 11	373.0	0.0000					10.00
C ₂ H ₆ -H ₂ [229]	313.0	0.1485	0.2186	2.949	0.2617	2, 354	10.33
(228)		0.5500	0.2087	2.816	0.2610	2.348	
		1.0000	0.2051	2.010	0.2010	2.340	11.42
	450.0						
C ₂ H ₆ -H ₂ [229]	473.0	0.0000	0.0000	0.000	0.0005	0.000	12.13
[229]		0.1485 0.5500	0,2286 0,2197	2.936 2.821	0.2725 0.2726	2.333 2.333	
		1.0000	0.2197	2. 021	0.2726	2. 333	14.09
							
C ₂ H ₆ -H ₂	523.0	0.0000					12.96
[229]		0.1485	0.2322	2.942	0.2766	2. 336	
		0.5500 1.0000	0.2223	2.816	0.2752	2.324	15.26
C ₂ H ₃ -CH ₄	293.0	0.0000					10.87
[229]		0.1884	0.6594	1.478	0.6940	1.416	
		0.5126	0.6570	1.473	0.6917	1.411	
		0.8097 1.0000	0.6543	1.466	0.6892	1.406	9.09
C ₂ H ₄ -CH ₄	373.0	0.0000					13.31
[229]		0.1884	0.6690	1.462	0.7037	1,399	
		0.5126	0.6652	1.453	0.6999	1.391	
		0.8097 1.0000	0.6627	1.448	0.6976	1.387	11.42
C ₂ H ₄ -CH ₄	473.0	0.0000					16.03
[229]		0.1884	0.6751	1.440	0.7096	1.377	
		0.5126	0.6749	1.439	0.7097	1.377	
		0.8097 1.0000	0.6733	1.436	0.7083	1.374	14.09
C ₂ H ₆ -CH ₄	523.0	0.0000	0.0000	1 400			17.25
[229]		0.1884	0.6789	1.438	0.7136	1.376	
		0.5126 0.8097	0.6788 0.67 59	1.438 1.432	0.7136 0.7109	1.376 1.371	

Table 1. Composition and temperature dependence of Ψ_{ij} on different schemes of computation (continued)

144 - C-14	Gas Pair [Reference]	Temp. (K)	Mole Fraction of Heavier Component	First V ₁₂	Method V ₂₁	Second ¥ ₁₂	Method Ψ ₂₁	Viscosity (N s m ⁻² x 10
1229	C ₂ H ₄ -C ₃ H ₈	293.0						0.00
0.7437 0.7637 1.271 0.7676 1.238 0.8474 0.7719 1.285 0.7959 1.251 8.01				0.7754	1.290	0.7995	1 256	5.U 5
1,0000 1,225 1,251 1,285 0,7958 1,251 1,285 1,281 1,281 1,282 1,281 1,281 1,282 1,281 1,281 1,42 1,282 1,281 1,42 1,42 1,282 1,281 1,42 1,42 1,282 1,285 1,286 1,279 1,285								
1.0000 1.0000 1.244 1.254 1.254 1.254 1.254 1.254 1.254 1.254 1.254 1.254 1.255 1.288 1.279 1.252 1.255 1.288 1.279 1.252 1.255 1.288 1.279 1.252 1.255 1.288 1.279 1.252 1.255 1.288 1.279 1.252 1.255 1.288 1.279 1.255 1.285 1.								
1229 0.5673						******		8.01
1.	C ₂ H ₆ -C ₃ H ₆	373.0						11.42
1.0000 1.286 0.7979 1.285 0.7979 1.252 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.286 0.7964 1.280 0.8004 1.246 1.246 0.5673 0.7764 1.280 0.8004 1.246 0.8004 1.246 0.8004 1.246 0.8004 1.246 0.8004 1.246 0.8004 1.246 0.8004 1.251 1.251 1.253 1.253	[229]			0.7755		0.7996	1.254	
1.0000	•							
H ₄ -C ₂ H ₄ 473.0				0.7739	1.286	0.7979	1.252	10.08
229 0.5673 0.7764 1.280 0.8004 1.246 0.7437 0.7437 0.7580 1.255 0.7817 1.217 0.8474 0.7792 1.285 0.8033 1.251 12.53 12.	С.Н."С.Н.	472 0						
1.0000 1.250 1.250 0.7817 1.217 1.217 1.0000 1.285 0.8033 1.251 1.2.53 1.2.53 1.2.54 1.0000 1.2.53 1.2.55	(556)	210.0		0.7704	1 000	0.0004		14.09
0.8474	(220)							
1.0000 2. H ₄ -C ₃ H ₄ [1229] 2. H ₄ -C ₃ H ₄ [1229] 3. 0. 0.0000 3. 0. 5673 3. 0. 7787 3. 0. 7789 3. 1. 280 3. 0. 8072 3. 1. 286 3. 0. 8072 3. 1. 286 3. 8072 3. 1. 286 3. 8072 3. 1. 286 3. 8072 3. 1. 286 3. 8072 3. 1. 286 3. 8072 3			0.1231					
2H ₄ -C ₃ H ₆ 523.0 0.0000 0.5673 0.7797 1.280 0.8037 1.246 15.26 (2.291 0.5673 0.7797 1.280 0.8037 1.246 0.7437 0.7749 1.272 0.7988 1.238 0.474 0.7832 1.286 0.8072 1.251 1.0000 13.63			1.0000	0.7792	1.200	0.8033	1.251	12.53
[229] 0.5673 0.7797 1.280 0.8037 1.246 0.7437 0.7437 0.7749 1.272 0.7988 1.238 0.4474 0.7832 1.286 0.8072 1.251 1.0000 13.63 1.286 0.8072 1.251 1.0000 13.63 1.286 0.8072 1.251 1.363 1.286 0.8072 1.251 1.363 1.363 1.286 0.8072 1.251 1.363 1.363 1.286 0.8082 1.286 0.8082 0.2501 0.224 2.888 0.2696 2.359 0.5087 0.2176 2.825 0.2699 2.362 0.6444 0.2129 2.765 0.2686 2.334 0.8082 0.2276 2.956 0.2842 2.487 1.0000 7.183 0.2218 2.792 0.2646 2.244 1.0000 7.1838 0.2218 2.792 0.2646 2.244 1.0000 7.2501 0.2268 2.355 0.2740 2.324 0.5129 0.2231 2.809 0.2757 2.338 0.4444 0.2205 2.776 0.2647 2.330 0.8082 0.2126 2.676 0.2681 2.274 1.0000 8.183 0.2218 2.775 0.2681 2.274 1.0000 8.183 0.2218 2.775 0.2681 2.274 1.0000 8.183 0.2218 2.775 0.2681 2.274 1.0000 8.183 0.2286 2.775 0.2685 2.224 0.8082 0.2501 0.2488 2.763 0.2708 2.235 0.2601 0.2601 0.2602 0.2126 2.676 0.2681 2.274 1.0000 8.183 0.2288 2.679 0.2685 2.224 0.2644 0.2129 2.2650 0.2706 2.233 0.26444 0.2129 2.5650 0.2706 2.233 0.26444 0.2129 2.5650 0.2706 2.233 0.26444 0.2129 2.5650 0.2706 2.233 0.26444 0.2129 2.5650 0.2706 2.233 0.26444 0.2129 2.5650 0.2706 2.235 0.56129 0.2188 2.679 0.2685 2.358 0.2706 2.233 0.56129 0.2180 2.5650 0.2706 2.235 0.56129 0.2861 2.560 0.2706 2.235 0.56129 0.2861 2.560 0.2706 2.235 0.56129 0.2180 2.5600 0.2660 0.2706 2.235 0.56129 0.2180 0.2288 2.687 0.2688 2.166 0.5713 0.2204 2.646 0.2721 2.201 0.7033 0.2132 2.5600 0.2666 2.162 0.2661 2.160 0.56173 0.2268 2.640 0.2777 2.188 0.56173 0.2268 2.640 0.2777 2.188 0.56173 0.2268 2.640 0.2777 2.188 0.56173 0.2268 2.640 0.2777 2.180 0.56173 0.2268 2.640 0.2777 2.180 0.56173 0.2268 2.640 0.2777 2.180 0.56173 0.2268 2.640 0.2777 2.180 0.56173 0.2268 2.640 0.2777 2.180 0.56173 0.2268 2.640 0.2777 2.180 0.56173 0.2268 2.640 0.2777 2.180 0.56173 0.2268 2.640 0.2777 2.180 0.56173 0.2268 2.640 0.2777 2.180 0.56173 0.2268 2.640 0.2777 2.180 0.56173 0.2268 2.640 0.2777 2.180 0.56173 0.2268 2.640 0.2777 2.180 0.56173 0.2268 2.640 0.2777 2.180 0.56173 0.2268 2.640 0.2777 2.180 0.56173 0.2268 2.640 0.2777 2.180 0.56173 0.2	CaHa-CaHa	523.0	0.0000					
0.7437 0.7749 1.272 0.7988 1.238 0.8072 1.251 13.63 0.8474 1.0000 13.63 1.286 0.8072 1.251 13.63 13.62 13.62 13.62	[229] *			0.7797	1.280	0.8037	1.246	10.20
0.8474 0.7832 1.286 0.8072 1.251 13.63 13.63 1.286 1.286 1.286 1.251 13.63 13.63 1.286 1.286 1.281 1			0.7437					
1.0000 13.63 CH ₁ -H ₂ [230] 0.2501 0.2501 0.2242 2.888 0.2696 2.359 0.6444 0.2129 2.765 0.2668 2.334 0.8082 0.2976 0.1638 0.2501 0.2501 0.2288 2.792 0.2442 2.487 7.18 CH ₁ -H ₂ 233.2 0.0000 7.40 0.1638 0.2218 0.2501 0.2285 0.2646 2.244 0.2501 0.2501 0.2285 0.2767 0.2777 2.338 0.6444 0.2205 0.2766 0.2681 2.274 0.5129 0.2231 2.808 0.2757 2.338 0.8082 0.2126 2.676 0.2681 2.274 0.1000 8.18 CH ₁ -H ₂ 272.2 0.0000 0.1838 0.2286 2.775 0.2681 2.274 0.1838 0.2286 2.775 0.2681 2.274 0.1838 0.2248 2.753 0.2708 2.235 0.6444 0.2169 0.2188 2.679 0.2708 2.235 0.6444 0.2169 0.2188 2.679 0.2708 2.235 0.6444 0.2169 0.2666 0.2706 2.233 0.8082 0.2293 0.2666 0.2706 2.233 0.8082 0.2293 0.2868 0.2706 2.233 0.4444 0.2169 0.2666 0.2706 2.233 0.4000 9.43 CH ₁ -H ₂ 293.2 0.0000 0.2288 2.687 0.2678 2.166 0.2716 0.2180 0.2180 0.2288 2.687 0.2678 2.166 0.2711 0.2000 0.2180 0.2180 0.2204 2.646 0.2721 2.201 0.7033 0.2132 2.560 0.2673 2.162 0.8107 0.7033 0.2132 2.560 0.2673 2.162 0.1000 10.12 CH ₁ -H ₂ 328.2 0.0000 0.2279 2.666 0.2716 2.140 0.2646 2.140 0.000 10.12 244-H ₂ -H ₂ 373.2 0.0000 0.2279 2.666 0.2716 2.140 0.2677 2.188 0.7033 0.2182 2.517 0.2695 2.1211 0.0000 10.12								
[230] 0.2501 0.2224 2.888 0.2696 2.359 0.5087 0.5087 0.2176 2.868 2.354 0.8082 0.5087 0.2176 2.956 0.2898 2.334 0.8082 0.2276 2.956 0.2842 2.487 1.0000 7.18 2.H ₄ -H ₂ 233.2 0.0000 7.2288 2.956 0.2842 2.487 7.40 [230] 0.1638 0.2218 2.792 0.2646 2.244 0.2501 0.2501 0.2288 2.855 0.2740 2.324 0.5129 0.2231 2.808 0.2777 2.338 0.6444 0.2205 2.776 0.2747 2.330 0.6082 0.2126 2.676 0.2681 2.274 1.0000 8.18 2.H ₄ -H ₂ 272.2 0.0000 0.1838 0.2266 2.775 0.2685 2.224 0.1838 0.2501 0.1838 0.2508 2.775 0.2685 2.224 0.6444 0.2109 0.2501 0.2248 2.753 0.2708 2.235 0.5129 0.2501 0.2248 2.753 0.2708 2.235 0.5129 0.2501 0.2248 2.753 0.2708 2.235 0.5129 0.2808 0.2706 2.233 0.8082 0.2261 0.2248 2.753 0.2708 2.235 0.5129 0.2808 0.2266 0.2706 2.233 0.8082 0.2293 2.809 0.2858 2.338 9.43 2.H ₄ -H ₂ 293.2 0.0000 0.2293 2.809 0.2858 2.338 9.43 2.H ₄ -H ₂ 293.2 0.0000 0.2160 0.2238 2.687 0.2678 2.166 8.73 2.H ₄ -H ₂ 293.2 0.0000 0.2132 2.560 0.2678 2.166 8.73 2.H ₄ -H ₂ 293.2 0.0000 0.2132 2.560 0.2678 2.166 8.73 0.5173 0.2204 2.646 0.2721 2.201 0.7033 0.2132 2.560 0.2678 2.140 1.0000 10.12 2.H ₄ -H ₂ 328.2 0.0000 0.2132 2.560 0.2678 2.140 0.5173 0.2055 2.514 0.2662 2.121 0.010 0.5173 0.2258 2.640 0.2777 2.188 0.6107 0.2055 2.514 0.2662 2.121 0.010 0.5173 0.2258 2.640 0.2777 2.188 0.7033 0.2152 2.517 0.2662 2.121 0.030 0.5173 0.2258 2.640 0.2777 2.188 0.7033 0.2152 2.517 0.2652 2.121 0.0000 1.2279 2.686 0.2716 2.140 0.5173 0.2056 2.551 0.2657 2.159 0.7033 0.2152 2.517 0.2652 2.121 0.0000 1.2279 2.686 0.2774 2.119 0.7033 0.2152 2.517 0.2652 2.121 0.0000 1.2279 2.686 0.2774 2.119 0.7033 0.2152 2.517 0.2652 2.121 0.7000 0.5173 0.2056 2.551 0.2627 2.159 0.7033 0.2152 2.5517 0.2652 2.121 0.5173 0.2006 2.655 0.2627 2.155 0.0000 0.5173 0.2258 2.648 0.2774 2.119 0.5173 0.2006 2.655 0.2623 2.167 0.0000 0.5173 0.2258 2.648 0.2774 2.119 0.5173 0.2006 2.655 0.2623 2.157 0.0000 0.5173 0.2258 2.648 0.2774 2.119 0.5173 0.2006 2.655 0.655 0.650 0.6007 0.2007 2.500 0.5007 2.500 0.5007 2.500 0.5007 2.500 0.5007 2.500 0.5007 2.500 0.5007 2.500							1.20-	13.63
1230 0.2501 0.2224 2.888 0.2696 2.359 0.5087 0.2176 2.825 0.2699 2.362 0.6444 0.2129 2.765 0.2668 2.334 0.8082 0.6444 0.2129 2.765 0.2668 2.334 0.8082 0.2276 2.956 0.2842 2.487 7.18	C ₂ H ₄ -H ₂	195.2	0.0000					6.70
C-44-4	[230]			0.2224	2.888	0.2696	2.359	
0.8082						0.2699	2.362	
7.18 2.14,-14, 2				0.2129		0.2668	2.334	
CH ₁ -H ₂ 233.2 0.0000 7.40 7.40 [230] 0.1838 0.2218 2.792 0.2646 2.244 0.2501 0.2268 2.955 0.2740 2.324 0.6129 0.2231 2.808 0.2757 2.338 0.6444 0.2205 2.776 0.2747 2.330 0.8082 0.2126 2.676 0.2681 2.274 1.0000 8.18 CH ₁ -H ₂ 272.2 0.0000 [230] 0.1638 0.2266 2.775 0.2695 2.224 0.2501 0.2248 2.753 0.2708 2.255 0.5129 0.2188 2.679 0.2706 2.232 0.6444 0.2169 2.656 0.2706 2.233 0.8082 0.2293 2.809 0.2858 2.358 1.0000 CH ₁ -H ₂ 293.2 0.0000 [230] 0.2160 0.2238 2.687 0.2678 2.166 0.5173 0.2204 2.646 0.2721 2.201 0.7033 0.2132 2.560 0.2673 2.162 0.8107 0.2095 2.514 0.2646 2.140 1.0000 10.12 10.12 10.14 10.14 10.15				0.2276	2.956	0.2842	2.487	
230 0.1638 0.2218 2.792 0.2646 2.244 0.2551 0.2501 0.2288 2.855 0.2740 2.324 0.5129 0.2231 2.808 0.2757 2.338 0.6444 0.2205 2.776 0.2747 2.330 0.8082 0.2126 2.676 0.2681 2.274 2.300 0.2681 2.274 2.300 0.2681 2.274 2.300 0.2126 2.676 0.2681 2.274 2.300 0.2126 2.676 0.2681 2.274 2.300 0.2126 2.676 0.2681 2.274 2.300 0.2126 2.676 0.2681 2.274 2.300 0.2126 2.676 0.2681 2.274 2.300 0.2126 2.676 0.2681 2.274 2.300 0.2501 0.2248 2.753 0.2695 2.224 0.2501 0.2248 2.679 0.2705 2.235 0.5129 0.6444 0.2169 2.656 0.2706 2.233 0.8082 0.2293 2.809 0.2858 2.358 0.8082 0.2293 2.809 0.2858 2.358 0.2000 0.2180 0.2180 0.2238 2.687 0.2678 2.166 0.2712 2.201 0.7033 0.2132 2.560 0.2673 2.162 0.5173 0.2204 2.646 0.2721 2.201 0.7033 0.2132 2.560 0.2673 2.162 0.8107 0.2095 2.514 0.2646 2.140 1.0000 10.12 0.2095 2.514 0.2646 0.2716 2.140 0.5173 0.2258 2.640 0.2716 2.140 0.5173 0.2258 2.640 0.2776 2.188 0.7033 0.2152 2.517 0.2692 2.121 0.8107 0.2057 2.406 0.2605 2.052 1.223 0.6107 0.2057 2.406 0.2605 2.052 1.223 0.6173 0.2056 2.615 0.2827 2.159 0.7033 0.2162 2.615 0.2827 2.159 0.7033 0.2176 2.884 0.2774 2.119 0.5173 0.2306 2.615 0.2827 2.159 0.7033 0.2191 2.484 0.2746 0.2746 2.998 0.8107 0.2191 2.484 0.2746 0.2746 2.998 0.8107 0.2191 2.484 0.2746 0.2746 2.998 0.8107 0.2191 2.484 0.2746 2.998 0.8107 0.2191 2.484 0.2746 2.998 0			1.0000					7.18
0.2501 0.2268 2.855 0.2740 2.324 0.5129 0.2231 2.808 0.2767 2.338 0.6444 0.2205 2.776 0.2747 2.330 0.8082 0.2126 2.676 0.2681 2.274 1.0000 1.0000 272.2 0.0000 1.0201 0.2248 2.753 0.2708 2.224 0.2501 0.2248 2.753 0.2708 2.235 0.5129 0.2188 2.679 0.2706 2.235 0.5129 0.2188 2.679 0.2706 2.232 0.6444 0.2169 2.656 0.2706 2.233 0.8082 0.2293 2.809 0.2858 2.358 1.0000	C ₂ H ₄ -H ₂	233.2						7.40
0.5129 0.2231 2.808 0.2757 2.338 0.6444 0.2205 2.776 0.2747 2.330 0.8082 0.2126 2.676 0.2747 2.330 0.8082 0.2126 2.676 0.2681 2.274 1.0000 8.18	[230]							
0.8444								
0.8082								
1.0000 8.18 1.0000 8.30 1.0000 8.30 1.0000 1.0000 1.01838 0.2266 2.775 0.2695 2.224 0.2501 0.2248 2.753 0.2708 2.235 0.5129 0.2188 2.679 0.2705 2.232 0.6444 0.2169 2.656 0.2706 2.233 0.8082 0.2293 2.809 0.2858 2.368 1.0000 9.43 2.14H2 293.2 0.0000 1.2301 0.2160 0.2238 2.687 0.2678 2.166 0.5173 0.2204 2.646 0.2721 2.201 0.7033 0.2132 2.560 0.2673 2.162 0.8107 0.2095 2.514 0.2648 2.140 1.0000 10.12 2.14H2 328.2 0.0000 10.12 2.14H2 328.2 0.0000 10.12 2.14H2 373.2 0.0000 10.12 2.14H2 373.2 0.0000 10.12 2.14H2 373.2 0.0000 10.12 2.14H2 373.2 0.0000 10.2258 2.640 0.2716 2.140 0.5173 0.2258 2.640 0.2776 2.188 0.7033 0.2152 2.517 0.2692 2.121 0.8107 0.2057 2.406 0.2605 2.052 1.0000 11.22								
2 H ₁ -H ₂ 272.2				0.2126	2.676	0.2681	2.274	8.18
[230] 0.1638 0.2266 2.775 0.2695 2.224 0.2501 0.2261 0.2248 2.753 0.2706 2.235 0.5129 0.2188 2.679 0.2706 2.233 0.8082 0.8082 0.2283 2.809 0.2858 2.358 1.0000 9.2283 2.809 0.2858 2.358 1.0000 9.43	CaHa-Ha	272.2	0.0000					
0.2561	12301			0 9986	9 77E	0.000	0.004	8.30
0.5128	,,							
0.6444								
0.8082								
1.0000 9.43 244-H2 293.2 0.0000 [230] 0.2160 0.2238 2.687 0.2678 2.166 0.5173 0.2204 2.646 0.2721 2.201 0.7033 0.2132 2.560 0.2673 2.162 0.8107 0.2095 2.514 0.2646 2.140 1.0000 10.12 244-H2 328.2 0.0000 [230] 0.2100 0.2279 2.686 0.2716 2.140 0.5173 0.2258 2.640 0.2771 2.188 0.7033 0.2152 2.517 0.2692 2.121 0.8107 0.2057 2.406 0.2605 2.052 1.0000 11.22 344-H2 373.2 0.0000 11.22 344-H2 373.2 0.0000 1230] 0.2114 0.2335 2.648 0.2774 2.119 0.5173 0.2306 2.615 0.2827 2.159 0.7033 0.2276 2.681 0.2827 2.159 0.5173 0.2306 2.615 0.2827 2.159 0.7033 0.2276 2.881 0.2823 2.157								
[230] 0.2180 0.2238 2.687 0.2678 2.166 0.5173 0.2204 2.646 0.2721 2.201 0.7033 0.2132 2.560 0.2673 2.162 0.8107 0.2095 2.514 0.2646 2.140 10.12 0.214 0.2000 0.2095 2.514 0.2646 2.140 10.12 0.2100 0.2100 0.2279 2.686 0.2716 2.140 0.5173 0.2258 2.640 0.2777 2.188 0.7033 0.2152 2.517 0.2692 2.121 0.8107 0.2037 2.406 0.2605 2.052 1.0000 11.22 0.2000 0.2114 0.2335 2.648 0.2774 2.119 0.5173 0.2306 2.615 0.2827 2.159 0.7033 0.2276 2.581 0.2827 2.159 0.7033 0.2276 2.581 0.2827 2.159 0.7033 0.2276 2.581 0.2827 2.157 0.8107 0.2191 2.484 0.2746 2.098				********		V. 2000	2. 300	9.43
1230 0.2160 0.2238 2.667 0.2673 2.166 0.5173 0.2204 2.666 0.2721 2.201 0.7033 0.2132 2.560 0.2673 2.162 0.8107 0.2095 2.514 0.2646 2.140 10.12 0.2095 2.514 0.2646 2.140 10.12 0.2095 0.2100 0.2279 2.686 0.2716 2.140 0.5173 0.2258 2.640 0.2777 2.188 0.7033 0.2152 2.517 0.2692 2.121 0.8107 0.2057 2.406 0.2605 2.052 1.0000 11.22 0.8107 0.2057 2.406 0.2605 2.052 1.2236 0.2036 2.615 0.2623 2.157 0.8107 0.2036 2.615 0.2827 2.159 0.5173 0.2306 2.615 0.2827 2.159 0.7033 0.2276 2.681 0.2827 2.159 0.7033 0.2276 2.681 0.2625 2.157 0.8107 0.2191 2.484 0.2746 2.098 0.8107 0.2191 2.484 0.2746 2.098 0.2605 2.068 0.2746 2.098 0.8107 0.2191 2.484 0.2746 2.098 0.2605 2.068 0.2746 2.098 0.274	С2Н4-Н2	293.2						8.73
0.5173 0.2204 2.646 0.2721 2.201 0.7033 0.2132 2.560 0.2673 2.162 0.8107 0.2095 2.514 0.2646 2.140 1.0000 10.12 2H ₄ -H ₂ 328.2 0.0000 2100 0.2279 2.666 0.2716 2.140 0.5173 0.2258 2.640 0.2777 2.188 0.7033 0.2152 2.517 0.2692 2.121 0.8107 0.2057 2.406 0.2605 2.052 1.0000 11.22 2H ₄ -H ₂ 373.2 0.0000 214 ₄ -H ₂ 373.2 0.0000 214 ₄ -H ₂ 0.2335 2.648 0.2774 2.119 0.5173 0.2306 2.615 0.2827 2.159 0.7033 0.2276 2.581 0.2827 2.159 0.7033 0.2276 2.581 0.2827 2.159 0.7033 0.2276 2.581 0.2827 2.159 0.6107 0.2191 2.484 0.2746 2.098	[230]					0.2678	2.166	••••
0.8107						0.2721	2.201	
1.0000 10.12 244-H2 328.2 0.0000 9.43 [230] 0.2100 0.2279 2.666 0.2716 2.140 9.43 0.5173 0.2258 2.640 0.2777 2.188 0.7033 0.2152 2.517 0.2692 2.121 0.8107 0.2057 2.406 0.2605 2.052 1.0000 11.22 344-H2 373.2 0.0000 11.22 344-H2 373.2 0.0000 11.22 344-H2 0.2335 2.648 0.2774 2.119 0.5173 0.2306 2.615 0.2827 2.159 0.7033 0.2276 2.881 0.2827 2.157 0.8107 0.2191 2.484 0.2746 2.098							2. 162	
\$\begin{array}{cccccccccccccccccccccccccccccccccccc				0.2095	2.514	0.2646	2. 140	
[230] 0.2100 0.2279 2.686 0.2716 2.140 0.5173 0.2258 2.640 0.2777 2.188 0.7033 0.2152 2.517 0.2692 2.121 0.8107 0.2057 2.406 0.2605 2.052 1.0000 11.22			1.0000					10.12
11.22 2.44 0.2777 2.188 0.7033 0.2152 2.517 0.2692 2.121 0.8107 0.2057 2.406 0.2605 2.052 1.0000 11.22 2.44-H ₂ 373.2 0.0000 0.2114 0.2335 2.648 0.2774 2.119 0.5173 0.2306 2.615 0.2627 2.159 0.7033 0.2276 2.581 0.2627 2.159 0.7033 0.2276 2.581 0.2627 2.157 0.8107 0.2191 2.484 0.2746 2.098	C2H4-H2	328.2						9.43
0.7033 0.2152 2.517 0.2892 2.121 0.8107 0.2037 2.406 0.2605 2.052 1.0000 11.22 (14.4 4.2 373.2 0.2036 2.615 0.2827 2.119 0.5173 0.2306 2.615 0.2827 2.159 0.7033 0.2276 2.581 0.2827 2.157 0.8107 0.2191 2.484 0.2746 2.098	(230)							
0.8107 0.2087 2.406 0.2605 2.052 11.22 14.44 373.2 0.0000 11.22 14.44 0.2335 2.648 0.2774 2.119 0.5173 0.2306 2.615 0.2827 2.159 0.7033 0.2276 2.881 0.2823 2.157 0.8107 0.2191 2.484 0.2746 2.098								
1.0000 11.22 2H ₄ -H ₂ 373.2 0.0000 10.30 [230] 0.2114 0.2335 2.648 0.2774 2.119 0.5173 0.2306 2.615 0.2827 2.159 0.7033 0.2276 2.581 0.2823 2.157 0.8107 0.2191 2.484 0.2746 2.098								
2H ₄ -H ₂ 373.2 0.0000 10.30 [230] 0.2114 0.2335 2.648 0.2774 2.119 0.5173 0.2306 2.615 0.2627 2.159 0.7033 0.2276 2.581 0.2623 2.157 0.8107 0.2191 2.484 0.2746 2.098				0.2057	2.406	0.2605	2.052	11.22
[230] 0.2114 0.2335 2.848 0.2774 2.119 0.5173 0.2306 2.815 0.2827 2.159 0.7033 0.2276 2.861 0.2823 2.157 0.8107 0.2191 2.484 0.2746 2.098	CaHa-Ha	373.2	0.0000					
0.5173 0.2306 2.615 0.2827 2.159 0.7033 0.2276 2.581 0.2823 2.157 0.8107 0.2191 2.484 0.2746 2.098	[230]	0.0.2		A 999#	2 640	0.0004		10.30
0.7033 0.2276 2.581 0.2823 2.167 0.8107 0.2191 2.484 0.2746 2.098								
0.8107 0.2191 2.484 0.2746 2.098								
1.0000 12,64			1.0000	V. 2101	-1102	V. 2110	2. UFO	10.44

Sir Colonia per de de la media qualificación

The second secon

TABLE 1. COMPOSITION AND TEMPERATURE DEPENDENCE OF Ψ_{ij} ON DIFFERENT SCHEMES OF COMPUTATION (continued)

Gas Pair	Temp.	Mole Fraction of Heavier	First l	Method	Second	Method	Viscosity
Reference]	(K)	Component	Ψ_{12}	421	Ψ_{i2}	¥2i	(N s m ⁻² x 10 ⁻⁴
C ₂ H ₄ -H ₂ [230]	423.2	0.0000					11.23
[230]		0.2114	0.2358	2.617	0.2795	2.090	
		0.5197	0.2282	2.533	0.2797	2.091	
		0.7201	0.2299	2.551	0.2848	2.130	
		0.8043	0.2287	2.539	0.3847	2.129	
		1.0000					14.08
C ₂ H ₄ -H ₂ [230]	473.2	0.0000					12.11
[230]		0.2114	0.2397	2.611	0.2836	2.081	
		0.5197	0.2371	2.583	0.2893	2.123	
		0.7201	0.2379	2.592	0.2932	2.152	
		0.8043	0.2356	2.566	0.2918	2.142	
		1.0000					15. 4 7
C2H4-H2	523.2	0.0000					12.94
[230] ⁻		0.2114	0.2487	2.664	0.2938	2.120	
		0.5116	0.2443	2.617	0.2967	2.141	
		0.7201	0.2474	2.651	0.3032	2.188	
		0.8043	0.2479	2,655	0.3046	2.198	
		1.0000			***************************************	2. 200	16.81
C2H4-N2	300.0	0.0000					17.81
[227]		0.2405	0.7445	1.286	0.7446	1.285	
(0.5695	0.7589	1.310	0.7950	1.310	
		0.7621	0.7744	1.337	0.7745	1,337	
		1.0000	******	1,00,	VI.1120	21.00	10.33
C2H4-N2	400.0	0.0000					21.90
[227]		0.2405	0.7751	1.261	0.7752	1.261	
(221)		0.5695	0.7900	1.285	0.7901	1.285	
		0.7621	0.8164	1.328	0.8165	1.328	
		1.0000	0.0101	1.020	0.0100	1.020	13.48
C2H4-N2	500.0	0.0000					25.60
[227]		0.2405	0.7963	1.259	0.7964	1.258	
,,		0.5695	0.8046	1. 272	0.8047	1.272	
		0.7621	0.8229	1.301	0.8230	1.301	
		1.0000	V. 0228	1. 501	0.0230	1.301	16.22
C2H4-N2	550.0	0.0000					27.27
[227]	000.0	0.2405	0.7995	1.246	0.7996	1.245	W1121
(80.1		0.5695	0.8107	1. 263	0.8108	1.263	
		0.7621	0.8318	1.296	0.8320	1.296	
		1.0000	V. 0020	1.200	0.0020	11.400	17.53
C2H4-O2	293.0	0.0000					10,10
[227]		0.2297	1,316	0.7508	1.324	0.7410	
,		0.5855	1.327	0.7572	1.336	0.7473	
		0.8694	1,316	0.7511	1.325	0.7413	
		1.0000	2,010	01.011	11020	VI.120	20.19
C2H4-N2	323.0	0.0000					11.07
2271		0.2297	1.308	0.7572	0.317	0.7474	*****
		0.5855	1.323	0.7659	1.332	0.7559	
		0.8694	1.314	0.7608	1.323	0.7509	
		1.0000	., 514	v	2.080	V. 1000	21.81
C ₂ H ₄ -O ₂	373.0	0.0000					12.62
[227]		0.2297	1,304	0.7712	1.312	0.7613	
,		0.5855	1.310	0.7749	1.319	0.7649	
		0.8694	1.297	0.7672	1.305	0.7573	
		1.0000		J		3	24.33
		1.0000					# 4. 33

TABLE 1. COMPOSITION AND TEMPERATURE DEPENDENCE OF Ψ_{ij} ON DIFFERENT SCHEMES OF COMPUTATION (continued)

Gas Pair [Reference]	Temp. (K)	Mole Fraction of Heavier Component	First I V ₁₂	lethod ¥21	Second Ψ ₁₂	Method V21	Viscosity (Nsm ⁻² x10°
H ₂ (CH ₂) ₅ CH ₃ -	303.2	0,0000					4.79
CH ₃), CHCH, C	00012	0.1550	0.6812	1.339	0 7264	1.188	
(CH ₃) ₃		0.3658	0.6801	1.337	0.7270	1.189	
[354]		0.4830	0.6656	1.308	0.7125	1.166	
•		0.6992	0.6521	1.282	0.7006	1.146	
		0.8941	0.6127	1.204	0.6630	1.085	
		1.0000					8. 29
H ₃ (CH ₂) ₅ CH ₅ -	323.2	0.0000					5. 13
CH3)3CHCH2C		0.1550	0.7162	1.418	0.7661	1.263	
(CH ₃) ₃ [354]		0.3658	0.6906	1.368	0.7386	1.217	
[304]		0.4830 0.6992	0.6511 0.6351	1.289 1.258	0.6973 0.6832	1.149 1.126	
		0.8941	0.6235	1.235	0.6739	1.111	
		1.0000	0.0235	1.235	0.0139	1.111	8. 82
H ₃ (CH ₂) ₆ CH ₃ -	333.2	0.0000					5. 32
CH.) CHCH.C		0.4830	0.6623	1.331	0.7096	1.187	
(CH ₃) ₃ [354]		1.0000					9.01
•	14.4	0,0000					0.70
H ₂ -HD [179]	14.4	0.0000 0.2540	0.8522	1.142	0.8766	1.106	0.79
(T18)		0.2540	0.8522	1.142	0.8852	1.117	
		0.7570	0.8352	1.119	0.8598	1.117	
		1.0000	U. 00 U Z	1.115	v. 0000	1.000	0.88
H ₂ -HD	20.4	0.0000					1.11
[179]		0.2450	0.8649	1.147	0.8897	1.111	
		0.5050	0.8768	1.163	0.9020	1.126	
		0.7540	0.8881	1,178	0.9133	1.140	
		1.0000					1.25
H ₂ -HD [179]	71.5	0.0000 0.2500	0.8985	1.107	0.9233	1.071	3.26
[719]		0.4990	0.9020	1.111	0.2969	1.075	
		0.7490	0.9009	1.110	0.9257	1.074	
		1.0000	0.3003	1.110	V. #201	1.074	3.95
H ₂ -HD	90.1	0.0000					3.92
[179]		0.2530	0.8888	1.095	0.9131	1.059	
		0.4990	0.8991	1.108	0.9239	1.072	
		0.7410	0.9131	1.125	0.9381	1.088	
		1.0000					4.75
H ₂ -HD	196.0	0.0000	0.1040	17. 00	0.1400	10.00	6.70
[179]		0.2360	0.1082	17.90	0.1462	10.92	
		0.4960	0.1335	22.09	0.1671	12.48	
		0.7460 1.0000	0.1645	27.23	0.1935	14.45	8.16
H2-HD	229.0	0.0000					7.45
[179]		0.1960	0.8916	1.090	0.9158	1.054	
		0.4970	0.9048	1.106	0.9296	1.070	
		0.7480	0.9029	1.104	0.9277	1.068	
		1.0000					9.10
H ₂ -HD	293.1	0.0000	0.000	1 101	0 0046	1 002	8, 83
[179]		0.2410	0.9089	1.121	0.9340	1.085	
		0.4980 0.7980	0.9014	1.112	0.9263 0.9709	1.076	
		1.0000	0.9457	1.166	0.9709	1.128	10.69
Н₂-СН₄	293.0	0.0000					8.76
[229]		0.0777	0.3411	2.187	0.3855	1.811	
		0.3978	0.3331	2.136	0.3849	1.808	
		0.5145	0.3309	2.122	0.3847	1.807	
		0.7192	0.3306	2.120	0.3873	1.819	
		1.0000					10.87

TABLE 1. COMPOSITION AND TEMPERATURE DEPENDENCE OF $\boldsymbol{\Psi}_{ij}$ ON DIFFERENT SCHEMES OF COMPUTATION (continued)

Gas Pair	Temp.	Mole Fraction of Heavier	First	Method	Senon	d Method	3//
Reference	(K)	Component	412	W ₁₁	₹12	n wenon	Viscosity (Nsm ⁻² x10 ⁻⁴
H2-HC4	293.2	0.0000					
(1)		0.2083	0.3483	2.276	0.3990	1.910	9.24
		0.3909	0.3713	2.427	0.4280		
		0.4904	0.3530		0.4088		
		0.6805	0.3494	2.284	0.4069	1.948	
		1.0000			*******		11.25
H2-HC4	333.2	0.0000					10.08
[1]		0.2083	0.3586	2.292	0.4102	1.921	10.08
		0.3909	0.3745	2.394	0.4310	2.018	
		0.4909	0.3546	2.267	0.4101	1.920	
		0.6805 1.0000	0.3485	2.228	0.4056	1.899	
		1.0000					12.55
H ₂ -HC ₄ [229]	373.0	0.0000					10.33
[020]		0.0777	0.3501	2.162	0.3947	1.786	20.00
		0.3978	0.3434	2.121	0.3955	1.789	
		0.5145	0,3400	2.100	0.3938	1.782	
		0.7192 1.0000	0.3400	2.100	0.3968	1.795	
		1.000					13.31
H ₂ -HC ₄ {1}	373. 2	0.0000					10.90
(4)		0.2083	0,3569	2.244	0.4076	1.877	*****
		0.3909 0.4909	0.3704	2.328	0.4260	1.962	
		0.4909	0.3519	2.212	0.4068	1.873	
		1.0000	0.3467	2.179	0.4036	1.858	
I₂-CH₄	450						13.80
2-014 [229]	473.0	0.0000					12.13
(225)		0.0777	0.3527	2.124	0.3966	1.750	12.10
		0.3978	0.3521	2.120	0.4045	1.784	
		0.5145	0.3457	2.082	0.3996	1.763	
		0.7192 1.0000	0.3477	2.094	0.4046	1.785	
l - Ctf	500 A						16.03
և-СН₄ [229]	523.0	0.0000					12.96
1-20,		0.0777 0.3 9 78	0.3610	2.158	0.4066	1.781	
		0.5145	0.3548	2. 121	0.4073	1.784	
		0.7192	0.3503	2.094	0.4044	1.771	
		1.0000	0.3534	2.113	0.4104	1.798	
i ₂ -NO	273.2	0.0000					17.25
[340]	210.2	0.0000 0.1975					8.49
		0.1975	0.2780	1.955	0.3118	1.462	. ==
		0.2835	0.2844	2.000	0.3208	1.505	
		0.4508	0.3083	2.168	0.3507	1.645	
		0.7045	0.3178	2.235	0.3662	1.717	
		0.8503	0.3176 0.3486	2.233	0.3709	1.740	
		1.0000	0.0200	2. 4 51	0.4037	1.893	17,97
12-NO	293.2	0.0000					
[334]	_	0.0510	0.3220	2.287	A 0.000		8.88
		0.1002	0.3213	2.282	0.3577 0.35 9 2	1.694	
		0.1499	0.3190	2.266	0.3585	1.701	
		0.1931	0.3060	2.173	0.3448	1.698 1.633	
		0.2500	0.3204	2.275	0.3637	1.723	
		0.2944	0.3186	2. 263	0.3631	1.723	
		0.3425	0.3078	2. 186	0.3524	1.669	
		0.3926	0.3202	2.274	0.3677	1.742	
		0.4423	0.3150	2.237	0.3632	1.720	
		0.4891	0.3197	2.270	0.3693	1.749	
		0.5393	0.3104	2.204	0.3605	1,707	
		0.6204	0.3269	2.322	0.3793	1.797	
		0.6416 0.6900	0.3125	2.219	0.3647	1.728	
		0.7453	0.3246	2.305	0.3780	1.790	
		0.7932	0.3077	2.185	0.3616	1.713	
		0.8430	0.3307 0.2607	2.349	0.3855	1.826	
		0.8947	0.2007	1.851 2.298	0.3157	1.495	
		0.9524	0.2519	1.789	0.3795 0.3091	1.798 1.464	
		1.0000			0.0081	1.303	18.61
							40.04

TABLE 1. COMPOSITION AND TEMPERATURE DEPENDENCE OF Ψ_{ij} ON DIFFERENT SCHEMES OF COMPUTATION (continued)

Gas Pair	Temp.	of Heavier		fethod	Second :	Method	Viscosity
[Reference]	(K)	of Heavier Component	¥12	¥21	Ψ ₁₂	¥21	(N s m = x 10
H ₂ -N ₂	82.2	0.0000					3,62
(252)		0.1600	0.2666	2, 466	0.3080	1.919	0.00
		0.3510	0.2803	2.592	0.3304	2.059	
		0.4410	0.2823	2.610	0.3344	2.083	
		0.6200	0.2814	2.602	0.3362	2.095	
		0.7590	0,2880	2.663	0.3445	2.147	
		1.0000		2	*******		5.44
H2-N2	90.2	0.0000					3.92
[252]		0.1600	0.2939	2.459	0.3369	1, 899	
		0.3510	0.2775	2.322	0.3244	1.829	
		0.4410	0.2775	2.322	0.3269	1.843	
		0.6200	0.2956	2.473	0.3498	1.972	
		0.7590	0.2948	2.466	0.3507	1.978	
		0.8660	0.2993	2.504	0.3564	2.010	
		1.0000					6.51
H ₂ -N ₂	291.1	0.0000					8.77
[252]		0.1600	0.3302	2.297	0.3724	1.746	
		0.4410	0.3227	2, 2 44	0.3719	1.743	
		0.6200	0.3152	2, 192	0.8676	1.723	
		0.7590	0.3514	2. 444	0.4065	1.905	
		0.8660	0.2839	1.975	0.3401	1.594	
		1.0000					17.52
H ₂ -N ₂ [252]	291,1	0.0000					8.77
[252]		0.1360	0.3250	2.268	0.3654	1.718	
		0.1600	0.3286	2.294	0.3707	1.743	
		0.1870	0.3223	2.250	0.3642	1.713	
		0.2960	0.3159	2.205	0.3605	16	
		0.4000	0.3136	2.189	0.3610	1.698	
		0.4410	0.3198	2.232	0.3689	1.735	
		0.5170	0.3134	2.188	0.3637	1.711	
		0.6200	0.3107	2.168	0.3629	1.707	
		0.6900	0.3094	2.159	0.3629	1.707	
		0.7590	0.3433	2.396	0.3984	1.874	
		0.8660 1.0000	0.2711	1.892	0.3272	1.539	17.46
им	291.2	0.0000					
H ₂ -N ₂ [252]	201.2	0.1360	0.3266	2.292	0.3676	1.739	8.82
[202]		0.1870	0.3235	2.271	0.3658		
		0.1870	0.3255	2.222	0.3615	1.730	
		0.4000	0.3141	2.222	0.3617	1.710 1.711	
		0.5170	0.3137	2.202	0.3641	1.722	
		0.6900	0.3095	2.172	0.3631	1.717	
		1.0000	0.3050	2,112	0.3031	1.717	17.46
HL -NL	307.2	0.0000					9,07
H ₂ -N ₂ [341]		0.2000	0.3178	2, 206	0.3590	1.680	P. U !
,		0.3991	0.3151	2.188	0.3622	1.695	
		0.5100	0.3156	2.191	0.3657	1.711	
		0.5794	0.3185	2.211	0.3703	1.732	
		0.7977	0.3231	2.243	0.3785	1.771	
		1.0000	0.0402	2.2.0	0.0.00		18.16
H2-N2	325.4	0.0000					9.94
[341]		0.2000	0.3395	2.458	0.3866	1.886	
		0.3991	0.3374	2.443	0.3882	1.894	
		0.5100	0.3327	2.408	0.3849	1.878	
		0.5794	0.3310	2.397	0.3842	1.874	
		0.7977	0.3401	2.462	0.3959	1.931	
		1.0000					19.09

Table 1. Composition and temperature dependence of $\hat{\Psi}_{ij}$ on different schemes of computation (continued)

Gas Pair	Temp.	Mole Fraction	First B	/lethod	Second	Method	Viscosity
Reference)	(K)	of Heavier Component	Ψ_{12}	Ψ_{21}	Ψ_{12}	Ψ_{21}	(Nsm-2x10
H ₂ -N ₂	373.2	0.0000				-	10.42
[341]		0.2000	0.3512	2.421	0.3982	1.850	201.25
(012)		0.3991	0.3332	2.297	0.3822	1.775	
		0.5100	0.3312	2.283	0.3823	1.776	
		0.5794	0.3282	2.262	0.3804	1.767	
		0.7977	0.3112	2.145	0.3664	1.702	
		1.0000	******	••••	0,0001	20.02	21.01
H2-N2	422.7	0.0000					11.49
[341]		0.2005	0.3618	2.511	0.4111	1.922	
		0.3988	0.3483	2.417	0.3991	1.866	
		0.4996	0.3376	2.343	0.3891	1.819	
		0.5988	0.3353	2.326	0.3882	1.815	
		0.8002	0.3465	2.404	0.4019	1.879	
		1.0000	0.0100		0.1010	2.0.0	23.01
H2-N2	478.2	0.0000					12.64
[341]		0.2005	0.3799	2.641	0.4327	2.027	12.01
(011)	•	0.3988	0.3491	2.427	0.4000	1.874	
		0.4996	0.3498	2.432	0.4022	1.884	
		0.5988	0.3540	2.460	0.4077	1.910	
		0.8002	0.3547	2.465	0.4101	1.921	
		1.0000	0.0021	2, 100	0.4101	1.021	25.27
H2-N2O	300.0	0.0000					8.91
(234)	300.0	0.2143	0.2108	2.756	0.2496	2.055	0.91
(232)		0.4039	0.2108	2.725	0.2540	2.091	
		0.6011	0.2089	2.731	0.2592	2.134	
		1.0000	0.2000	2.101	0.2002	2. 101	14.88
H NO	400.0	0.0000					10.01
H ₂ -N ₂ O [234]	200.0	0.2143	0.0050	2.733	0.2642	2.020	10.81
[234]		0.4039	0.2250 0.2209	2.683	0.2642	2.020	
		0.6011 1.0000	0.2220	2.697	0.2722	2.082	19.43
W N O	500.0	0.0000					10.50
H ₂ -N ₂ O	500.0	0.2143			0.0000		12.56
(234)		0.2143	0.2335	2.719	0.2728	2.000	
			0.2295	2.672	0.2750	2.016	
		0.6011 1.0000	0.2303	2.681	0.2804	2.056	23.55
	550.0						
H ₂ -N ₂ O	550.0	0.0000					13.41
[234]		0.2143	0.2371	2.717	0.2766	1.996	
		0.4039	0.2338	2.679	0.2793	2.016	
		0.6011 1.0000	0.2343	2.685	0.2844	2.052	25.55
H ₂ -O ₂ [334]	293.2	0.0000					8.78
[334]		0.0520	0.3551	2.445	0.3964	1.803	
		0.1000	0.3344	2.302	0.3724	1.694	
		0.1530	0.3297	2.270	0.3690	1.678	
		0.2060	0.3209	2.209	0.3605	1.640	
		0.2550	0.3163	2.178	0.3570	1.624	
		0.2780	0.2600	1.790	0.2937	1.336	
		0.3590	0.3054	2.103	0.3484	1.584	
		0.4060	0.2966	2.042	0.3403	1.548	
		0.4470	0.2975	2.049	0.3427	1.558	
		0.4930	0.2940	2.024	0.3402	1.547	
		0.5430	0.2902	1.396	0.3376	1.536	
		0.5910	0.2771	1.908	0.3252	1.479	
		0.6510	0.2844	1.958	0.3745	1.521	
		0.7000	0.2816	1.939	0.3329	1.514	
		0.7480	0.2791	1.922	0.3315	1.508	
		0.7950	0.2715	1.869	0.3249	1.478	
		0.8470	0.2711	1.866	0.3256	1.481	
		0.8950	0.2555	1.759	0.3110	1.414	
		0.9550	0.2385	1.642	0.2952	1.343	
		1.0000	412000		0.2002	1.0.0	20.24

TABLE 1. COMPOSITION AND TEMPERATURE DEPENDENCE OF Ψ_{ij} ON DIFFERENT SCHEMES OF COMPUTATION (continued)

Gas Pair [Reference]	Temp. (K)	Mole Fraction of Heavier		Method	Second		Viscosity
(Molet elice)	(K)	Component	Ψ ₁₂	¥21	Ψ ₁₂	4 2₁	(N s m ⁻² x 10
H2-O2	293.6	0.0000					8. 85
[327]		0.1610	0.3094	2.131	0.3452	1.570	
		0.2730	0,3073	2.116	0.3475	1.580	
		0.3800	0.3096	2.132	0.3538	1.609	
		0.5270	0.3042	2.094	0.3521	1.601	
		0.6700	0.2949	2.031	0.3459	1.573	
		1.0000					20.40
H ₂ -O ₂	297.37	0.2500					15.60
[337]		0.3670	0.2910	6.854	0.3506	4.937	
		0.5750	0.2932	6.926	0.3473	4.890	
		0.6500	0.2824	6.671	0.3350	4.717	
		0.7450	0.3064	7.239	0.3570	5.026	
		0.8170	0.3696	8.731	0.41	5.862	
		1.0000	*****		*****		20.80
H ₂ -O ₂	300.0	0.0000					8.89
[227]		0.2192	0.3278	2.248	0.3689	1.672	0.00
		0.3970	0.3030	2.079	0.3469	1.572	
		0.6055	0.3064	2.102	0.3563	1.615	
		0.8165	0.2935	2.013	0.3475	1.575	
		1.0000	0,2530	2.013	0.3413	1.075	20.57
WO	400.0	0.0000					• • • •
H ₂ -O ₂ [227]	400.0	0.0000	0.0070				10.87
[221]		0.2192	0.3272	2.198	0.3674	1.630	
		0.3970	0.3147	2.114	0.3592	1.594	
		0.6055	0.3182	2.138	0.3682	1.634	
		0.8165	0.3095	2.080	0.3635	1.613	
		1.0000					25.68
H ₂ -O ₂ [227]	500.0	0.0000					12.59
[227]		0.2192	0.3329	2.205	0.3734	1.634	
		0.3970	0.3199	2.119	0.3645	1.595	
		0.6055	0.3212	2, 128	0.3712	1.624	
		0.8165	0.3045	2.017	0.3583	1.568	
		1.0000					30.17
H2-O2	550.0	0.0000					13.81
[227]		0.2192	0.3416	2.326	0.3847	1.730	
		0.3970	0.3204	2.181	0.3658	1.645	
		0.6055	0.3220	2.192	0.3725	1.675	
		0.8165	0.3063	2.085	0.3603	1.620	
		1.0000			******		32.20
H ₂ -C ₃ H ₈	273.2	0.0000					8.60
[340]		0.0313	0.1583	0.3960	0.1942	3.059	0.00
•		0.0785	0.1434	5.588	0.1772	2.791	
		0.0891	0.1400	3. 502	0.1734	2.731	
		0.1500	0.1333	3.334	0.1687	2.657	
		0.2218	0.1310	3.277	0.1695	2.670	
		0.3271	0.1326	3.318	0.1753	2.760	
		0.5182	0.1325	3. 139	0.1753	2.689	
		0.6978	0.1233	3. 330	0.1707	2.865	
		0.8037	0.1331	4.180	0.1819		
		1.0000	O. 1011	T. 100	0.2201	3.476	7.52
H ₂ -C ₃ H ₈	300.0	0.0000					
[229]	300.0		0 1500	2 000		0.040	8.91
[440]		0.0775	0.1537	3.666	0.1895	2.846	
		0.1250	0.1504	3.588	0.1883	2.828	
		0.2118	0.1477	3.522	0.1891	2.839	
		0.4182	0.1507	3.595 3.633	0.1983	2.978	
					0.2030	3.048	
		0.6296 0.8179	0.1523 0.1644	3.923	0.2178	3.271	

TABLE 1. COMPOSITION AND TEMPERATURE DEPENDENCE OF Ψ_{ij} ON DIFFERENT SCHEMES OF COMPUTATION (continued)

Gas Pair	Temp.	Mole Fraction	First !	Method	Second	Method	Viscosity
[Reference]	(K)	of Heavier Component	Ψ ₁₂	¥21	₩ ₁₂	¥21	(N s m-2 x 10-
H ₂ -C ₃ H ₈	400.0	0.0000					10.81
[229]		0.0775	0.1629	3.600	0.1993	2.773	
••		0.1250	0.1606	3, 549	0.1993	2.773	
		0.2118	0.1576	3.482	0.1996	2.777	
		0.4182	0.1636	3, 615	0.2124	2.955	
		0.6296	0.1616	3, 571	0.2129	2.962	
		0.8179	0.1708	3,775	0.2245	3. 123	
		1.0000	0.1700	0. 110	0.2243	3. 123	10.70
H ₂ -C ₂ H ₈	500.0	0.0000					12.56
[229]	000.0	0.0775	0.1723	3.618	0.2101	2.778	12.00
(220)		0.1250	0.1689	3.547	0.2085	2.757	
		0.2118	0.1655	3.475	0.2082	2.753	
		0.4182	0.1674	3.516			
					0.2161	2.857	
		0.6296	0.1705	3. 581	0.2224	2.941	
		0.8179	0.1855	3.897	0.2400	3. 173	
		1.0000					13.08
H ₂ -C ₃ H ₆	550.0	0.0000					13.47
[229]		0.0775	0.1778	3.684	0.2171	2.831	
		0.1250	0.1725	3. 573	0.2127	2.774	
		0.2118	0.1692	3.507	0.2125	2.772	
		0.4182	0.1708	3.540	0.2198	2.867	
		0.6296	0.1746	3.617	0.2268	2.959	
		0.8179	0.1875	3.886	0.2421	3, 158	
		1.0000			•		14.22
CH4-O2	293.2	0.0000					11.12
{334}		0.0510	0.9550	1.057	0.9908	0.9887	
(002)		0.0990	0.9166	1.014	0.9495	0.9475	
		0.1420	0.9227	1.021	0.9563	0.9542	
		0.1420	0.9140				
				1.012	0.9471	0.9451	
		0.2510	0.9051	1.002	0.9380	0.9360	
		0.2960	0.9107	1.008	0.9441	0.9421	
		0.3490	0.9266	1.026	0.9611	0.9590	
		0.5010	0.9243	1.023	0.9591	0.9571	
		0.5490	0.9296	1.029	0. 964 7	0.9627	
		0.5970	0.9257	1.025	0.9609	0.9588	
		0.6470	0.9256	1.024	0.9609	0.9589	
		0.7020	0.9292	1.028	0.9648	0.9628	
		0.7650	0.9018	0.9980	0.9372	0.9352	
		0.7990	0.9367	1.037	0.9725	0.9705	
		0.8490	0.9237	1.022	0.9597	0.9576	
		0.8980	0.9099	1.007	0.9460	0.9440	
		0.9510	0.8927	0.9880	0.9291	0.9271	
		1.0000	U. 0921	V. 800V	0.9291	0.9271	20.04
CH4-C3H8	293.0	0.0000					10.87
[229]	200.0	0.3684	0.5042	1.881	0.5502	1.764	10.61
[220]							
		0.6383	0.4992	1.862	0.5454	1.748	
		0.8341	0.5072	1.892	0.5540	1.776	
		1.0000					8.01
CH ₄ -C ₃ H ₆ [229]	373.0	0.0000 0.3684	0.5063	1 404	A EE04	1 700	13.31
(220)				1.838	0.5520	1.722	
		0.6383	0.5014	1.820	0.5475	1.707	
		0.8341 1.0000	0.5159	1.872	0.5628	1.755	10.08
nu	480 0						
CH4-C3H4	473.0	0.0000					16.03
[229]		0.3684	0.5179	1.821	0.5640	1.704	
		0.6383	0.5120	1.800	0.5582	1.687	
		0.8341	0.5238	1.842	0.5708	1.725	
		1.0000					12.53

TABLE 1. COMPOSITION AND TEMPERATURE DEPENDENCE OF Ψ_{ij} ON DIFFERENT SCHEMES OF COMPUTATION (continued)

Gas Pair [Reference]	Temp. (K)	Mole Fraction of Heavier	First l	Method V ₂₁	Second	Method	Viscosity (N s m ⁻² x 10
		Component	–––	7 1	₩12	731	(V P III - A IV
СҢ-С₃Ң	523.0	0.0000					17.25
[229]		0.3684	0.5247	1.825	0.5711	1.707	
		0.6383	0.5193	1.807	0.5658	1.691	
		0.8341 1.0000	0.5261	1.830	0.5731	1.713	13.63
N ₂ -NO [315]	293.0	0.0000 0.2674	1.010	1.004	1.015	0.9989	17.47
[010]		0.5837	1.001	0.9957	1.006	0.9904	
		0.6948	1.013	1.007	1.018	1.002	
		1.0000					18.82
N ₂ -NO 373.0	0.0000					20.84	
(315)		0.2674	1.011	0.9935	1.016	0.9882	
•		0.5837	0.9941	0.9767	0.9990	0.9715	
		0.6948	1.000	0.9830	1.005	0.9777	
		1.0000					22.72
N2-O2	298.7	0.0000					17.80
[337]		0.1320	1.093	1.068	1.104	1.057	
		0.2560	1.027	1.003	1.036	0.9927	
		0.4100	1.030	1.006	1.039	0.9955	
		0.5100	1.035	1.011	1.044	1.001	
		0.6600	1.026	1.002	1.035	0.9917	
		0.7600	1.059	1.035	1.068	1.023	
	1.0000					20.80	
N ₂ -O ₂ 3 [227]	300.0	0.0000					17.81
		0.2178	1.002	0.9912	1.012	0.9807	
		0.4107	1.006	0.9945	1.015	0.9839	
		0.7592 1.0000	0.9988	0.9878	1.008	0.9774	20.57
N ₂ -O ₂	400.0	0.0000	1.009				21.90
[227]		0.2178 0.4107	1.009	0.9827	1.018	0.9721	
		0.7592	1.012	0.9862 0.9826	1.022 1.018	0.9756 0.9721	
		1.0000	1.000	0. 5020	1.010	0.0121	25.68
N2-O2	500.0	0.0000					25.60
[227]	500.0	0.2178	1.016	0.9849	1.025	0.9743	20.00
[201]		0.4107	1.020	0.9882	1.029	0.9776	
		0.7592	1.012	0.9813	1.022	0.9708	
	•	1.0000		*****		***************************************	30.17
No-Oo	550.0	0.0000					17.53
N ₂ -O ₂ [227]		0.2178	1.231	0.9080	1.241	0.8973	
-		0.4107	1.031	0.7609	1.039	0.7515	
		0.7592	1.193	0.8805	1.203	0.8698	
		1.0000					27.14
N ₂ O-C ₃ H ₈	300.0	0.0000					14.88
[234]		0.2018	0.7255	1.324	0.7256	1.324	
		0.4171	0.7291	1.330	0.7292	1.330	
		0.7984	0.7323	1.336	0.7324	1.336	
		1.0000					8.17
N ₂ O-C ₂ H ₆	400.0	0.0000					19.43
[234]		0.2018	0.7362	1.339	0.7363	1.339	
		0.4171	0.7309	1.330	0.7310	1.330	
		0.7984 1.0000	0.7316	1.331	0.7317	1.331	10.70
4.O-C-H	500.0	0.0000					23, 55
N ₂ O-C ₂ H ₆ [234]	900.0	0.2018	0.7517	1.356	0 7510	1.356	23. 90
[432]		0.4171	0.7317	1.325	0.7518 0.7349	1.325	
		0.7984	0.7380	1.331	0.7381	1.331	
		1.0000					13.08

Table 1. Composition and temperature dependence of Ψ_{ij} on different schemes of computation (continued)

Gas Pair	Temp.	Mole Fraction of Heavier	First B	fethod	Second	Method	Viscosity
Reference]	(K)	Component	Ψ_{12}	¥21	Ψ ₁₂	¥21	(N s m ^{-t} x 10 ^{-t}
N ₂ O-C ₃ H ₈	550.0	0.0000					25.56
[234]		0.2018	0.7429	1.338	0.7431	1.338	
		0.4171	0.736€	1.327	0.7367	1.326	
		0.7984	0.7335	1.321	0.7336	1.321	
		1.0000					14.22
HCl-CO,	291.0	0.0000					14.26
[346]		0.2000	0.1053	0.1238	0.1053	0.1204	
••		0.4000	0.1190	0.1399	0.1190	0.1361	
		0.6000	0.1451	0.1706	0.1452	0.1660	
		0.8000	0.1967	0.2313	0.1970	0.2251	
		1.0000					14.64
HC1-CO ₂ 291	291.16	0.0000					14.44
[346]	201.10	0.1000	0.8876	1.043	0.8997	1.028	
[010]		0.2000	0.8862	1.042	0.8983	1.026	
		0.3000	0.8845	1.040	0.8967	1.025	
		0.4000	0.8824	1.037	0.8946	1.022	
		0.5000	0.8796	1.034	0.8920	1.019	
		0.6000	0.8783	1.032	0.8907	1.018	
		0.7000	0.8755	1.029	0.8880	1.015	
		0.8000	0.8734	1.027	0.8861	1.012	
		0.9000	0.8658	1.018	0.8786	1.004	
		1.0000	0.0000		210.00		14.83
50,-CO,	289.0	0.0000					14.58
[346]	200.0	0.2000	0.7311	1.248	0.7531	1.215	
		0.4000	0.7318	1,249	0.7543	1.217	
		0.6000	0.7278	1.243	0.7506	1.211	
		0.8000	0.7216	1.232	0.7446	1.202	
		1.0000	V.1420		******		12.43
SO ₂ -CO ₂	289.0	0.0000					14.77
[346]	200.0	0.1000	0.7297	1.245	0.7515	1.212	
(010)		0.2000	0.7310	1,247	0.7531	1.215	
		0.3000	0.7301	1. 246	0.7523	1.213	
		0.4000	0.7315	1.248	0.7540	1.216	
		0.5000	0.7323	1.249	0.7550	1.218	
		0.6000	0.7294	1.244	0.7522	1.213	
		0.7000	0.7298	1.245	0.7528	1.214	
		0.8000	0.7230	1.234	0.7461	1.203	
		0.9000	0.7243	1.236	0.7476	1.206	
		1.0000	******		*******		12.60
SO ₂ -CO ₂	298.2	0.0000					14.80
[35]		0.0800	0.7357	1.203	0.7569	1.170	
(00)		0.1520	0.7399	1.210	0.7615	1.177	
		0.1790	0.7395	1.210	0.7612	1.177	
		0.2770	0.7380	1.207	0.7599	1.175	
		0.3890	0.7304	1.195	0.7523	1.163	
		0.4240	0.7394	1.209	0.7617	1.178	
		0.5030	0.7324	1.198	0.7547	1.167	
		0.5960	0.7323	1.198	0.7548	1.167	
		0.6550	0.7228	1.182	0.7453	1.152	
		0.7120	0.7190	1.176	0.7417	1.147	
		0.7830	0.7233	1.183	0.7461	1.154	
		0.8220	0.7246	1.185	0.7476	1.156	
		0.9720	0.8163	1.335	0.8400	1.299	
		1.0000					13.17

TABLE 1. COMPOSITION AND TEMPERATURE DEPENDENCE OF Ψ_{ij} ON DIFFERENT SCHEMES OF COMPUTATION (continued)

Gas Pair	Temp.	Mole Fraction of Heavier	First N	fethod	Second 1	Method	Viscosity
[Reference]	(K) ¯	Component	Ψ_{12}	Ψ_{21}	Ψ_{12}	W ₂₁	(N s m = x 10
SO ₂ -CO ₂	308.2	0.0000					15.38
[35]		0.0410	0.7178	1.210	0.7385	1.177	
1001		0.1770	0.7231	1.219	0.7445	1.186	
		0.2690	0.7227	1.218	0.7444	1.186	
		0.3960	0.7327	1. 235	0.7551	1.203	,
		0.5090	0.7270	1.225	0,7495	1.194	
		0.6080	0.7252	1.222	0.7478	1.192	
		0.6970	0.7160	1.207	0.7387	1.177	
		0.7820	0.7153	1.206	0.7382	1, 176	
			0.6988	1.178	0.7217	1.150	
		0.8660 1.0000	0.0900	1.110	0.1211	1.100	13.28
~~ ~~	050.0						17,30
SO ₂ -CO ₂ [35]	353.2	0.0000 0.0480	0.7669	1.268	0.7899	1,235	17.30
133)			0.7531	1.245	0.7757	1.212	
		0.1820		1.241	0.7733	1.209	
		0.2880	0.7507				
		0.3880	0.7483	1.237	0.7710	1.205	
		0.5000	0.7478	1.236	0.7706	1, 204	
		0.5980	0.7476	1.236	0.7706	1,204	
		0.6940	0.7443	1.231	0.7674	1.199	
		0.7920	0.7431	1.22 9	0.7663	1.198	
		0.8780	0.7437	1.230	0.7671	1.199	
		1.0000					15.23
CCl4-CH2Cl2	293.15	0.0000					10.25
[292]		0.1575	0.7167	1.355	0.7493	1.297	
100-1		0.2015	0.7234	1.368	0.7570	1.309	
		0.4986	0.7085	1.339	0.7416	1.282	
		0.6886	0.7131	1.348	0.7467	1.291	
		0.8616	0.7101	1.342	0.7438	1.286	
		1.0000	0101	1.012	0.1100	2.200	9.82
	050.00						12.02
CCl ₂ -CH ₂ Cl ₂	353.26	0.0000			0.7291	1 050	12.02
[292]		0.2261	0.6974	1.309		1. 252	
		0.6351 1.0000	0.7015	1.316	0.7345	1.261	11.60
Cl ₄ -CH ₂ Cl ₂	413.43	0.0000					14.27
[292]		0.1615	0.7085	1.343	0.7411	1.285	
		0.2882	0.7275	1.379	0.7614	1.321	
		0.4738	0.7060	1.339	0.7390	1.282	
		0.7096	0.7199	1.365	0.7536	1.307	
		0.8739	0.7295	1.383	0.7633	1.324	
		1.0000					13,63
CH ₂) ₂ CHOH-	313.2	0.0000					1330.00
CC1.		0.1210	0.5343	2.461	0.5881	2. 353	
(Liquid)		0.2550	0.5599	2.579	0.6143	2.458	
[352]		0.3150	0.5667	2.610	0.6206	2.483	
,,		0.3980	0.5798	2.671	0.6333	2. 534	
		0.5000	0.5969	2,749	0.6497	2.599	
		0.5790	0.6168	2.841	0.6691	2.677	
		0.6750	0.6331	2.917	0.6842	2.738	
		0.7800	0.6677	3.076	0.7175	2.871	
				3.219	0.7465	2.987	
		0.88 50 1.0000	0.6987	3. 518	0.1405	4. 901	739.00
H ₂ OH-CCl ₄	313.2	0.0000 0.0 90 0	0 2210	1 600	0.5998	1.404	0.46
(Liquid)			0.5513	1.633		1.343	
[352]		0.2100	0.5271	1.561	0.5738		
		0.2800	0.5135	1.521	0.5598	1.311	
		0.3200	0.5038	1.492	0.5498	1.287	
		0.4900	0.4629	1.371	0.5093	1.192	
		0.6500	0.4167	1.234	0.4646	1.088	
		0.6970	0.4042	1.197	0.4530	1.060	
		0.8070	0.3646	1.080	0.4149	0.9712	
		0.8950	0.3339	0.9890	0.3854	0.9023	
		1,0000					0.74

A STATE OF THE PARTY OF THE PAR

Table 1. Composition and temperature dependence of Ψ_{ij} on different schemes of computation (continued)

Gas Pair	Temp.	Mole Fraction of Heavier	First 1	Method	Second	Method	Viscosity
[Reference]	(K)	Component	¥12	₩ 21	W12	¥21	(N s m-1 x 10
H ₂ COOCH ₂ C ₂ H ₄ -	313.2	0.0000					625.60
C ₄ H ₈ O ₂		0.2000	1.260	0.9936	1.296	0.9430	020.00
(Liquid)		9.3000	1.196	0.9428	1.228	0.8934	
(351)		0.3800	1,190	0.9382	1.221	0.8887	
		0.5200	1.182	0.9319	1.212	0.8824	
		0.6450	1,161	0.9152	1.190	0.8663	
		0.7480	1.142	0.9005	1.171	0.8525	
		0.8750	1.217	0.9593	1.246	0.9067	
		1.0000					1352.50
NH ₃ -C ₂ H ₄	293.2	0.0000					9.82
[222]		0.1133	0.7402	1.188	0.7667	1.142	9.02
		0.1929	0.7358	1.181	0.7624	1.135	
		0.3039	0.7380	1.184	0.7652	1.139	
		0.4828	0.7370	1.183	0.7649	1.139	
		0.7007	0.7374	1.183	0.7661	1.141	
		0.8904	0.7450	1.196	0.7744	1. 153	
		1.0000			•••••		10.08
NH ₃ -C ₂ H ₄	373.2	0.0000					12.79
[222]		0.1133	0.7284	1.221	0.7552	1.175	20110
		0.1929	0.7279	1.220	0.7550	1.174	
		0.3039	0.7301	1.224	0.7578	1.178	
		0.4828	0.7294	1.222	0.7576	1.178	
		0.7007	0.7272	1.219	0.7560	1.176	
		0.8904	0.7346	1.231	0.7641	1.188	
		1.0000 .	0,.010	-11002	0.1021	1.100	12.57
NH3-C2H4	473.2	0.0000					16.46
[222]		0.1133	0.7236	1.273	0.7513	1.226	10.40
		0.1929	0.7194	1.266	0.7471	1.220	
		0.3039	0.7225	1.271	0.7506	1.225	
		0.4828	0.7220	1.270	0.7505	1.225	
		0,7007	0.7183	1.264	0.7473	1. 220	
		0.8904	0.7209	1.288	0.7504	1.225	
		1.0000	0	21200	V. 150-E	1.260	15.41
NH ₂ -C ₂ H ₄	523.2	0.0000					101 0
[222]		0.1133	0.7174	1.286	0.7452	1.239	181.3
·		0.1929	0.7153	1.282	0.7431	1.236	
		0.3039	0.7178	1.287	0.7460	1.241	
		0.4828	0.7190	1.289	0.7477	1.244	
		0.7007	0.7155	1.283	0.7445	1.236	
		0.8904	0.7179	1.287	0.7474	1.243	
		1.0000	0.1115	1.501	0.1414	1.243	16.66
NH ₂ -H ₂	293.2	0.0000					
[222]	2001 H	0.1082	0.2674	2.018	0.3028	1.659	8.77
,,		0.2239	0.2627	1.982	0.3028	1.660	
		0.2975	0.2603	1.964	0.3033	1.661	
		0.5177	0.2547	1.922	0.3033	1.665	
		0.7087	0.2505	1.890	0.3034	1.662	
		0.9005	0.2505	1.890	0.3064	1.679	
		1.0000			A1 0004	1.019	9.82
NH ₃ -H ₂	306.2	0.0000					
[341]	300.2	0.1950	0.2325	1.679	A 884-	1 207	9.06
,		0.3990	0.2325	1.581	0.2645 0.2589	1.367	
•		0.5360	0.2104	1.520		1.358	
		0.6770	0.2104	1.397	0.2543	1.334	
		0.8550	0.1610	1.163	0.2392	1.255	
		1.0000	0. 1010	7. 703	0.2060	1.080	10.59

TABLE 1. COMPOSITION AND TEMPERATURE DEPENDENCE OF V_{ij} ON DIFFERENT SCHEMES OF COMPUTATION (continued)

Gas Pair Laferance	Temp. (K)	Mole Fraction of Heavier	First I V:2	Method V ₂₁	Second Via	Mathod Wat	Viscosity (N s m ⁻² x 10
NH ₂ -H ₂	327.2	Component 0,0000				71	
(111g-111g [341]	327.2	0.1950	0.2365	1.667	0.2685	1.374	9.49
(024)		0.3990	0,2274	1.603	0.2680	1.372	
		0.5360	0.2145	1.512	0.2585	1.323	
		0.6770	0.2019	1.423	0.2484	1.272	
		0.8850	0.1810	1.276	0.2289	1.172	
		1.0000					11.37
NH ₂ -H ₂	371.2	0.0000					10.40
[341]		0.1950	0.2592	1.751	0.2938	1.441	
		0.3990	0.2389	1.614	0.2802	1.374	
		0.5360	0.2274	1.537	0.2723	1.336	
		0.6770	0.2052	1.386	0.2518	1.235	
		0.8550 1.0000	0.1533	1.035	0.1968	0.9652	13.00
MU LU	373.2	0.0000					
NH ₂ -H ₂ {222}	313.2	0.1082	0.2930	1.993	0.3298	1.629	10.30
(464)		0.1082 0.2239	0.2930	1.956	0.3298	1.629	
		0.2239	0.2856	1.943	0.3289	1.628	
		0.5177	0.2773	1.886	0.3295	1.616	
		0.7087	0.2767	1.882	0.3307	1.634	
		0.9005	0.2742	1,865	0.3312	1.636	
		1.0000	******	21000	*******	11000	12.79
NH ₂ -H ₂	421. 3	0.0000					11.46
[341]		0.1400	0.2498	1.628	0.2782	1.317	
		0.4054	0.2658	1,733	0,3100	1.467	
		0.5170	0.2595	1.691	0,3067	1.451	
		0.6005	0.2413	1.573	0.2892	1.369	
		0.8042	0.1975	1.287	0,2462	1.165	
		1.0000					14.85
	473. 2	0.0000					12.11
[222]		0.1082 0.223 9	0.3176	1.974	0.3559	1.606	
		0.2236	0.3153 0.3132	1.960 1.947	0.3583 0.3585	1.617 1.618	
		0.5177	0.3132	1.912	0.3568	1.619	
		0.7087	0.3036	1.887	0.3584	1.618	
		0.9005	0.3025	1.880	0.3604	1.626	
		1.0000	0.0020	4.000	0.0001	1.040	16.46
NH ₂ -H ₂	479.2	0.0000					12.62
[341]		0,1400	0.2626	1.647	0.2921	1.330	
		0,4054	0.2833	1.777	0.3287	1.497	
		0.5170	0.2778	1.742	0.3262	1.485	
		0.6005	0.2674	1.677	0.3172	1.444	
		0.8042 1.0000	0.2255	1.414	0.2769	1.261	17,00
Mir_tr	523.2	0.0000					
NH ₃ -H ₂ (222)	923. Z	0.0000 0.2239	0.3250	1.963		1 410	12.96
(Pee)		0.2239 0.2975	0.3250	1.963	0.3685 0.3680	1.616 1.613	
		0.5177	0.3223	1.908	0.3672	1.613	
		0.7087	0.3130	1.884	0.3670	1.609	
		0.9005	0.3080	1.860	0.3660	. 1. 605	
		1.0000	******		*******		18.13
-(C2H4)2O	288.16	0.0000					8, 68
[226]		0.1330	0.1063	4.654	0, 1419	3.617	
-		0.2650	0.1023	4.476	0.1418	3.616	
		1.0000					7.29
~(CoHL)•O	373.16	0.0000					10.35
(C3H4)2O		0.1330	0.1156	4.636	6,1523	3. 866	•
(224)		0.2660	0.1121	4.494	6, 1 526	3. 576	

TABLE 1. COMPOSITION AND TEMPERATURE DEPENDENCE OF $\hat{\Psi}_{ij}$ ON DIFFERENT SCHEMES OF COMPUTATION (continued)

Gas Pair	Temp.	Mole Fraction of Heavier	First 1	Method	Second	Method	Viscosity
[Reference]	(K)	Component	Ψ ₁₂	¥21	₩12	4 21	(N s m = x 10 =
i ₂ -(C ₂ H ₆) ₂ O	423, 15	0.0000					11.34
[226]	2000	0.1330	0.1197	4.665	0.1570	3, 563	*****
•		0.2650	0.1132	4.412	0.1539	3.491	
		1.0000			01200	J	10.70
i ₂ -(C ₂ H ₆) ₂ O	486.16	0.0000					10.40
[226]	400.10	0.1330	0.1230	4.646	0.1606	3, 532	12.48
(220)		0.2650	0.1187	4.484	0.1602	3. 523	
		1.0000	0.110.	4.405	0.1002	J. V EU	12.15
wet	004.10	A AAAA					
HC1-H ₂ [228]	294. 16	0.0000 0.2031	A 1501	1 000			8.81
[420]		0.2031 0.5042	0.1781 0.2003	1.975	0.2070	1.486	
		0.7179	0.2003 0.1 96 1	2.220	0.2466	1.771	
		0.8220		2. 175	0.2476	1.779	
		1.0000	0.1920	2. 129	0.2452	1.761	14.37
HC1-H ₂	327.16	0.0000					9.41
[228]		0.2031	0.2128	2. 257	0.2470	1.697	
		0.5042	0.2069	2. 193	0.2532	1.739	
		0.7179	0.2027	2.150	0.2543	1.747	
		0.8220	0.1 994	2. 114	0.2529	1.737	
		1.0000				•	16.05
HC1-H ₂	372.16	0.0000					10.36
[228]		0.2031	0.2232	2.288	0.2582	1.714	
		0.5042	0.2140	2.193	0.2604	1.729	
		0.7179	0.2050	2.101	0.2564	1,702	
		0.8220	0.2039	2.090	0.2574	1.709	
		1.0000					18.28
HC1-H ₂	427.16	0.0000					11,42
[228]	201120	0.2409	0.2231	2.254	0.2597	1,700	11.46
[==0]		0.5092	0.2114	2.136	0.2575	1.686	
		0.6989	0.1868	1.887	0.2363	1.548	
		0.8417	0.1642	1.660	0.2152	1.409	
		1.0000	*******	2,000	*******	2	20.44
WC1 11	479 10	0.0000					
HC1-H ₂ [228]	473.16	0.0000 0.2409	0.2385	0.000	0.0000		12.24
[220]		0.5092		2.292	0.2762	1.719	
		0.6989	0.2287	2. 198	0.2755	1.715	
			0.2249	2. 161	0.2764	1.720	
		0.8417 1.0000	0.2218	2.131	0.2761	1.719	23.04
							-
HC1-H ₂	523. 16	0.0000			0.005		13. 15
[228]		0.2991	0.2418	2.275	0.2819	1.718	
		0.5178	0.2386	2.245	0.2861	1.743	
		0.6312	0.2305	2.169	0.2805	1.709	
		0.7947 1.0000	0.2295	2. 159	0.2831	1.725	25.28
							20.00
8O ₂ -H ₂	290.16	0.0000					8.88
[231]		0.1676	0.1354	3.035	0.1661	2.216	
		0.2286	0.1321	2.960	0.1657	2.211	
		0.2963	0.1273	2.854	0.1634	2.180	
		0.5075	0.1230	2.756	0.1655	2. 207	
		0.8215 1.0000	0.1205	2.701	0.1682	2. 244	12.59
							-
80 ₁ -H ₂ (347)	303.2	0.0000			A 1855		9.00
(397)		0.2005	0.1406	3.023	0.1736	2.221	
		0.4059	0.1506	3, 237	0.1938	2.481	
		0.4919	0.1512	3. 250	0.1966	2.516	
		0.5057	0.1567	3.412	0.2068	2.646	
		0.8219 1.0000	0.1506	3. 230	0.2010	2. 573	19.90
		1.000					14.30

TABLE 1. COMPOSITION AND TEMPERATURE DEPENDENCE OF Ψ_{ij} ON DIFFERENT SCHEMES OF COMPUTATION (continued)

Gas Pair	Temp.	Mole Fraction of Heavier	First	Method	Second	Method	Viscosity
Reference]	(K)	Component	Ψ ₁₂	₩21	Ψ_{12}	₩21	(N s m = x 10 =
90 ₂ -H ₂	318.16	0.0000					9.45
[231]		0.1676	0.1386	3.002	0.1691	2.181	0.10
		0.2286	0.1364	2.955	0.1702	2, 195	
		0.2963	0.1293	2.801	0.1651	2. 129	
		0.5075	0.1291	2.798	0.1722	2.220	
		0.8028	0.1034	2.241	0,1481	1.910	
		1.0000					13.86
SO ₂ -H ₂	328.2	0.0000					9.56
[347]		0.2005	0.1406	2.965	0,1730	2,172	5.50
		0.4000	0.1511	3.187	0.1939	2.435	
		0.4863	0.1491	3. 145	0.1939	2.435	
		0.5975	0.1522	3.210	0.1996	2,506	
		0.7866	0.1598	3, 370	0.2102	2,639	
		1.0000			******		14.40
SO ₂ -H ₂	343.16	0.0000					9.94
[231]		0.1657	0.1401	2.953	6, 1701	2.135	0.01
		0.1676	0.1417	2.987	0.1722	2, 161	
		0.2366	0.1385	2.921	0.1726	2. 166	
		0.2963	0.1325	2.795	0.1684	2.114	
		0,4823	0.1326	2.797	0.1752	2.199	
		0,6175	0.1277	2.694	0.1728	2. 169	
		0.6999	0.1276	2.690	0.1741	2, 185	
		0.8028	0.1283	2.705	0.1765	2, 215	
		1.0000	011200	200	0.1100	2,210	14.98
SO ₂ -H ₂ [231]	365.16	0.0000					10.00
		0.1657	0.1445	2.979	0.1750	2, 147	10.37
		0.1676	0.1459	3.007	0.1769	2, 170	
		0.2306	0.1414	2.914	0.1752		
		0.4823	0.1362	2.806	0.1789	2.149	
		0.6175	0.1298	2.675	0.1749	2, 195 2, 1 4 6	
		0.6989	0.1363	2.810	0.1837	2.146 2.254	
		0.8228	0.1296	2.670	0.1781		
		1.0000	V. 1290	2.010	A. 1101	2.185	15.99
80 ₂ -H ₂	373.2	0.0000					
[347]	0.012	0.2005	0.1569	3.090	0 1011	0.041	10.47
(02.)		0.4000	0.1735	3.418	0.1911	2, 241	
		0.4863			0.2182	2,558	
		0.5975	0.1758	3. 464 3. 476	0.2226	2,610	
		0.7866	0.1765		0.2251	2,639	
		1.0000	0.1853	3.650	0.2363	2,771	16.89
90W	397.16	0.0000					
90 ₂ -H ₂ [231]	361.10	0.0000 0.1636	0.1482	2.985	0.1788	0 140	11.02
		0.3265	0.1435	2.889		2, 143	
		0.4698	0.1435 0.1409	2.837	0.1817 0.1836	2.178	
		0.6760	0.1358	2.735		2.201	
		1.0000	0.1000	2. 139	0.1826	2, 189	17.39
80H.	423.2	0.0000					
[347]		0.2000	0.1706	3.258	0.2070	2.352	11.55
-		0.4018	0.1616	3, 085	0.2070	2.352	
		0.5023	0.1661	3.173	0.2012	2.321	
		0.6024	0.1691	3, 229	0.2119	2.400 2.467	
		0.8110	0.1771	3, 381	0.2170	2.467 2.592	
		1.0000	V-4114	J, 401	v. 2200	4. OPZ	19.22
9O ₂ -H ₂	432.16	0.0000					
[231]		0.1512	0.1602	3.131	0.1919	2, 233	11.67
-		0.1676	0.1537	3.004	0.1849	2, 233 2, 1520	
		0.3265	0.1473	2, 880	0.1856		
		0.4698	0.1458	2, 850	0.1887	2, 159 2, 196	
		0.6760	0.1453	2.840	0.1928		
		1,0000	0.1403	2.000	V. 1928	2.243	18.97

TABLE 1. COMPOSITION AND TEMPERATURE DEPENDENCE OF Ψ_{ij} ON DIFFERENT SCHEMES OF COMPUTATION (continued)

Gas Pair	Temp.	Mole Fraction of Heavier	First 1		Second		Viscosity
Reference]	(K)	Component	¥12	4 21	Ψ_{12}	4 21	(N s m ⁻² x 10 ⁻⁴
SO ₂ -H ₂	472.16	0.0000					12,87
[231]		0.1512	0.1526	3.013	0.1828	2.148	
(201)		0.3265	0.1526	3.014	0.1920	2.257	
		0.4905	0.1515	2.992	0.1959	2.302	
		0.6760	0,1465	2.893	0.1942	2.283	
		1.0000			******		20.71
SO ₂ -H ₂	473.2	0.0000					12.26
[347]		0.2000	0.1699	3.129	0.2050	2.247	
•		0.4018	0.1563	2.879	0.1976	2.166	
		0.5023	0.1535	2.827	0.1974	2.164	
		0.6024	0.1546	2.847	0.2010	2.203	
		0.8110	0.1479	2.725	0.1975	2.165	
		1.0000					21.15
NH ₂ -CH ₄	287.66	0.0000					10.91
[346]		0.1000	0.8311	0.9832	0.8347	0.9787	
•		0.2000	0.8243	0.9751	0.8279	0.9707	
		0.3000	0.8230	0.9737	0.8268	0.9694	
		0.4000	0.8242	0.9750	0.8280	0.9708	
		0.5000	0.8211	0.9714	0.8250	0.9673	
		0.6000	0.8206	0.9708	0.8246	0.9668	
		0.7000	0.8156	0.9648	0.8196	0.9610	
		0.8000	0.8123	0.9609	0.8164	0.9572	
		0.9000	0.8264	0.9777	0.8307	0.9739	
		1.0000					9.79
NH ₂ -CH ₄	298.2	0.0000					11.00
[134]		0.0740	0.8876	1.020	0.8916	1.016	
		0.1970	0.8645	0.9936	0.8684	0.9892	
		0.3020	0.8573	0.9853	0.8612	0.9810	
		0.4040	0.8264	0.9498	0.8302	0.9457	
		0.4970	0.8150	0.9368	0.8189	0.9328	
		0.5 9 10	0.8134	0.9348	0.8173	0.9310	
		0.7000	0.8327	0.9571	0.8368	0.9532	
		0.7950	0.8299	0.9538	0.83 <u>4</u> 0	0.9500	
		0.8980	0.8598	0.9882	0.8641	0.9843	
		1.0000					10.16
NH ₃ -CH ₄	308.2	0.0000					11.38
[134]		0.0800	0.9124	1.051	0.9166	1.046	
		0.1850	0.8884	1.023	0.8924	1.019	
		0.3040	0.8741	1.007	0.8780	1.002	
		0.4060	0.8732	1.006	0.8773	1.001	
		0.4990	0.8853	1.020	0.8894	1.015	
		0.5980	0.8547	0.9844	0.8588	0.9802 0.9470	
		0.6970	0.8256	0.9508	0.8297		
		0.7980	0.7991	0.9203	0.8032	0.9167	
		0.8710 1.0000	0.7982	0.9193	0.8024	0.9158	10.49
VIII (III	050 0						12.53
NH ₃ -CH ₄	353.2	0.0000		0.9503	0.8594	0.9457	12.93
[134]		0.0460	0.8558	0.9608	0.8691	0.9563	
		0.1780	0.8663	0.9590	0.8675	0.9546	
		0.2900	0.8637			0.9546	
		0.3940	0.8612	0.9562 0.9521	0.8651 0.8615	0.9520	
		0.4970 0.5960	0.8575 0.8556	0.9521	0.8596	0.9459	
	•	0.6890		0.9423	0.6528	0.9384	
		0.6890	0.8487 0.8439	0.9370	0.8480	0.9332	
		0.8350	0.8491	0.9428	0.8533	0.9390	
		1.0000	V. 0001	A. BEND	4.0000	3.0000	11.98
		** 0000					*****

TABLE 1. COMPOSITION AND TEMPERATURE DEPENDENCE OF ψ_{ij} ON DIFFERENT SCHEMES OF COMPUTATION (continued)

Gas Pair	Temp.	Mole Fraction of Heavier	First 1	lethod	Second	Method	Viscosity
[Reference]	(K)	Component	412	₩ ₂₁	W12	W ₂₁	(N s m-2 x 10-4
SO ₂ -CH ₄	308.2	0.0000					11.38
[35]		0.0850	0.5065	1.733	0.5545	1.542	-2.00
•		0.2210	0.4884	1.671	0,5355	1.489	
		0.3020	0.4862	1.664	0.5343	1.485	
		0.4330	0.4770	1.632	0,5260	1.462	
		0.5670	0.4660	1.504	0.5160	1.434	
		0.6740	0.4564	1.562	0.5073	1.410	
		0.7910	0.4410	1.509	0.4928	1.370	
		0.8710	0.4214	1.442	0.4737	1.317	
		1.0000	V. TALT	1. 414	0.4757	1.041	13.28
803-CH4	353. 2	0.0000	•				12.53
[35]	300. A	0.1460	0.5056	1.663	0.5524	1.476	12.55
[99]		0.2600	0. 5279	1.736	0.5791	1.548	
		0.3920	0.4970	1.635			
		0.4780	0.4945	1.030	0.5461	1.460	
		0.5900	0.4901	1.627	0.5445	1.455	
			0.4901	1.612	0.5412	1.446	
		0.6810	0.4850	1.598	0.5377	1.437	
		0.8710 1.0000	0.4914	1.616	0.5451	1.457	15.21
NH ₃ -N ₂	293. 2	0.0000					9.82
[222]		0.1117	0.9367	0.8670	0.9594	0.8242	
		0.2853	0.9316	0.8623	0.9552	0.8206	
		0.4362	0.9284	0.8 594	0.9531	0.8188	
		0.7080	0.9207	0.8522	0.9474	0.8139	
		0.8889	0.9225	0.8539	0.9507	0.8167	
		1.0000					17.45
NH ₃ -N ₂ 297 [347]	297.2	0.0000					10.28
		0.2036	0.9701	0.9372	0.9962	0.8931	
		0.4291	0.9783	0.9450	1.005	0.9014	
		0.4973	0.9719	0.9389	0.9991	0.8958	
		0.5980	6.9473	0.9412	1,002	0.8982	
		0.7993	0.8595	0.8303	0.8867	0.7950	
		1.0000		*******			17.50
NH ₂ -N ₂	327.2	0.0000					11.37
[347]	02.12	0.2036	0.8779	0.8584	0.8999	0.8167	*****
[441]		0.4291	0.9469	0.9259	0.9732	0.8832	
		0.4973	0.9351	0.9144	0.9615	0.8725	
		0.5980	0.9176	0.8972	0.9441	0.8567	
		0.7993					
		1.0000	0.9362	0.9154	0.9642	0.8750	19.13
NH ₃ -N ₂ [347]	373,2	0.0000 0.2036	0.8589	0.8791	0.8812	0.8371	13,07
[081]		0.4291	0.9303	0.9522	0.9570	0.9091	
		0.4973	0.9115	0.9330	0.9386	0.8010	
		0. 5980	0.9109	0.9324	0.9379	0.8910	
		0.7993	0.9077	0.9291			
		1.0000	0.9077	0.9291	0.9358	0.8 89 0	21.01
NH ₃ -N ₂ [222]	373.2	0.0000 0.1117	0.9147	0.9229	0.9387	0. 8790	12.79
(eve)		0.2853	0.9136	0.9218	0.9386	0.8789	
		0.4362	0.9055	0.9218	0.9366	0.8719	
		0.7080	0.9091	0.9081	0.9311	0.8684	
		0.8889	0.8943	0.9012			
		1.0000	v. 00-10	A* 24.13	0.9228	0.8641	20.85
107410	409 0	0.0000					14.00
NH ₃ -N ₂ [347]	423.2	0.0000 0.2397	0.8789	0.9363	0.9034	0. 8932	14.93
(041)							
		0.4080	0.8982	0.9569	9.9245	0.9140	
		0.5072	0.8915	0.9496	0.9181	0.9076	
		0. 60 15 0.7748	0.9167 0.9100	0.9768 0.9694	0.9444 0.9383	0.9336 0.9277	

TABLE 1. COMPOSITION AND TEMPERATURE DEPENDENCE OF $\hat{\mathbf{w}}_{ij}$ ON DIFFERENT SCHEMES OF COMPUTATION (continued)

Gas Pair	Temp,	Mole Fraction	First 1	dethod	Second	Method	Viscosity
Reference]	(K)	of Heavier Component	Ψ ₁₂	¥21	Ψ ₁₂	¥ ₁	(N s m * 10-6
NH ₃ -N ₂	473.2	0.0000					16.46
[222]		0.1117	0.8950	0.9843	0.9205	0.9394	
		0.2853	0.8899	0.9786	0.9160	0.9348	
		0.4362	0.8871	0.9755	0.9137	0.9325	
		0.7080	0.8824	0.9704	0.9103	0.9291	
		0.8889	0.8762	0.9635	0.9050	0.9236	
		1.0000					24.62
NH ₃ -N ₂	523, 2	0.0000					18.13
[222]		0.1117	0.8802	0.9992	0.9058	0.9543	
		0.2853	0.8837	1.003	0.9102	0.9589	
		0.4362	0.8814	1.000	0.9084	0.9570	
		0.7080	0.8773	0.9959	0.9054	0.9539	
		0.8889	0.8722	0.9901	0.9011	0.9493	
		1.0000			******		26.27
NH ₃ -N ₂	573.2	0.0000					16.80
[347]	0.0.2	0.2397	0.8761	0.9596	0.9011	0.9160	20.00
(021)		0.4080	0.9139	1.001	0.9413	0.9569	
		0.5072	0.9240	1.012	0.9520	0.9677	
		0.6015	0.9316	1.020	0.9600	0.9759	
		0.7748	0.9250	1.013	0.9537	0.9695	
		1.0000	0.5250	1.013	0.8501	0.5050	25.23
WII N.O.	298.2	0.0000					10.10
NH ₃ -N ₂ O [35]	200.2		0.5417	0.9570	0.5647	0.8653	10.16
[39]		0.1050					
		0.2070	0.7384	1.305	0.7817	1.198	
		0.3030	0.7333	1.298	0.7765	1.190	
		0.4060	0.7213	1.2 4	0.7641	1.171	
		0.5040	0.7258	1.282	0.7693	1.179	
		0.5980	0.7325	1.294	0.7767	1, 190	
		0.7020	0.7381	1.304	0.7827	1.199	
		0.8020	0.7002	1.237	0.7446	1.141	
		0.8990 1.0000	0.6971	1.232	0.7421	1.137	14.86
NH ₃ -N ₂ O	308.2	0.0000					10, 49
[35]		0.1120	0.6490	1.144	0.6823	1.043	
		0.2100	0.6637	1.170	0.7000	1.070	
		0.3130	0.6695	1.180	0.7077	1.082	
		0.4020	0.6732	1.187	0.7128	1.090	
		0.5020	0.6805	1.200	0.7217	1,103	
		0.6020	0.6823	1.203	0.7245	1.108	
		0.7060	0.6860	1.209	0.7293	1,115	
		0.8210	0.6930	1.222	0.7374	1.127	
		0.9510 1.0000	0.6963	1.227	0.7416	1.134	15.38
		1.0000					10.00
NH ₃ -N ₂ O	353.2	0.0000					11.98
[35]		0.1420	0.6510	1.165	0.6856	1.064	
		0.2210	0.6593	1.180	0.6959	1.080	
		0.3200	0.6620	1.185	0.7002	1.087	
		0.4080	0.6638	1.188	0.7032	1.091	
		0.5020	0.66 59	1. 192	0.7067	1.097	
		0.6060	0.6609	1.183	0.7026	1.090	
		0.7160	0.6577	1.177	0.7006	1.087	
		0.8160	0.6562	1.174	0.7001	1.087	
		0.9190	0.8409	1.147	0.6858	1.064	
		1.0000					17.30

TABLE 1. COMPOSITION AND TEMPERATURE DEPENDENCE OF Ψ_{ij} ON DIFFERENT SCHEMES OF COMPUTATION (continued)

Gas Pair	Temp.	Mole Fraction of Heavier	First M	lethod	Second 1		Viscosity
[Reference]	(K)	Component	Ψ ₁₂	₩21	Ψ ₁₂	¥21	(Nsm ⁻² x10
SO ₂ -N ₂ O	298.2	0.0000					14.86
[35]		0.0430	0.7685	1.262	0.7915	1.229	
,		0.1780	0.7316	1.201	0.7530	1.169	
		0.2970	0.7360	1.209	0.7579	1.177	
		0.4010	0.7367	1.210	0.7590	1.178	
		0.4930	0.7421	1.219	0.7647	1.187	
		0.5960	0.7460	1.225	0.7689	1.194	
		0.7020	0.7328	1.203	0.7557	1.173	
		0.8000	0.7284	1.196	0.7514	1.166	
		0.9000	0.7488	1.230	0.7722	1.199	
		0.9140	0.8187	1.344	0.8425	1.308	
		1.0000					13.17
80N-0	308.2	0.0000					15.38
SO ₂ -N ₂ O [35]	555.2	0.0420	0.8986	1.515	0.9298	1.481	
[00]		0.1470	0.7606	1.282	0.7838	1.249	
		0.2490	0.7511	1.266	0.7739	1.233	
		0.3980	0.7405	1.248	0.7632	1.216	
		0.4760	0.7378	1.244	0.7605	1.212	
		0.5750	0.7341	1.237	0.7569	1,206	
		0.6720	0.7110	1.198	0.7335	1,169	
		0.7770	0.6931	1.168	0.7156	1.140	
		0.8790	0.6593	1.111	0.6819	1.086	
		1.0000	0.000	1.111	0.0020	2.000	13.28
60 N.O	353,2	0.0000					17.30
SO ₂ -N ₂ O [35]	355.2	0.0350	0.7489	1.238	0.7709	1.205	21100
		0.1830	0.7463	1.234	0.7685	1.201	
		0.1630	0.7443	1.230	0.7666	1.198	
		0.2750	0.7415	1.226	0.7639	1.194	
			0.7429	1.228	0.7655	1.196	
		0.4740	0.7398		0.7626	1. 192	
		0.5760	0.7398	1.223	0.7565	1.182	
		0.6750		1.213	0.7529	1.177	
		0.7860	0.7299	1.207	0.7529	1.160	
		0.8950 1.0000	0.7188	1.188	0.7420	1. 100	15.23
							9.82
NH ₂ -O ₂	293.2	0.0000	0.0040	0.0504	0.0000	0.7968	0.02
[222]		0.1245	0.9346	0.8524	0.9603	0.7929	
		0.2921	0.9287	0.8470	0.9556		
		0.5214	0.9272	0.8456	0.9563	0.7935	
		0.7014	0.9218	0.8407	0.9527	0.7905	
		0.8649 1.0000	0.9172	0.8365	0.9500	0.7883	20.23
							10.70
NH ₂ -O ₂	373.2	0.0000			0.9490	0.8503	12.79
[222]		0.1245	0.9215	0.9076		0.8472	
		0.2921	0.9170	0.9031	0.9456	0.8466	
		0.5214	0.9146	0.9007	0.9449	0.8444	
		0.7014	0.9107	0.8969	0.9425		
		0.8649 1.0000	0.9104	0.8966	0.9436	0. 8455	24.40
							10 40
NH ₃ -O ₂ [222]	473.2	0.0000 0.1245	0.9077	0.9674	0.9372	0.9086	16.46
(222)		0.2921	0.9062	0.9657	0.9365	0.9079	
		0.5214	0.9033	0.9626	0.9349	0.9064	
		0.7014	0.9001	0.9592	0.9328	0.9043	
		0.8649	0.9032	0.9626	0.9370	0.9084	
		1.0000					29.02
NH3-CH3NH2	273.0	0.0000					9.20
(348)		0.2500	0.7121	1.372	0.7457	1.313	
(020)		0.5000	0.7065	1.361	0.7401	1.303	
		0.7500	0.6988	1.347	0.7325	1.290	
							8.71

TABLE 1. COMPOSITION AND TEMPERATURE DEPENDENCE OF Ψ_{ij} ON DIFFERENT SCHEMES OF COMPUTATION (continued)

	Gas Pair	Temp.	Mole Fraction of Heavier	First	Method	Second	Method	Viscosity
	[Reference]	(K)		Ψ ₁₂	₩21	Ψ_{12}	Ψ_{21}	(N s m ⁻¹ x 10 ⁻¹
	NH3-CH3NH2	298.0	0.0000				•	10.00
0.5000	[348]			0.7057	1.378	0.7393	1. 319	10.00
0.7500 0.8965 1.356 0.7303 1.302 9.43 1.0000 0.2500 0.7011 1.385 0.7303 1.302 1.099 1.3600 0.8977 1.378 0.7313 1.320 0.7500 0.6927 1.378 0.7313 1.320 0.7500 0.6925 1.381 0.7313 1.322 0.7500 0.6926 0.6926 1.381 0.7313 1.332 0.7500 0.6926 1.381 0.7201 1.378 0.7500 0.6929 1.381 0.7201 1.324 0.7500 0.6929 1.381 0.7267 1.324 0.7500 0.6929 1.381 0.7267 1.324 0.7500 0.6929 1.381 0.7267 1.324 0.7500 0.6929 1.381 0.7267 1.324 0.7500 0.6929 1.381 0.7267 1.324 0.7500 0.6929 1.381 0.7267 1.324 0.7271 1.335 0.7500 0.6929 1.391 0.7267 1.325 0.7500 0.6922 1.391 0.7268 1.333 0.7500 0.6922 1.391 0.7258 1.333 0.7500 0.6922 1.391 0.7258 1.333 0.7500 0.6922 1.391 0.7258 1.332 11.61 0.7500 0.6938 1.394 0.7271 1.335 0.7500 0.6938 1.394 0.7251 1.335 0.7500 0.6938 1.394 0.7251 1.335 0.7500 0.6938 1.394 0.7251 1.335 0.7500 0.6938 1.394 0.7251 1.335 0.7500 0.6938 1.394 0.7251 1.335 0.7500 0.6938 1.394 0.7186 1.394 0.7500 0.6938 1.394 0.7181 1.345 0.7500 0.6938 1.394 0.7185 1.394 0.7500 0.6938 1.394 0.7185 1.394 0.7500 0.6938 1.394 0.7181 1.345 0.7500 0.6938 1.394 0.7181 1.345 0.7500 0.6938 1.394 0.7500 0.6937 1.444 0.7181 1.345 0.7500 0.6938 1.402 0.7181 1.345 0.7500 0.6938 1.402 0.7181 1.345 0.7500 0.7500 0.6937 1.444 0.7131 1.346 0.7500 0.7500 0.7500 0.6937 1.445 0.7330 1.394 0.7500 0.7500 0.7500 0.6937 1.445 0.7330 1.394 0.7500 0.750								
1.0000 1.0000 1.385 1.386 1.326 10.99 1.381 1.326 10.99 1.381 1.385 1.381 1.326 10.15 1.385 1.386 1.								
[346] 0.2500				*******	1,000	0.1505	1.002	9.43
[346] 0.2500	M-CH-NH-	323.0	0.0000					
0.5000	[348]	02010		0.7011	1 985	0 7246	1 996	10.99
0.7500 0.6925 1.368 0.7262 1.311 10.15	•							
1,0000								
				0.0020	1.300	0.1262	1.311	10.15
[348] 0.2500 0.6974 1.381 0.7313 1.332 0.5000 0.6954 1.386 0.7290 1.382 0.5000 0.6924 1.386 0.7290 1.324 10.88 0.7500 0.6929 1.381 0.7267 1.324 10.88 0.7500 0.6920 1.381 0.7267 1.324 10.88 0.7500 0.6920 1.381 0.7267 1.324 10.88 0.7500 0.6900 0.6938 1.394 0.7271 1.335 12.79 0.5000 0.6900 0.6922 1.391 0.7258 1.335 0.7500 0.6914 1.389 0.7253 1.335 11.615 0.7500 0.6914 1.389 0.7253 1.332 11.61 0.7208 1.342 0.7500 0.6914 1.389 0.7253 1.332 11.615 0.5000 0.6915 1.401 0.7208 1.342 0.5000 0.6915 1.401 0.7208 1.342 0.5000 0.6915 1.396 0.7186 1.338 0.7500 0.6958 1.397 0.7186 1.338 0.7500 0.6958 1.397 0.7186 1.340 0.7600 0.6916 1.340 0.7000 0.6916 1.340 0.7000 0.6916 1.340 0.7000 0.6916 1.340 0.7000 0.6916 1.340 0.7181 1.345 0.5000 0.6917 1.414 0.7235 1.355 0.7500 0.6918 1.402 0.7181 1.345 0.5000 0.6917 1.414 0.7235 1.355 0.7500 0.6918 1.402 0.7181 1.345 0.5000 0.6917 1.407 0.7139 1.348 0.5000 0.6917 1.407 0.7139 1.348 0.5000 0.6917 1.407 0.7138 1.352 0.7500 0.6900 0.6922 1.410 0.7188 1.352 0.7500 0.6900 0.6922 1.410 0.7188 1.352 0.7500 0.7500 0.6937 1.406 0.7141 1.346 0.7001 1.346 0.7000 1.352 0.7500 0.6937 1.408 0.7001 1.344 0.7001 1.346 0.7000 1.352 0.7500 0.6937 1.408 0.7001 1.352 0.7500 0.6937 1.409 0.7008 1.352 0.7500 0.6938 1.400 0.7008 1.352 0.7500 0.6938 1.401 0.7004 1.352 0.7500 0.6938 1.401 0.7004 1.352 0.7500 0.6938 1.401 0.7004 1.352 0.7500 0.6938 1.401 0.7004 1.352 0.7500 0.6938 1.401 0.7004 1.352 0.7500 0.6938 1.401 0.7004 1.352 0.7500 0.6938 1.401 0.7004 1.352 0.7500 0.6938 1.401 0.7004 1.352 0.7500 0.6938 1.401 0.7004 1.352 0.7500 0.6938	NH-CH-NH-	348.0	0.0000					
0.5000	[348]	02010		0 6979	1 201	A 7919	1 990	11.89
10.88 1.381 0.7267 1.324 10.88 1.381 0.7267 1.324 10.88 1.380 1.381 0.7267 1.324 10.88 1.381 0.7267 1.325 1.381 10.88 1.381	,,							
1,0000 10,88 1,384 0,7271 1,335 12.79 1,560 1,386 1,384 0,7271 1,335 12.79 1,560 1,386 1,389 0,7258 1,332 1,332 1,560 1,0000 1,5600 0,6922 1,391 0,7258 1,332 1,332 1,661 1,610 1,56								
H3_CH_NH2 373.0				0.0025	1.361	0.7267	1.324	10.00
[348] 0.2500 0.6938 1.394 0.7271 1.335 0.500 0.6922 1.391 0.7258 1.333 0.7500 0.6914 1.389 0.7253 1.332 11.61 1.61 1.61 1.61 1.61 1.61 1.61 1.								10.00
11.55 1.550 1.55	Nng-ChgNHg	373.0				_		12.79
11.61 13.62 13.62 13.62 13.62 13.62 13.62 13.65 13.6	(398)							
1.0000 11.61 13.61 14.60 13.48 13.								
H ₃ -CH ₃ NH ₂ 423.0 0.0000 0.6875 1.401 0.7208 1.342 13.00 0.5000 0.6851 1.396 0.7186 1.338 0.7500 1.0000 13.07				0.6914	1.389	0.7253	1.332	
[348] 0.2500 0.6875 1.401 0.7208 1.342 1.300 0.5000 0.6851 1.396 0.7186 1.333 1.333 0.7500 0.7500 0.6858 1.397 0.7186 1.333 1.307 1.0000 1.0000 1.0000 1.0000 1.307 1.307 1.340 1.307 1.308 1.30			1.0000					11.61
[348] 0.2500 0.6875 1.401 0.7208 1.342 1.300 0.5000 0.6851 1.396 0.7186 1.333 1.333 0.7500 0.7500 0.6858 1.397 0.7186 1.333 1.307 1.0000 1.0000 1.0000 1.0000 1.307 1.307 1.340 1.307 1.308 1.30	NH3-CH2NH2	423.0	0.0000					14.60
0.5000	(348)		0.2500	0.6875	1.401	0.7208	1.342	24.00
13.07 1.340 1.340 1.307 1.340 1.307 1.340 1.307 1.307 1.307 1.307 1.307 1.307 1.307 1.307 1.307 1.307 1.307 1.307 1.307 1.307 1.307 1.307 1.308 1.307 1.307 1.307 1.307 1.308 1.30			0.5000	0.6851				
1.0000 13.07 13.07 14.7 16.47 16.47 16.47 16.47 16.48 16.47 16.48 16.4								
[348] 0.2500 0.6848 1.404 0.7181 1.345 0.500 0.5000 0.6897 1.414 0.7235 1.355 0.7500 0.6893 1.402 0.7181 1.345 1.345 1.0000 14.66 1.0000 14.66 1.0000 14.66 1.0000 14.66 18.25 0.2500 0.6807 1.407 0.7181 1.345 1.352 0.7500 0.6803 1.406 0.7141 1.348 16.11 1.346 1.0000 1.352 0.7500 0.6734 1.401 0.7071 1.344 1.361 0.5000 0.6736 1.410 0.7068 1.352 0.7500 0.6731 1.409 0.7068 1.352 0.7500 0.6731 1.409 0.7068 1.352 1.00000 1.00000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0			1.0000			*******	1.010	13.07
[348] 0.2500 0.6848 1.404 0.7181 1.345 0.500 0.5000 0.6897 1.414 0.7235 1.355 0.7500 0.6893 1.402 0.7181 1.345 1.345 1.0000 14.66 1.0000 14.66 1.0000 14.66 1.0000 14.66 18.25 0.2500 0.6807 1.407 0.7181 1.345 1.352 0.7500 0.6803 1.406 0.7141 1.348 16.11 1.346 1.0000 1.352 0.7500 0.6734 1.401 0.7071 1.344 1.361 0.5000 0.6736 1.410 0.7068 1.352 0.7500 0.6731 1.409 0.7068 1.352 0.7500 0.6731 1.409 0.7068 1.352 1.00000 1.00000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0	HCH-NH-	473.0	0.0000					30.45
1.000	[348]			0.6848	1 404	0 7191	1 946	10.47
1.0000 1								
1.0000 14.66 H ₃ -CH ₃ NH ₂ 523.0 0.0000 0.6807 1.407 0.7130 1.348 0.5000 0.6822 1.410 0.7158 1.352 0.7500 0.6803 1.406 0.7141 1.346 16.11 H ₃ -CH ₃ NH ₂ 573.0 0.0000 0.6903 1.406 0.7041 1.349 0.5000 0.6987 1.454 0.7330 1.344 0.7500 0.6987 1.454 0.7330 1.344 0.7500 0.6750 0.6734 1.401 0.7071 1.344 1.0000 17.56 H ₃ -CH ₃ NH ₂ 623.0 0.0000 0.6734 1.401 0.7071 1.344 1.361 0.5000 0.6736 1.410 0.7069 1.352 0.7500 0.6736 1.410 0.7069 1.352 0.7500 0.6736 1.410 0.7068 1.352 1.00000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.0000 1.00000 1.00000 1.00000 1.00000 1.00000 1.0000								
H ₃ -CH ₃ NH ₂ [348]				0.0093	1.402	0.7181	1.345	14.66
[348] 0.2500 0.6807 1.407 0.7139 1.348 0.500 0.5000 0.6822 1.410 0.7158 1.352 0.7500 0.6803 1.406 0.7141 1.348 1.000 16.11 1.348 1.0000 16.811 1.348 1.0000 16.811 1.348 1.0000 16.11 1.348 1.0000 16.811 1.348 1.0000 16.11 1.348 1.0000 16.11 1.348 1.0000 16.11 1.348 1.0000 16.11 1.348 1.0000 16.750 0.6765 1.408 0.7095 1.349 1.344 1.0000 17.500 0.6734 1.401 0.7071 1.344 1.341 1.0000 17.56 1.349 17.56 1.350 1	SU _CU NU	500 0						
0.5000		523.0						18.25
0,7500	[940]							
1.0000 18 ₃ -CH ₃ NH ₂ 573.0 0.0000 [348] 0.2500 0.6765 1.408 0.7095 1.349 0.5000 0.6987 1.454 0.7330 1.394 0.7600 0.6734 1.401 0.7071 1.344 1.0000 17.56 18 ₃ -CH ₃ NH ₂ 623.0 0.0000 0.6734 1.419 0.7114 1.361 0.5000 0.6736 1.410 0.7068 1.352 0.7500 0.6736 1.410 0.7068 1.352 1.0000 18 ₃ -CH ₃ NH ₂ 673.0 0.0000 0.6736 1.410 0.7068 1.352 19.01 18 ₃ -CH ₃ NH ₂ 673.0 0.0000 0.6731 1.409 0.7068 1.352 19.01 18 ₃ -CH ₃ NH ₂ 673.0 0.0000 0.6736 1.410 0.7041 1.365 0.2500 0.6678 1.410 0.7041 1.365 0.2500 0.6708 1.410 0.7041 1.352 0.7500 0.6678 1.410 0.7041 1.352 0.2500 0.6708 1.410 0.7041 1.352 0.2500 0.6678 1.404 0.7014 1.347 1.0000 19.01 10.000 0.6708 1.410 0.7041 1.347 1.0000 0.6678 1.404 0.7014 1.357 0.5500 0.5000 0.6678 1.404 0.7014 1.347 1.0000 1.0000 1.0000 0.6678 1.604 0.7014 1.357 0.5000 0.6678 1.605 0.5517 1.571 0.5550 1.559 0.6500 0.5327 1.635 0.5599 1.597 0.4850 0.5327 1.635 0.5599 1.597 0.7500 0.5327 1.635 0.5599 1.597 0.7500 0.5327 1.635 0.5599 1.597 0.7500 0.5327 1.635 0.5599 1.597 0.7500 0.5327 1.635 0.5593 1.615 0.5503 1.615 0.8500 0.5424 1.665 0.5693 1.615 0.5692 1.626								
[346]				0.6803	1.406	0.7141	1.348	16 11
[348] 0.2500 0.6785 1.408 0.7095 1.349 0.5000 0.5000 0.6987 1.454 0.7330 1.384 0.7500 0.6734 1.401 0.7071 1.344 1.0000 17.566 1.0000 17.566 1.401 0.7071 1.344 1.361 0.5000 0.6734 1.419 0.7114 1.361 0.5000 0.6736 1.410 0.7068 1.352 0.7500 0.6736 1.410 0.7068 1.352 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.6736 1.410 0.7064 1.355 0.5000 0.6780 1.410 0.7014 1.362 0.7650 0.6678 1.404 0.7014 1.367 1.00000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.0000 1.0000 1.00000 1.00000 1.0000								10.11
0.5000	H3-CH3NH2	573.0						20.03
0.7500 0.6734 1.401 0.7071 1.344 17.56 1.408 17.56 1.408 17.56 1.408 17.56 1.408 17.56 1.408 1.408 17.56 1.408 1	(959)							
1.0000 17.56 13-CH ₃ NH ₂ 623.0 0.0000 21.81 [348] 0.2500 0.6732 1.419 0.7114 1.361 0.5000 0.6736 1.410 0.7068 1.352 0.7500 0.6731 1.409 0.7068 1.352 19.01 13-CH ₃ NH ₂ 673.0 0.0000 23.60 [348] 0.0500 0.6724 1.413 0.7054 1.355 0.5000 0.6708 1.410 0.7041 1.362 0.7500 0.6678 1.404 0.7014 1.347 1.0000 20.00000 20.0000 20.0000 20.0000 20.0000 20.0000 20.0000 20.0000 20.								
Cooch Cooc				0.6734	1.401	0.7071	1.344	10.00
[348] 0.2500 0.6732 1.419 0.7114 1.361 0.5000 0.5000 0.6736 1.410 0.7069 1.352 0.7500 0.6731 1.409 0.7068 1.352 1.0000 1.352 1.0000 1.352 1.0000 1.352 1.0000 1.352 1.0000 1.352 1.0000 1.352 1.0000 1.352 1.0000 1.352 1.0000 1.352 1.0000 1.352 1.0000 1.352 1.0000 1.352 1.0000 1.352 1.355 0.5000 0.6708 1.410 0.7041 1.352 0.7500 0.6678 1.404 0.7014 1.347 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.5264 1.616 0.5616 1.576 1.571			1.0000					17.56
0.5000	H ₃ -CH ₃ NH ₂	623.0						21.61
0.7500 0.6731 1.409 0.7068 1.352 19.01	[398]							
1.0000 19.01 13-CH ₂ NH ₂ 673.0 0.0000 [348] 0.2500 0.6724 1.413 0.7054 1.355 0.5000 0.6708 1.410 0.7041 1.352 0.7500 0.6678 1.404 0.7014 1.347 1.0000 20.48 COCCH ₂ C ₂ H ₃ - 303.2 0.0000 C ₂ H ₂ NH ₂ 0.1250 0.5253 1.613 0.5497 1.571 (1.4quid) 0.3000 0.5284 1.616 0.5516 1.576 [351] 0.4950 0.5327 1.635 0.5517 1.876 0.4950 0.6301 1.627 0.5560 1.589 0.6050 0.5327 1.635 0.5693 1.615 0.8500 0.5424 1.665 0.5693 1.615								
COCH Col				0.6731	1.409	0.7068	1.352	10.01
[348] 0.2500 0.6724 1.413 0.7054 1.355 0.500 0.6708 1.410 0.7041 1.352 0.7600 0.6678 1.410 0.7041 1.352 0.7600 0.6678 1.404 0.7014 1.347 1.0000 20.48 COOCH ₂ C ₂ H ₅ - 303.2 0.0000 3145.70 0.5253 1.613 0.5497 1.571 0.500 0.5254 1.616 0.5516 1.576 [351] 0.4350 0.5262 1.615 0.5517 1.876 0.4950 0.6301 1.627 0.5560 1.589 0.6050 0.5327 1.635 0.5693 1.615 0.5603 1.615 0.7600 0.5387 1.654 0.5663 1.615 0.8600 0.5424 1.666 0.5692 1.626								19.01
0.5000	H ₃ -CH ₃ NH ₂	673.0		4 484				23.60
0.7500 0.6678 1.404 0.7014 1.347 20.48 20.48 20.00CH ₂ C ₆ H ₅ - 303.2 0.0000 0.5263 1.613 0.5497 1.571 (Liquid) 0.3000 0.5284 1.616 0.5516 1.576 (351) 0.4380 0.9262 1.615 0.5516 1.576 0.4950 0.5301 1.627 0.5560 1.5690 0.5900 0.5327 1.635 0.5690 1.589 0.7500 0.5307 1.654 0.5690 1.589 0.7500 0.5307 1.654 0.5693 1.615 0.8500 0.5800 0.5424 1.665 0.5693 1.628	(naso)							
1.0000 20.48								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				0.6678	1.404	0.7014	1.347	20.40
CaHanHa 0.1250 0.5253 1.613 0.5497 1.571 (Liquid) 0.3000 0.5284 1.616 0.5516 1.576 [351] 0.4350 0.5262 1.615 0.5517 1.876 0.4950 0.8301 1.627 0.5560 1.589 0.6050 0.5327 1.635 0.5589 1.587 0.7500 0.5387 1.654 0.5653 1.615 0.8500 0.5424 1.665 0.5692 1.626	000011 0 11							44.40
(1.4quid) 0.3000 0.5384 1.616 0.5516 1.576 [351] 0.4350 0.5262 1.615 0.5517 1.576 0.4950 0.5301 1.627 0.5560 1.589 0.6050 0.5327 1.635 0.5589 1.587 0.7500 0.5387 1.654 0.5653 1.615 0.8500 0.5424 1.665 0.5692 1.626	COOCH3C4H4~	303.2						3145.70
[351] 0.4350 0.5262 1.615 0.5517 1.576 0.4950 0.5301 1.627 0.6560 1.589 0.6050 0.5327 1.635 0.5589 1.967 0.7500 0.5387 1.654 0.5653 1.615 0.8500 0.5424 1.665 0.5692 1.626	Callanta							
0.4950 0.5301 1.627 0.5560 1.589 0.6050 0.5327 1.635 0.5589 1.587 0.7500 0.5387 1.654 0.5653 1.615 0.8500 0.5424 1.665 0.5692 1.626							1.576	
0.6050 0.5327 1.635 0.5589 1.597 0.7500 0.5387 1.654 0.5653 1.615 0.8500 0.5424 1.665 0.5692 1.626	[391]							
0.7500 0.5387 1.654 0.5653 1.615 0.8500 0.5424 1.666 0.5692 1.626								
0.8500 0.5424 1.665 0.5692 1.826								
0.8500 0.5424 1.665 0.5692 1.626							1.615	
				0.5424	1.665	0.5692		
1.0000 1652.40			1.0000				-	1652.40

TABLE 1. COMPOSITION AND TEMPERATURE DEPENDENCE OF Ψ_{ij} ON DIFFERENT SCHEMES OF COMPUTATION (continued)

Gas Pair	Temp.	Mole Fraction of Heavier	First l	iethod	Second :	Method	Viscosity
[Reference]	(K)	Component	¥12	¥ 21	₩12	₩ ₂₁	(N s m-2 x 10
H ₃ COOCH ₂ C ₆ H ₆ -	313.2	0,0000					6180.00
CH ₃ C ₄ H ₄ OH		0.1150	0.3628	2.302	0.3775	2.280	
(Liquid)		0.2720	0.3809	2.417	0.3966	2.396	
[351]		0.4350	0.3820	2,424	0.3978	2.403	
••		0.6200	0.3840	2.436	0.3999	2.416	
		0.8100	0.3964	2.515	0.4127	2.493	
		1.0000					1352.50
CH ₃) 20-CH ₃ Cl	308.2	0.0000					9.66
(349)		0.0460	1.010	0.9497	1.016	0.9426	
		0.2220	1.036	0.9742	1.043	0.9671	
		0.2990	1.040	0.9782	1.047	0.9710	
		0. 4 010	1.042	0.9794	1,048	0.9722	
		0.5080	1.041	0.9790	1.048	0.9718	
		0.6040	1.047	0.9841	1.053	0.9768	
		0.6990	1.047	0.9845	1.054	0.9773	
		0.8020	1.055	0.9914	1.061	0.9841	
		0.8770	1.062	0.9985	1.069	0.9910	
		1.0000					11.26
CH ₃) ₂ O-CH ₃ Cl	353.2	0.0000					10.98
[349]		0.0630	1.031	0.9705	1.037	0.9634	
		0.1910	1.038	0.9772	1.045	0.9701	
		0.2810	1.043	0.9817	1.049	0.9745	
		0.4000	1.035	0.9750	1.042	0.9678	
		0.4740	1.041	0.9802	1.048	0.9730	
		0.5880	1.040	0.9797	1.047	0.9724	
		0.6690	1.041	0.9799	1.047	0.9727	
		0.7610	1.035	0.9748	1.042	0.9676	
		1.0000					12.78
(CH ₃) ₂ O-SO ₂	308.2	0.0000					9.66
[349]		0.0580	1.027	1.039	1.050	1.010	
		0.1840	0.9999	1.011	1.021	0.9828	
		0.2940	1.000	1.012	1.021	0. 98 32	
		0.3910	0.9980	1.009	1.019	0.9810	
		0.4920	0.9937	1.005	1.015	0.9767	
		0.5910	0.9969	1.008	1.018	0.9799	
		0.6920 .	0.9881	0.9994	1.009	0.9713	
		0.7820	0.9827	0.9940	1.004	0.9661	
		0.8440	0.9708	0.9819	0.9916	0.9546	
		1.0000					13. 28
(CH ₂) 20-802	353.2	0.0000					10.98
[349]		0.0490	1.039	1.042	1.062	1.013	
		0.1900	1.023	1.026	1.045	0.9972	
		0.2790	1.023	1.026	1.045	0.9968	
		0.3890	1.016	1.018	1.037	0.9894	
		0.5040	1.010	1.013	1.031	0.9838	
		0.5700	1.010	1.013	1.031	0.9841	
		0.6480	0.9930	0.9954	1.014	0.9673	
		0.7480 0.8600	1.011	1.013	1.032	0.9847 0.9796	
		1.0000	1.006	1.008	1.027	0.9790	15.23
CH C1.80	900 0	0.0000					
CH ₂ Cl-SO ₂ [349]	308.2		1 418	1 000	1 001	1 070	11.26
[3 9 2]		0.0450 0.1670	1.013	1.090 1.051	1.031 0. 99 37	1.070 1.032	
		0.1670 0.2860	0.9774				
			0.9685	1.042	0.9845	1.022	
		0.3690	0.9579	1.031	0.9737	1.011	
		0.4920	0.9582	1.031	0.9741	1.011	
		0.6040 0.6900	0.9539	1.026	0.9697	1.007	
			0.9529	1.025	0.9687	1.006	
		0.7680	0.9429	1.014	0.9586	0.9951	
		0.8470	0.9276	0.9979	0.9434	0.9793	

TABLE 1. COMPOSITION AND TEMPERATURE DEPENDENCE OF $\hat{\Psi}_{ij}$ ON DIFFERENT SCHEMES OF COMPUTATION (continued)

Gas Pair	Temp.	Mole Fraction	First 1	fethod	Second	Method	Viscosity
[Reference]	(K)	of Heavier Component	¥12	¥1:	Ψ ₁₂	₩21	(N s m = x 10=
CH ₃ Cl-SO ₃	353.2	0.0000					12.78
[349]		0.0510	1,004	1.069	1.021	1.049	
		0.1830	0.9806	1.044	0.9968	1.024	
		0.2850	0.9799	1.043	0.9961	1.023	
		0.3940	0.9682	1.031	0.9841	1.011	
		0.4830	0.9667	1.029	0.9826	1.009	
		0.5890	0.9636	1.026	0.9795	1.006	
		0.6860	0.9558		0.9716	0.9981	
		0.7930	0.9406	1.018 1.001		0.9825	
		1.0000	0.2200	1.001	0.9564	U. 9825	15.23
SO ₂ -SO ₂ F ₂	273.0	0.0000					
350]	213.0	0.0000	0.8342		0.0015		12.26
[300]				1.153	0.8615	1.110	
		0.5000	0.8301	1.147	0.8575	1.105	
		0.7500 1.0000	0.8205	1.134	0.8482	1.093	14 10
		1.0000					14.13
SO ₂ -SO ₂ F ₂ [350]	323.0	0.0000					14.42
[350]		0.2500	0.8152	1.155	0.8420	1.112	
		0.5000	0.8086	1.145	0.8357	1.104	
		0.7500	0.8035	1.138	0.8311	1.098	
		1.0000					16.22
SO ₂ -SO ₂ F ₂	373.0	0.0000					16.52
[350]		0.2500	0.8049	1.159	0.8316	1.117	
		0.5000	0.7975	1.148	0.8245	1.107	
		0.7500	0.7972	1.148	0.8248	1.107	
		1.0000					18.28
SO ₂ -SO ₂ F ₂	423.0	0.0000					18.62
350		0.2500	0.7964	1.164	0.8230	1.122	10.02
[000]		0.5000	0.7904	1.156	0.8174	1.115	
		0.7500	0.7901	1.156	0.8177	1.115	
		1.0000	0. 7801	1.100	0.8177	1.119	20.29
SO ₂ -SO ₂ F ₂	473.0	0.0000					20.69
[350]		0.2500	0.7950	1.178	0.8218	1.135	
		0.5000	0.7887	1.169	0.8158	1.127	
		0.7500	0.7931	1.175	0.8208	1.134	
		1.0000					22.25
SO ₂ -SO ₂ F ₂	523.0	0.0000					22.69
[350]		0.2500	0.7937	1.185	0.8206	1.142	
•		0.5000	0.7909	1.180	0.8182	1.139	
		0.7500	0.7942	1.185	0.8220	1.144	
		1.0000					24.22
SO ₂ -SO ₂ F ₂	573.0	0.0000					24.68
[350]	0.0.0	0.2500	0.7964	1.198	0.8236	1.155	24.00
[300]		0.5000	0.7939	1.194	0.8213	1.152	
		0.7500	0.7963				
		1.0000	0.7863	1.198	0.8242	1.156	26.14
SO ₂ -SO ₂ F ₂	623.0	0.0000					26.61
[350]		0.2500	0.7990	1.209	0.8265	1.167	
		0.5000	0.7963	1.205	0.8239	1.163	
		0.7500 1.0000	0.7989	1.209	0.8268	1.167	90 11
		1.0000					28.01
SO ₁ -SO ₂ F ₂	673.0	0.0000					28.45
[350]		0.2500	0.7967	1.211	0.8241	1.168	
		0.5000	0.7974	1.212	0.8251	1.169	
		0.7500	0.7994	1.215	0.8274	1.172	
		1.0000					29.83

TABLE 1. COMPOSITION AND TEMPERATURE DEPENDENCE OF Ψ_{ij} ON DIFFERENT SCHEMES OF COMPUTATION (continued)

Gas Pair	Temp.	Mole Fraction of Heavier	First 1	dethod	Second		Viscosity
Reference]	(K)	Component	Ψ ₁₂	¥21	₩12	¥21	(Nsm ⁻² x10
Air-CO2	290.0	0.0000					14.55
[346]		0.2000	0.7065	1.326	0.7310	1.288	
		0.4000	0.7068	1.326	0.7317	1.289	
		0.6000	0.7059	1.325	0.7311	1.288	
		0.8000	0.7043	1.322	0.7297	1.286	
		1.0000					17.97
Air-CH	293.2	0.0000					11.21
[334]		0.1090	0.9244	1.042	0.9557	0.9863	
		0.1990	0.8683	0.9791	0.8965	0.9251	
		0.3020	0.8771	0.9890	0.9064	0.9354	
		0.4050	0.8962	1.011	0.9269	0.9565	
		0.5050	0.8956	1.101	0.9267	0.9563	
		0.6090	0.9027	1.018	0.9344	0.9642	
		0.7130	0.9110	1.027	0.9432	0.9733	
		0.8040	0.9252	1.043	0.9578	0.9884	
		0.9020	0.9244	1.042	0.9572	0.9877	
		1.0000					17.95
Air-CH4	293.2	0.0000					11.09
[334]	•	0.0450	0.9088	1.013	0.9384	0.9575	-
•		0.1500	0.8944	0.9972	0.9236	0.9423	
		0.2530	0.8762	0.9769	0.9048	0.9232	
		0.3540	0.8950	0.9978	0.9252	0.9440	
		0.4410	0.9037	1.007	0.9346	0.9536	
		0.5590	0.7961	0.8876	0.8244	0.8411	
		0.6540	0.9036	1.007	0.9353	0.9543	
		0.7490	0.9060	1.010	0.9381	0.9572	
		0.8540	0.9343	1.042	0.9670	0.9866	
		0.9490	0.9452	1.054	0.9779	0.9978	
		1.0000				-	17.96
Air-CH,	293.2	0.0000					11.29
[334]		0.1060	0.8968	1.025	0.9267	0.9691	
• • • • •		0.1990	0.8623	0.9853	0.8906	0.9313	
		0.3000	0.8611	0.9839	0.8899	0.9306	
		0.3840	0.8191	0.9359	0.8467	0.8854	
		0.5050	0.8850	1.011	0.9160	0.9579	
		0.6010	0.8917	1.019	0.9234	0.9656	
		0.6990	0.8999	1.028	0.9321	0.9747	
		0.7980	0.9080	1.038	0.9406	0.9836	
		0.9010	0.9016	1.030	0.9345	0.9772	
		1.0000	******		***************************************		17.84
Air-CH	293. 2	0.0000					11.28
[334]		0.0480	0.8947	1.014	0.9239	0.9583	
		0.1520	0.8845	1.002	0.9135	0.9475	
		0.2520	0.8630	0.9780	0.8914	0.9245	
		0.3480	0.8873	1.006	0.9174	0.9516	
		0.4420	0.8977	1.017	0.9287	0.9633	
		0.5530	0.9075	1.029	0.9392	0.9742	
		0.6360	0.9007	1.021	0.9325	0.9672	
		0.7470	0.9126	1.034	0.9450	0.9801	
		0.8520	0.9318	1.056	0.9646	1.000	
		0.9460	0.9727	1.102	1.005	1.043	
		1.0000					17.97
NH ₂ -Air	288.7	0.0000					9.88
[346]		0.1000	0.9106	0.8454	0.9329	0.7998	
		0.2000	0.9157	0.8501	0.9391	0.8051	
		0.3000	0.9083	0.8432	0.9322	0.7992	
		0.4000	0.9024	0.8377	0.9270	0.7947	
		0.5000	0.8986	0.8342	0.9241	0.7922	
		0.6000	0.8929	0.8290	0.9193	0.7881	
		0.7000	0,9362	0.8692	0.9644	0.8267	
		0.8000	0.8842	0.8208	0.9126	0.7824	
		0.9000	0.8908	0.8270	0.9205	0.7891	
			0.0000				

TABLE 1. COMPOSITION AND TEMPERATURE DEPENDENCE OF Ψ_{ij} ON DIFFERENT SCHEMES OF COMPUTATION (continued)

Gas Pair	Temp.	Mole Fraction	First N	fethod	Second	Method	Viscosity
[Reference]	(K)	of Heavier Component	Ψ ₁₂	₩21	₩12	¥ ₂₁	(Nsm-1x10-6
HCl-Air	291.3	0.0000					17.94
[346]		0.2000	0.7194	1.155	0.7329	1,136	
* -		0.4000	0.7171	1.151	0.7310	1.133	
		0.6000	0.7111	1.141	0.7254	1.125	
		0.8000	0.6829	1.096	0.6974	1.081	
		1.0000					14.07
HCl-Air	289.7	0.0000					18.18
[346]		0.1000	0.7237	1.161	0.7370	1.143	
		0.2000	0.7201	1.156	0.7336	1.137	
		0.3000	0.7190	1.154	0.7327	1.136	
		0.4000	0.7178	1.152	0.7317	1.134	
		0.5000	0.7151	1.148	0.7292	1.130	
		0.6000	0.7109	1.141	0.7252	1.124	
		0.7000	0.7080	1.136	0.7224	1.120	
		0.8000	0.6993	1.122	0.7139	1.107	
		0.9000	0.6935	1.113	0.7083	1.098	
		1.0000					14.26
H ₂ S-Air	290.36	0.0000					18.27
[346]		0.1000	0.6808	1.161	0.6899	1.149	
		0.2000	0.6800	1.160	0.6894	1.148	
		0.3000	0.6785	1.157	0.6881	1.146	
		0.4000	0.6792	1.159	0.6890	1.147	
		0.5000	0.6736	1.149	0.6835	1.138	
		0.6000	0.6788	1.158	0.6890	1.147	
		0.7000	0.6795	1.159	0.6899	1.148	
		0.8000	0.6766	1.154	0.6871	1.144	
		0.9000	0.6806	1.161	0.6913	1.151	
		1.0000					12.60

table 2. Recommended sets of Ψ_{ij} and L-values for the viscosity data

Gas Pair	Temp.	Mole Fraction of Heavier	First I	Method ¥₁	L ₁ (%)	L ₂ (%)	L ₃ (%)	Second V ₁₂	Method V21	L, (%)	L ₂ (%)	(%)
		Component										_
\r-He	72.0	0.3570	A 1000	0.410	0.711	1 000	0.050	0.2400	2.121	0.490	0.736	1.48
	72.0	0.4585	0.1933	2.412	0.711	1.090	2.950					
	81.0	0.5380	0.1983	2.411	0.806	1.269	3.439	0.2476	2.132	0.710	0.933	1.68
	90.2	0.3570	0.2010	2.402	1.177	1.551	3.233	0.2465	2.086	0.709	1.104	2. 79
	192.5	0.4650	0.255 9	2.448	0.572	0.646	0.967					
	192.5	0.4940						0.3034	2.036	0.312	0.376	0.56
	229.5	0.4090						0.3083	2.015	0.424	0.501	0.88
	229.5	0.5640	0.2581	2.382	0.731	0.898	1,721					
	288.2	0.2915	0.2842	2.512	0.468	0.570	1.125	0.3347	2.095	0.264	0.337	0.65
	291.1	0.3910	0.2697	2.393	0.956	1.191	2.400	0.3205	2.014	0.643	0.806	1.50
	291.1	0.3010	0.2678	2.353	1.140	1.345	2,782	0.3158	1.965	0.698	0.884	1.97
	291.2	0.4380	0.2809	2.472	0.612	0.759	1.668	0.3339	2.081	0.377	0.451	0.8
	293.0	0.5094	0.2782	2.478	0.230	0.326	0.461	0.3324	2.096	0.164	0.233	0.3
	373.0	0.5094	0.2878	2.483	0.070	0.099	0.140	0.3423	2.091	0.009	0.013	0.0
	373.2	0.6119						0.3470	2.096	0.497	0.755	1.93
	373.2	0.6846	0.2954	2.519	0.496	0.723	1.604					
	456.2	0.6119	0.3043	2.532	0.438	0.699	1.722	0.3609	2.127	0.302	0.406	0.87
	473.0	0.6180	0.2960	2. 500	0.000	0.000	0.000	0.3523	2.108	0.000	0.000	0.00
	523.0	0.6180	0.2975	2,500	0.000	0.000	0.000	0.3539	2.106	0.000	0.000	0.00
			-									
r-Kr	291.2	0.2280	0.7221	1.350	0.166	0.203	0.336	0.7606	1.272	0. 176	0.208	0.33
r-Ne	72.3	0.5011	0.4863	1.769	0.083	0.124	0.264	0.5202	1.707	0.110	0.155	0.29
	90.3	0.6713	0.4989	1.723	0.467	0.574	0.979	0. 5335	1.663	0.457	0.580	0.9
	193.4	0.5024	0.5432	1.654	0.264	0.395	0.838	0.5783	1.590	0. 283	0.412	0.8
	229.0	0.6507	0.5451	1.601	0.195	0. 225	0.367	0.5804	1.539	0.164	0.197	0.3
	291.1	0.4970	V. VIVI	9VI	V. 100	4. 240	V. 301	0.5979	1.509	0.104	0.245	0.3
	291.1	0.6757	0.5665	1.584	0.162	0.212	0.328	0.0010	1.505	0.213	V. 240	V. J.
		0.2210	0.5716	1.579	0.102		1.196	0.6062	1.512	0.499	0.600	1.10
	291.2					0.615						
	293.0	0.6091	0.5758	1.593	0.106	0.132	0.190	0.6117	1.527	0.082	0.101	0.1
	373.0	0.6091	0.5965	1.589	0.066	0.087	0.138	0.6329	1.521	0.052	0.077	0.13
	473.0	0.6091	0.6118	1.586	0.147	0.217	0.369	0.6486	1.518	0.154	0.227	0.3
	523.0	0.2680	0.6117	1.575	0.130	0.164	0.243	0.5481	1.507	0.130	0.170	0.20
r-Xe	291.2	0.5980	0.5254	1.696	0.207	0.292	0.673	0.5753	1.554	0.211	0.255	0.5
le-Kr	283.2	0.2046	0.1866	3. 124	0.759	0.844	1.252	0.2281	2.419	0.172	0.220	0.3
	291.2	0.2720	0.1760	2.882	0.770	0.973	1.862	•				
	291.2	0.3530			••••	*****		0.2181	2.263	0.217	0.263	0.48
	373.2	0.2046	0.1968	3.135	0.709	0.834	1,201	******		*****	******	
	373.2	0.4995	0.2000	57 100		01002	1,201	0.2436	2.459	0. 224	0.281	0.57
le-Ne	20.4	0.7200	0.3976	1.999	0.375	0.522	0.867	0.4530	1.786	0.266	0.329	0.4
	65.8	0.5090	0.4627	1.663	0.236	0.345	0.586					
	65.8	0.7610						0.5150	1.452	0.061	0.083	0.13
	90.2	0.4910	0.4841	1.649	0.196	0.259	0.414	0.5358	1.431	0.034	0.045	0.0
	194.0	0.4820	0.5148	1.642	0.097	0.120	0.173	0.5670	1.419	0.032	0.055	0.01
	284.2	0.2801	0.5199	1.714	0.188	0.217	0.329	0.5713	1.477	0.185	0.221	0.40
	291.2	0.3930	0100	** • **	0.100	V. 211	v. 020	0.5715	1.409	0.440	0.641	1.2
	291.2 291.2	0.5650	0.5222	1.641	0.526	0.762	1.326	0.3710	1.400	U. 75U	A. 041	1.2
	291.2 293.0	0.4376	0.5222	1.649	0.377	0.762	0.690	0.5730	1.423	0.263	0.349	0.5
	293.1	0.4980	0.5204	1.661	0.235	0.327	0.544	0.5731	1.435	0.125	0.182	0.30
	373.0	0.4376	0.5198	1.650	0.409	0.503	0.669	0.5716	1.423	0.294	0.360	0.4
	373.2	0.4995	0.5167	1.714	0.950	2.035	5.327	0.5701	1.484	0.911	2.039	5. 3
	473.0	0.4376	0.5180	1.653	0.407	0.500	0.663	0. 5699	1.427	0.291	0.357	0.44
	523.0	0.2379	0.5237	1.673	0.222	0.313	0.443	0.5737	1.438	0.110	0.156	0. 2
le-Xe	291.2 291.2	0.2010 0.7920	0.1251	3. 555	1.056	1.152	1.837	0.1614	2.716	0.343	0.452	0.90
Ir-Ne	291.2	0.1110						0.4360	1.838	0.395	0.476	0.8
'P -14A	291.2	0.5330	0.3892	2.032	0.320	0.542	1.232	V. 16370U	1.030	v. 390	V. 110	V. 6
r-Xe	291.2	0.2010	0.7500	1.290	0.292	0.336	0.544	0.7767	1.249	0.293	0.340	0.50
ie-Xe	291.2	0.3930	0.2711	2.442	0.447	0.524	0.894					
	291.2	0.5 94 0						0.3197	2.173	0. 206	0.250	0.4
r-H ₂	293.0	0.3485	0.2787	2.186	0.534	0.659	0.895					
-	293.0	0.5543						0.3170	1.588	0.159	0.194	0.24
	373.0	0.3485						0.3212	1.550	0.090	0.121	0. 1
	373.0 523.0	0.5543 0.3485	0.232 0.2929	2.075 2.182	0.443 0. 528	0.679 0.646	1.164 0.809	0. 3332	1.585	0.497	0.724	

TABLE 2. RECOMMENDED SETS OF Ψ_{ij} AND L-VALUES FOR THE VISCOSITY DATA (continued)

Gas Pair	Temp. (K)	Mole Fraction of Heavier	First l	Method ¥2₁	L ₁ (%)	L ₂ (%)	L ₃ (%)	Second V ₁₂	Method ¥21	L, (%)	L ₂ (%)	L ₃ (%)
	,	Component		-21	17	· · · · ·			-21	,	17	,
He−H₂	273.2	0.7509	1.095	0.9661	0.244	0.416	1.038	1.130	0.8993	0.246	0.417	1.03
	288.2	0.5972	1.112	0.9877	0.145	0.172	0.286	1.147	0.9197	0.131	0.157	0.26
	291.7	0.5030	1.169	1.039	1.039	1.196	1.978	1.207	0.9677	0.988	1.139	1.88
	293.0	0.3931	1.129	0.9937	0.207	0.315	0.539	1.166	0.9258	0.205	0.320	0.55
	373.0	0.4480	1.114	0.9807	0.196	0.240	0.300	1.150	0.9135	0.192	0.235	0.309
	373.2	0.7509	1.090	0.9665	0.284	0.360	0.629	1.125	0.8 999	0.282	0.363	0.632
	473.0	0.4480	1.114	0.9864	0.218	0.315	0.531	1.150	0.9189	0.214	0.317	0.540
	523.0	0.4480	1.118	0.9913	0.151	0.210	0.348	1.155	0.9235	0.146	0.198	0. 323
Ne-H ₂	290.4	0.1610	0.5615	1.584	1.530	1.712	1.975	0.6017	1.201	1.418	1.611	2.317
	293.0	0.2285	0.5482	1.553	0.343	0.424	0.578					
	293.0	0.5391						0.5870	1.177	0.104	0.134	0.20
	373.0	0.2285	0.5400	1 500	A 000			0.5840	1.177	0.175	0.246	0.410
	373.0	0.5391	0.5409	1.538	0.332	0.416	0.602					
	473.0	0.5391	0.5357	1.539	0.349	0.442	0.661	0.5815	1.182	0.115	0.156	0.25
	523.0 523.0	0.2285 0.5391	0.5395	1.655	0.207	0.257	0.359	0. 5824	1.188	0.108	0.137	0.202
A NIU	298.2	0.6910	0.9793	1.035	0.402	0.600	1.519	1.019	0.9482	0.401	A 500	1.513
Ar-NH ₃	308.2	0.3990	0.9734		0.907	1.043	1.987	1.019			0.598	
	353.2	0.3810	0.9646	1.037 1.054	0.504	0.585	0.866	1.005	0.9495 0.9662	0.902 0.501	1.038 0.583	1.984 0.862
A=_80		0.5000	0.5918		0.477	0.599						
Ar-SO ₂	298.2 308.2			1.618			1.073	0.6189	1.576	0.484	0.604	1.076
	353.2	0.2540 0.0430	0.5124 0.4984	1.429 1.349	1.373 0.712	1.829 0.843	3.297 1.389	0.5352 0.5181	1.391 1.306	1.294 0.718	1.741 0.908	3. 200 1. 47
C ₆ H ₆ -C ₆ H ₁₂	298.2	0.5126	1.599	1.202	0.262	0.414	0.962	1.607	1.194	0. 246	0.395	0.930
С _е н _е -Сн _э (Сн ₂) _е Сн ₃	298. 2	0.4296	0.8862	1.969	1.264	1.459	2.329	0.8948	1.960	1.293	1.489	2.357
	291.2	0.3511	1.450	1.464	0.336	0. 571	1.357	1.524	1.260	0.739	0.916	1.770
C _e H _e - OMCTS	298.2	0.4689			*****			1.457	1.246	0.594	0.793	1.608
	298.2	0.6211	1.391	1.452	0.378	0.526	1.038				******	
	308.2	0.6020	1.323	1.456	0.185	0.287	0.568	1.378	1.241	0.433	0.608	1.215
	318.2	0.3526		27.200		-1201	0.000	1.327	1.254	0.618	0.771	1.310
	318.2	0.6036	1.262	1.457	0.342	0.529	0.915				••••	
CO2-H2	300.0	0.2150	0.2024	2.636	0.423	0,502	0.762	0.2394	1.964	0.330	0.391	0.547
	400.0	0.112	0.2163	2.626	0.440	0.550	0.906					
	400.0	0.2150						0.2545	1.945	0.283	0.453	1.048
	500.0	0.2150	0.2242	2.613	0.590	0.674	0.960	0.2618	1.921	0.215	0.270	0.538
	550.0	0.1112						0.2643	1.906	0.544	0.829	1.892
	5 50 .0	0.8006	0.2217	2.540	0.946	1.280	2.121					
CO ₂ -N ₂	297.7	0,2260	0.7307	1.363	0.548	0.671	1.057	0.7581	1.321	0.548	0.671	1.058
CO ₂ -N ₂ O	300.0	0.3967	0.9927	0.9961	0.093	0.158	0.309	0.9927	0.9961	0.093	0.158	0.309
,,-	400.0	0.3967	0.9929	0.9934	0.094	0.163	0.356	0.9929	0.9934	0.094	0.163	0.356
	500.0	0.5967	0.9909	0.9901	0.068	0.101	0.203	0.9909	0.9901	0.068	0.101	0.203
	550.0	0.8003	1.000	1.004	0.233	0.267	0.397	1.000	1.004	0.233	0.267	0.397
CO³-O³	300.0	0.3390	0.7189	1.372	1.131	1.610	3.248	0.7392	1.345	1.130	1.609	3. 245
CO2-C3H8	300.0	0.4224	0.7173	1.313	0.050	0.064	0.095	0.7174	1.313	0.050	0.064	0.095
•	400.0	0.5975	0.7173	1.306	0.069	0.085	0.126	0.7174	1.306	0.069	0.085	0.126
	500.0	0.5975	0.7332	1.322	0.310	0.381	0.626	0.7333	1.321	0.310	0.381	0.626
	550.0	0. 59 75	0.7335	1.321	0.055	0.092	0.180	0.7336	1.321	0.055	0.092	0.180
CO2-C2H4	300.0	0.4354	0.7624	1.313	0.686	0.843	1.122	0.7625	1.313	0.686	0.843	1.122
	400.0	0.4354	0.3605	2.039	0.327	0.416	0.629	0.4061	1.906	0.442	0.560	0.839
	500.0	0.4354	0.7932	1.248	0.450	0.558	0.777	0.7933	1.248	0.450	0.558	0.777
	550.0	0.4354	0.8054	1,249	0.331	0.468	0.730	0.8055	1.249	0.361	0.468	0.730
CO2-H2	293.3	0.2740	0.3159	2. 194	0.673	0,739	0.889	0.3596	1.683	0.226	0.292	0.500
CO ₂ -N ₂	300.0	0.6030	0.9990	0.9963	0.129	0.171	0.258	0.9990	0.9963	0.129	0.171	0.258
	400.0	0.1629	1.002	0.9987	0.141	0.172	0.267	1.002	0.9987	0.141	0.172	0.267
	500.0 550.0	0.1629 9.6030	1.001 1.005	0.9962 0.9998	0.067 0.115	0,099 0,145	0.190 0.229	1.001 1.005	0.9962 0.9998	0.067 0.115	0. 099 0.145	0.190 0.229
CO C												
CO3-O3	300.0 400.0	0.4201 0.4201	1.000 1.015	0.9863 0.9858	0.098	0.158	0.273 0.163	1.009 1.024	0.9758 0.9752	0.100	0.157	0.272
	500.0	0.4201	1.020	0.9837	0.088 0.061	0.111 0.102	0.163	1.024	0.9752	0.088 0.062	0.111 0.102	0.163 0.176
001				0.8970	0.656	0.980	1.995	1.204	0.8359	0.649	0.971	1.979
CCL- OMCTS	291.2 298.2	0.5718 0.4288	1.171 1.139					1.172				
CCL- DMCTS	291.2 298.2 308.2	0.4288 0.5732	1.139	0.9034 0.9226	0.778 0.745	0.949 1.049	1.987 2.090		0.8425 0.8613	0.776 0.745	0.947 1.049	1.984

TABLE 2. RECOMMENDED SETS OF Ψ_{ij} AND L-VALUES FOR THE VISCOSITY DATA (continued)

Gas Pair	Temp.	Mole Fraction of Heavier	First	Method	L ₁ (%)	L2 (%)	L_3	Second	Method	L ₁ (%)	L. (%)	L
GRS PRIT	(K)	Component	Ψ_{12}	V 21	(%)	(%)	L ₃ (%)	¥12	¥ 2i	(%)	(%)	L, (%)
CF4-SF4	303.1	0.5090	0.7815	1.441	0.654	0,957	1.623	0.8131	1.390	0.682	0.991	1.676
,,	313.1	0.5090	0.7839	1,445	0.681	0.941	1.555	0.8156	1.393	0.712	0.978	1.610
	329.1	0.5090	0.7838	1.444	0.729	1.009	1.669	0.8154	1.392	0.759	1.046	1.724
	342. 1	0.5090	0.7798	1.440	0.744	1.094	1.858	0.8113	1.388	0.772	1.127	1.910
С ₆ Н ₁₂ -СН ₃ (СН ₂) ₄ СН ₃	298.2	0.5502	0.7410	2.192	0.958	1.072	1.411	0.7428	2.190	0.964	1.078	1.416
D ₂ -H ₂	14.4	0.5040	0.8126	1.274	0.462	0.773	1.338	0.8502	1.203	0.453	0.767	1.328
	20.4	0.3340	0.8020	1.254	0.061	0.087	0.123	0.8392	1.184	0.062	0.087	0. 123
	71.5	0.2480	0.8316	1.204	0.171	0.252	0.427	0.8683	1.134	0.172	0.254	0.433
	90.1	0.5020	0.8285	1.191	0.112	0.168	0.287	0.8651	1.122	0.110	0.172	0.295
	196.0 229.0	0.4970 0.2480	0.8347 0.8335	1.194 1.200	0.045 0.163	0.064 0.242	0.107	0.8714	1.125	0.049	0.068	0.114
	293.1	0.7530	0.8363	1.195	0.103	0.127	0.412 0.167	0.8703 0.8732	1.131 1.126	0.163 0.105	0.245 0.128	0.418 0.162
1 - UD	14.4	0.4970	0.8846	1.070	0.326	0.411	0.611	0.9028	1.046	0.319	0.403	0.600
D ₂ -HD	20.4	0.7510	0.9092	1.070	0.202	0.309	0.530	0.9028	1.064	0.319	0.308	0.527
	71.5	0.5070	0.9348	1.090	0.028	0.038	0.063	0.9536	1.065	0.030	0.041	0.067
	90.1	0.4920	0.9286	1.083	0.080	0.129	0.223	0.9473	1.059	0.081	0.130	0.223
	196.0	0.5000	0.9281	1.079	0.036	0.061	0.106	0.9468	1.054	0.036	0.061	0.106
	229.0	0.2490	0.9315	1.075	0.024	0.031	0.048	0.9502	1.051	0.024	0.031	0.048
	293.1	0.5090	0.9347	1.077	0.089	0.109	0.147	0.9534	1.053	0.090	0.110	0.148
HP	293.0	0.1485	0.2067	2.971	1.052	1.488	2.104	0.2490	2.386	0.418	0.591	0.835
C ₆ H ₆ -H ₂	373.0	0.1485	0.2186	2.949	0.623	0.882	1.247	0.2490	2.354	0.041	0.058	0.083
	473.0	0.1485	0.2286	2.936	0.539	0.762	1.077	0.2725	2.333	0.001	0.002	0.003
	523.0	0.1485	0.2322	2.942	0.597	0.844	1.193	0.2766	2.336	0.076	0.107	0.152
C ₂ H ₆ -CH ₄	293.0	0.5126	0.6570	1.473	0.080	0.099	0.136	0.6917	1.411	0.071	0.088	0.119
2.4	373.0	0.5126	0.6652	1.453	0.101	0.133	0.210	0.6999	1.391	0.092	0.121	0.192
	473.0	0.5126	0.6749	1.439	0.024	0.035	0.059	0.7097	1.377	0.018	0.030	0.051
	523.0	0.5126	0.6788	1.438	0.038	0.061	0.105	0.7136	1.376	0.034	0.057	0.099
C2H6-C2H8	293.0	0.5673	0.7754	1.290	0.209	0.309	0.525	0.7995	1.256	0.209	0.309	0.525
• • • •	373.0	0.8474	0.7739	1.286	0.093	0.118	0.178	0.7979	1.252	0.092	0.118	0.178
	473.0 523.0	0.5673 0.7437	0.7764	1.280 1.272	0.303 0.179	0.480 0.220	0.828	0.8004	1.246	0.303 0.178	0.480 0.219	0.827
	523.0	0.7437		1.272	0.179	0.220	0.296	0.7988	1.238	0.178	0.219	0.293
C2H4-H2	195.2	0.2501	0.2224	2.888	0.466	0.590	0.940	0.2969	2.359	0.247	0.369	0.688
	233.2 272.2	0.2501	0.2268	2.855 2.753	0.557 0.427	0.642 0.530	0.771	0.2740	2.324	0.405	0.674	1.464
	272.2	0.2501 0.5129	V. 2248	2. 753	0.427	0. 530	0.811	0.2705	2.232	0.183	0.326	0.713
	293.2	0.2160						0.2678	2.166	0.177	0.272	0. 521
	293.2	0.5173	0.2204	2.646	0.451	0.523	0.673	0.20.0	2. 200	V	0.2.2	V. 021
	328, 2	0.2100	******	2	*****		*****	0.2716	2.140	0.357	0.455	0.714
	328.2	0.5173	0.2258	2.640	0.566	0.689	1.013					
	373.2	0.2114						0.2774	2.119	0.271	0.354	0.602
	373.2 423.2	0.5173 0.5197	0.2306	2.615	0.333	0.405	0.559	0.2797	2.091	0.150	0.207	0.343
	423, 2	0.7201	0.2299	2.551	0.346	0.570	1.119	0.2.5	2.001	0.100	0.20	0.020
	473.2	0.5197						0.2893	2.123	0.309	0.454	0.864
	473.2 523.2	0.7201 0.5116	0.2379	2. 5 9 2	0.135	0.184	0.339	0.2967	2.141	0.297	0.344	0.430
	523, 2	0.7201	0.2474	2.651	0.157	0.223	0.385	0.200			0,011	0, 200
C2H4-N2	300.0	0.5695	0.7589	1.310	0.487	0.597	0.749	0.7950	1.310	0.487	0.597	0.749
3.4 .4	400.0	0.5695	0.7900	1.285	0.640	0.811	1.211	0.7901	1.285	0.640	0.811	1.211
	500.0	0.5695	0.8046	1.272	0.406	0.529	0.831	0.8047	1.272	0.406	0.529	0.831
	550.0	0.5695	0.8107	1.263	0.489	0.625	0.950	0.8108	1.263	0.489	0.625	0.590
C2H4-O3	293.0	0.2297	1.316	0.7508	0.132	0.227	0.392	1.324	0.7410	0.132	0.228	0.394
• • •	323.0	0.8694	1.314	0.7608	0.169	0.216	0.330	1.323	0.7509	0.169	0.216	0.330
	373.0	0.5855	1.310	0.7749	0.135	0.166	0.225	1.319	0.7649	0.135	0.166	0.226
-C7F16 -	303.2	0.4830	0.6656	1.308	0.702	0.797	1.062	0.7125	1.166	0.619	0.709	0.981
CH ₂), CHCH ₂ C	323, 2	0.3658	0.6906	1.368	1.580	1.874	2.748	0.7386	1.217	1.537	1.828	2.708
CHCH ₂ C (CH ₃) 3	333. 2	0.4830	0.6623	1.331	0.000	0.000	0.000	0.7096	1.187	0.000	0.000	0.000
H ₂ -HD	14.4	0.2540	0.8522	1.142	0.377	0.469	0.662	0.8766	1.106	0.376	0.465	0.648
-	20.4	0.5050	0.8768	1.163	0.329	0.407	0.560	0.9020	1.126	0.326	0.403	0.554
	71.5	0.7490	0.9009	1.110	0.057	0.071	0.106	0.9257	1.074	0.087	0.072	0. 107
	90.1	0.4990	0.8991	1.108	0.338	0.414	0.533	0.9239	1.072	0.339	0.416	0.535
	196.0	0.2360	0.1082	17.90	1.775	2. 192	3.007	0.1462	10.92	1.537	1.892	2. 536
	229.0	0.7480	0.9029	1.104	0.184	0.264	0.444	0.9277	1.068	0.184	0.266	0.448
	293. 1	0.2410	0.9089	1.121	0.516	0.698	1.137	0.9340	1.085	0.516	0.696	1.130

· Control of

TABLE 2. RECOMMENDED SETS OF ψ_{ij} AND L-VALUES FOR THE VISCOSITY DATA (continued)

Gas Pair	Temp.	Mole Fraction of Heavier	First	Method	L, (%)	L ₂ (%)	L ₂ (%)	Second	Method	L ₁ (%)	L (%)	L (%)
GRE PELF	(K)	Component	₩12	₩1	(%)	(%)	(%)	Ψ ₁₂	₩ 21	(%)	(%)	(%)
H ₂ -CH ₄	293.0	0.3978	0.3331	2.136	0.274	0.382	0.713	0.3849	1.808	0.051	0.074	0.141
	293.2	0.4904	0.3530	2.307	0.769	1.154	2.208	0.4088	1.958	0.826	1.177	2.076
	333. 2	0.2083	0.3586	2. 29 2	0.750	1.033	1.908	0.4102	1.921	0.633	0.123	0.225
	373.0	0.0777						0.3947	1.786	0.070	0.083	0.117
	373.0	0.3978	0.3434	2. 121	0.285	0.355	0.582					
	373.2	0.2083	0.3569	2.244	0.710	0.918	1.616	0.4076	1.877	0.578	0.995	0.972
	473.0	0.3978	0.3521	2.120	0.238	0.347	0.643	0.4045	1.784	0. 251	0.353	0.539
	523.0 523.0	0.0777 0.3978	0.3548	2.121	0.265	0, 349	0.527	0.4066	1.781	0.124	0.153	0.216
	020.0	0.3010	0.0020	2	V. 200	0.010	0.02.					
H2-NO	273, 2	0.2835	0.3083	2, 168	1.867	2.587	4.861	0.3507	1.645	2.233	2.889	5.318
	293,2	0.6416	0.3125	2,219	0.723	0.825	1.565	0.0005	1 707	A 490	0.015	0.040
	29 3, 2	0.5393						0. 3605	1.707	0.630	0.817	2.042
H2-N2	82.2	0.3510	0.2803	2.592	0.509	1.042	2.285	0.3304	2.059	0.932	1.430	3.055
	90.2	0.1600	0.2939	2.459	0.785	1.273	2.359	0.3369	1.899	0.811	0.954	1.596
	291.1	0.1600	0.3302	2.297	0.801	0. 9 03	1.151	0.3724	1.746	0.534	0.760	1.451
	291.1	0.4410	0.3198	2.232								
	291.1 291.2	0.5170 0.2 96 0	0.3166	2. 222	0.571	0.746	1.400	0.3637	1.711			
	291.2	0.5170	0.3100	2. 222	0.571	4. 140	1.400	0.3641	1.722	0.211	0.254	0.399
	307.2	0.3991						0.3022	1.695	0.339	0.466	0.868
	307.2	0.5100	0.3156	2, 191	0.234	0.264	0.326	0.0022	1.000	0.000	0.200	4. 000
	325.4	0.3991	0.3374	2.443	0.275	0.339	0.514	0.3882	1.894	0.217	0.246	0.313
	373.2	0.3991	0.3332	2.297	0.789	1.211	2.546	0.3882	1.775	0.529	0.896	1.912
	444.7	0.3988	0.3483	2.417	0.794	1.056	1.875	0.3991	1.866	0.642	0.831	1.412
	478.2	0.8002	0.3547	2.465	0.915	1.572	3.426	0.4101	1.921	0. 9 03	1.290	2. 581
H ₂ -N ₂ O	300.0	0.4039						0,2540	2,091	0.409	0.513	0.752
	300.0	0.6011	0.2089	2.731	0.154	0.227	0,387	0,2010	2,002	V. 200	0.010	002
	400.0	0.4039						0.2663	2.037	0.289	0.360	0.514
	400.0	0.6011	0.2220	2.697	0.254	0.356	0.592					
	500.0	0.4039						0.2750	2.016	0.270	0.334	0.461
	500.0	0.6011 0.4039	0.2303	2. 6 81	0.243	0.362	0.617	0.0700	2,016	0.000	0.005	
	550.0 550.0	0.6011	0.2343	2.685	0.204	0.314	0.538	0.2793	4.010	0.290	0.355	0.444
					*****	*****	•••••					
H2-O2	293.2	0.4470	0.2975	2.049	1.934	2.69 8	5.846					
	293.2	0.4930						0.3402	1.547	1.479	2.268	6.351
	293.6 300.0	0.2730 0.6055	0.3073 0.3064	2. 116 2. 102	0.337 0.999	0.419 1.602	0.779 3.147	0.3475 0.3563	1.580 1.615	0.301 0.732	0. 39 2 0. 96 3	0.714
	400.0	0.6055	0.3182	2.138	0.507	0.712	1.333	0. 3003	1.615	V. 132	V. 803	1.591
	400.0	0.8165	0.0100	2, 100	٠, ٥٠.	V	1,000	0.3635	1.613	0.326	0.382	0.498
	500.0	0.6055	0.3212	2, 128	0.598	0.893	1,696	0.3712	1.624	9.353	0.437	0.717
	550.0	0.6055	0.3220	2.192	0.884	1.441	2,830	0.3725	1.675	0.659	0.864	1.520
H ₂ -C ₂ H ₄	273.2	0.1500	0.1333	3.334	1.383	1.823	3.599					
vidCårif	273.2	0.3271	0,1000	0. 001	1.000	2. 020	3.000	0.1753	2.760	1.060	1.330	2.661
	300.0	0.0775						0.1895	2.846	0.829	1.096	1,605
	300.0	0.4182	0.1507	3.595	0.431	0.554	0.856	*******		0. 0.0		
	400.0	0.1250	0.1606	3. 549	0.429	0.514	0.817					
	400.0	0.2118						0.1996	2.777	0.829	1.185	2. 191
	500.0	0.0775						0.2101	2.778	0.729	0.897	1.397
	500.0	0.1250	0.1689	3. 547	0.480	0.587	0.880					
	550.0 550.0	0.0775 0.1280	0.1725	3. 573	0.533	0.656	1.117	0.2171	2.831	0.722	0.819	1.145
	500.0	0.1200	*******	0.0.0	0.000	0.000	2					
CH4-O2	293.2	0.1420	0.9227	1.021	0.304	0.382	0.853	0.9563	0.9542	0.322	0.386	0. 836
CH4-C3H4	293.0	0.3684	0.5042	1.881	0.165	0.228	0.378	0.5502	1.764	0.163	0.217	0. 349
	373.0	0.3684	0.5063	1.838	0.243	0.297	0.369	0.5520	1.722	0.240	0.295	0.394
	473.0	0.3684	0.5179	1.821	0.218	0.281	0.436	0.5640	1.704	0.215	0.271	0.401
	523.0	0.3684	0.5247	1.825	0.147	0. 229	0.393	0, 5711	1.707	0.146	0.216	0.369
N2-NO	293.0	0.2674	1,010	1.004	0.179	0.250	0.414	1.015	0.9989	0.179	0.250	0.415
	373.0	0.6948	1.000	0.9830	0.244	0.302	0.421	1.005	0.9777	0.244	0.302	0.422
N2-O2	298.7	0.5100	1.035	1.011	0.515	0.673	1,321	1.044	1.001	0.515	0.674	1.325
- •	300.0	0.4107	1.006	0.9945	0.118	0.153	0,238	1.015	0.9839	0.118	0.153	0.238
	400.0	0.4107	1.012	0.9862	0.085	0.104	0.129	1.022	0.9756	0.085	0.104	0.129
	500.0	0.4107	1.020	0.9882	0.122	0.158	0.246	1.029	0.9776	0.122	0.158	0.247
	550.0	0.7592	1.193	0.8805	2.814	4. 283	7.334	1.203	0.8608	2.814	4.278	7. 326
N ₂ O-C ₂ H ₂	300.0	0.4171	0.7291	1.390	0.103	0. 126	0,162	0.7292	1.330	0.103	0.126	0.162
	400.0	0.4171	0.7300	1.330	0.091	0.140	0.241	0.7310	1.330	0.091	0.140	0. 240
	500.0	0.7984	0.7380	1.331	0.275	0.372	0.607	6.7381	1.331	0.275	0.372	0.607
	580.0	0.4171	0.7366	1.327	0.141	0.182	0.282	0.7367	1.326	0.141	0.182	0.282

TABLE 2. RECOMMENDED SETS OF Ψ_{ij} AND L-VALUES FOR THE VISCOSITY DATA (continued)

Gas Pair	remp.	Mole Fraction of Heavier		Method	L, (%)	L ₂ (%)	L ₃ (%)	Second		L ₁ (%)	L ₂ (%)	I. (9
	(K)	Component	Ψ ₁₂	¥1.				¥i2				
HC1-CO2	291.00 291.16	0.6000 0.5000	0.1451 0.87 9 6	0.1206 1.034	0.612 0.171	0.776 0.189	1.340 0.261	0. 1452 0. 692 0	0.16 60 1.01 9	0.612 0.162	0.776 0.180	1.3 0.2
O ₂ -CO ₂	289.0	0.6000	0.7278	1.243	0.165	0. 195	0. 262	0.7506	1.211	0.145	0.175	0. 2
4 -4	289.0	0.6000	0.7294	1.244	0.093	0.124	0.247	0.7522	1.213	0.080	0.112	0,2
	298.2	0.3890	0.7304	1.195	0.322	0.371	0.502	0.7523	1.163	0.307	0.355	0, 5
	308.2	0,6080	0.7252	1.222	0.287	0.373	0.744	0.7478	1.192	0.289	0.365	0,7
	353.2	0.5000	0.7478	1.236	0.132	0.162	0.272	0.7706	1.204	0. 119	0.149	0.2
CL-CH2CL	989 15	0.6886	0.7131	1.348	0.219	0.290	0.536	0.7467	1.291	0.209	0.279	0.5
CH-CINCN	353.26	0.6351	0.7015	1.316	0.116	0.164	0.232	0.7345	1.261	0.145	0.205	0.2
	413.43	0.7096	0.7199	1.365	0.437	0.541	0.956	0.7536	1.307	0.436	0.544	0.8
CH ₃) ₂	313.2	0.5000	0.5969	2.749	2.301	2. 548	3.759	0. 6497	2.599	2.069	2.272	3. 2
снон-ссі												
н,он-ссі,	313.2	0.3200	0.5038	1.492	2.215	2.637	4.127	0.5498	1.287	2.041	2.436	3. 8
C ₈ H ₅ C ₄ H ₆ O ₂	313.2	0.3800	1.190	0.9382	0. 828	1.112	2.233	1. 221	0.8887	0. 844	1.132	2.2
H3-C2H4	293.2	0.3039	0.7380	1.184	0.069	0.084	0.150	0.7652	1,139	0.071	0.098	0.1
	373.2	0.4828	0.7294	1.222	0.062	0.075	0.114	0.7576	1.178	0.070	0.086	0. 1
	473.2	0.4828	0.7220	1.270	0.070	0.096	0.189	0.7505	1.225	0.059	0.094	0.1
	523.2	0.3039	0.7178	1.287	0.057	0.078	0.123	0.7460	1.241	0.064	0.080	0.1
H ₃ -H ₂	293.2	0.2975	0.2603	1.964	0.509	0.602	0.927	0.3033	1.661	0.043	0.052	0.0
	306.2 306.2	0.3990 0.5360	0.2189	1.581	1.882	2. 225	3.365	0.2543	1.334	1.213	1.489	2.
	327.2 327.2	0.3990 0.5360	0.2274	1.603	1,634	1.874	2.566	0. 2585	1.323	1.006	1,139	1.
	371.2	0.3990	0.2389	1.614	2.535	3.032	4.834	0.2000	1,040		1,100	•••
	371.2	0.5360						0.2723	1.336	1.925	2.363	3.
	373.2	0.2239						0.3289	1.625	0.092	0.109	0.
	373.2	0.2975	0.2856	1.943	0.513	0.620	0.961					
	421.2	0.1400	0.2498	1.628	1.502	1.874	3, 239					
	421.2	0.6005						0.2892	1.369	1.655	1.900	2.
	473.2	0.2975	0.3132	1.947	0.378	0.438	0.635	0.3585	1.618	0.057	0.103	o.
	479.2 523.2	0.6005 0.2975	0.2674 0.3223	1.677 1.946	1.260 0.404	1.532 0.474	2.321 0.666	0.3172 0.3660	1.444 1.613	1.469 0.049	1.782 0.056	2.
	323.2	V. 2815	0.3243	1.040		U, 17	0.000	0.3000	1.013	U. VES	0.030	٧.
r-(C2H6)20		0.1330	0.1063	4.654	0.727	1.029	1.455	0.1419	3.617	0.007	0.009	0.
	373.16	0.1330	0.1156	4.636	0.588	0.831	1.175	0.1523	3, 555	0.080	0.114	0.
	425.15	0.1330	0.1197	4.665	1.055	1.492	2.110	0.1570	3, 563	0.413	0.584	0.
	486.16	0.1330	0.1230	4.646	0.675	0.954	1.350	0.1609	3.532	0.054	0.076	0.
Cl-H ₂	294.16	0.8220	0.1920	2.129	1.226	1.843	3. 508	0.2452	1.761	0.112	0.131	9.
	327.16 327.16	0. 2031 0. 5042	0.2128	2. 257	0.508	0. 59 0	6.756	0.2532	1.739	0.276	0.509	1.
	372.16	0.2031						0.2582	1.714	0.099	0.136	ō.
	372.16	0.5042	0.2140	2.193	0.702	0.960	0.769	0.2002	1.114	0.000	0.130	٧.
	427.16	0.5092	0.2114	2.136	1,509	1.745	2.164	0.2575	1.696	0.888	1.150	1.
	473.16	0.2409	0.2385	2.292	0.656	0.783	1.131	0.2762	1,719	0.021	0.035	0.
	523.16	0.5178	0.2386	2.245	0.399	0.471	0.671	0.2861	1.743	0.293	0.378	0.
O2-H2	290.16	0.2286	0.1321	2.960	0.875	1.021	1.553	0.1657	2.211	0.149	0.230	0.
7 -7	303.2	0.4050	0.1506	3, 237	0.752	1.292	2.734	0. 1938	2.481	1.319	2.125	4.
	318.16	0.2286	0.1364	2.955	1.161	1.405	2.221	0.1702	2.195	0.595	0.795	1.
	328.2	0.4863	0.1491	3, 145	0.730	1.100	2.332	0.1939	2.435	1,222	2.134	4.
	343.16	0.2366	0.1386	2.921	0.841	0.953	1,466	0.1726	2.166	0.283	0.400	ō.
	365.16	0.2306	0.1414	2.914	0.778	0.894	1,391	0.1752	2.149	0.264	0.375	0.
	373.2	0.2005	0.1569	3,090	1.821	2.104	2.919	0. 1911	2.241	2.789	3.199	4.
	397.16	0.3265	0.1435	2. 589	0.618	0.780	1.310	0.1817	2.178	0.251	0.351	0.
	423.2	0.5023	0.1661	3. 1 73	0.541	0.665	1.110	0.2119	2.408	0.676	0.795	1.
	432.16	0.1676	0.1537	3.004	1.028	1.190	1.720	0.1849	2.1520	0.566	0.771	1.
	472.16	0.3265	0.1526	3.014	0.183	0.288	0.881	0.1920	2.257	0.679	1.041	2.
	473.2 473.2	0.4018 0.6024	0.1563	2.879	0.866	1, 515	3. 334	0. 2010	2, 203	0.394	0.485	0.
	287.66	0.5000	0.8211	0.9714	0.149	0. 181	0.331	0. 8250	0.9673	0.144	0.176	0.
HCP		0.7000	0.8327	0.9571	0.703	0. 101	1.180	0.8368	0.9532	0.702	0.176	1.
н,-Сн,	298.2											
н,-Сн,	298.2 308.2						2.783	0.8779				
Н3-СН4	298.2 308.2 353.2	0.4060 0.6960	0.8732	1.006	1.048	1.430 0.279	2.763 0.4 52	0.8773 0.8506	1.001	1.044	1.426	2.
Hg-CH ₄	308.2	0.4060	0.8732	1.006	1.048	1.430			1.001	1.044	1.426	2.

92a

TABLE 2. RECOMMENDED SETS OF Ψ_{ij} AND L-VALUES FOR THE VISCOSITY DATA (continued)

Gas Pair	Temp.	Mole Fraction of Heavier	First ! V ₁₂	Method Var	L ₁ (%)	L2 (%)	L ₃ (%)	Second V ₁₂	Method	L ₁ (%)	(%)	L ₃ (%)
		Component										
NH ₃ -N ₂	293.2	0.4362	0.9284	0. 8 594	0.154	0.184	0.299	0.9531	0.8188	0.103	0.129	0.218 3.238
	297.2 297.2	0.2036 0.4973	0.9719	0,9389	0.771	1.508	3.354	0.9962	0.8931	0.819	1.468	3. 230
	327.2	0.4973	0.9351	0,9144	0.769	1.156	2.369	0.9615	0.8725	0.783	1.177	2.432
	373.2	0.7993	0.9077	0.9291	0.722	1.070	2.056	0.9353	0.8890	0.698	1.098	2. 198
	373.2	0.4362	0.9055	0.9136	0.210	0.245	0.390	0.9311	0.8719	0.166	0.200	0.345
	423.2	0.4080	0.8982	0,9569	0.504	0.609	0.890	0.9245	0.9140	0.529	0.639	0.938
				0.9755		0.169						0.17
	473.2	0.4362	0.8871		0.149		0.216	0.9137	0.9325	0.115	0.130	
	523. 2 573. 2	0.4362 0.5072	0.8814 0.9240	1.000 1.012	0.097 0.627	0.120 1.023	0.169 2.192	0.9084 0.9520	0.9570 0.9677	0.082 0.642	0.094 1.038	0.133 2.222
			0.5210	1.012	0.021	1.023	2.192					
NH3-N2O	298.2 298.2	0.5040 0.5980	0.7325	1,294	0.481	0.589	1.043	0.7693	1.179	0.522	0.589	1.028
	308.2	0.3130	0.6695	1.180	0.519	0.596	0.873	0.7077	1.082	0.637	0.727	0.979
	353.2	0.2210	0.6593	1, 180	0.212	0.259	0.445	0. 1011	1.002	0.001	0.121	0.010
	353.2	0.3200	0.0000	1, 100	0.212	0.200	0.770	0.7002	1.087	0.211	0.293	0.660
SO ₂ -N ₂ O	298.2	0.4930	0.7421	1.219	0.420	0.537	1,312	0.7647	1.187	0.426	0.542	1.326
203-140	308.2	0.4760	0.7378	1.244	1.041	1.297	2.072	0.7605	1.212	1.027	1.284	2.056
	353.2	0.4740	0.7429	1.228	0.236	0.313	0.531	0.7655	1.196	0.223	0.300	0.515
								1.				
NH ₃ -O ₂	293.2	0.5214	0.9272	0.8456 0.9007	0.142 0.114	0.167 0.135	0.227	0.9563 0.9449	0.7935 0.8466	0.082 0.054	0.099 0.070	0.137 0.119
	373.2 473.2	0.5214 0.5214	0.9146 0.9033	0.9626	0.082	0.106	0.213 0.147	0.9349	0.9064	0.054	0.070	0.119
NH3-CH3NH2		0.5000	0.7065	1.361	0.226	0.277	0.347	0.7401	1.303	0.216	0.265	0.334
	298. 0	0.5000	0.7016	1.370	0.160	0.196	0.248	0.7352	1.311	0.149	0.183	0.229
	323.0	0.5000	0.6977	1.378	0.148	0.181	0.238	0.7313	1.320	0.137	0.169	0.225
	348.0	0.5000	0.6954	1.386	0.088	0.109	0.150	0.7290	1.328	0.078	0.097	0.133
	373.0	0.5000	0.6922	1.391	0.043	0.059	0.095	0.7258	1.333	0.034	0.047	0.077
	423.0	0.7500	0.6858	1.397	0.053	0.069	0.107	0.7196	1.340	0.047	0.058	0.071
	473.0	0.2500	0.6848	1.404	0.123	0.199	0.344	0.7181	1.345	0.123	0.211	0.366
	523.0	0.2500	0.6807	1.407	0.042	0.063	0.107	0.7139	1.348	0.047	0.076	0.131
	573.0	0.2500	0.6765	1.408	0.569	0.907	1.565	0.7095	1.349	0.567	0.921	1.591
	623.0	0.5000	0.6736	1.410	0.104	0.167	0.289	0.7069	1.352	0.091	0.153	0.265
	673.0	0.5000	0.6708	1.410	0.081	0.100	0.142	0.7041	1.352	0.066	0.084	0.125
CH ₃ COOCH ₂ C ₆ H ₅ C ₆ H ₅ NH ₂	303.2	0.4950	0.5301	1,627	0.050	0.135	0.542	0.5560	1.589	0.046	0.147	0.573
СН3СООСН2	313.2	0.2720	0.3809	2.417	0.645	0.860	1.325					
C ₄ H ₅ − CH ₅ C ₆ H ₄ OH	313.2	0.4350						0.3978	2.403	0.613	0.850	1.414
(CH ₃) ₂ O-	308.2	0.5080	1.041	0.9790	0.199	0.247	0.413	1.048	0.9718	0.198	0.246	0.412
CH ₂ Čl	353.2	0.5880	1.040	0.9797	0.091	0.119	0.233	1.047	0.9724	0.091	0.119	0.232
(CH ₂) ₂ O-8O ₂	308.2	0.4920	0.9937	1.005	0.269	0.308	0.550	1.015	0.9767	0.268	0.307	0.549
	353.2	0.5040	1.010	1.013	0.276	0.373	0.744	1.031	0.9838	0.277	0.376	0.747
CH C1 60	000 0	0.0040		1 000	0.007	0.400	A 200	0.000	1 007	0.004	0 400	0.700
CH ₃ C1-8O ₂	308.2 353.2	0.6040 0.5890	0.9539 0.9636	1.026 1.026	0.387 0.398	0.469 0.469	0.732 0.738	0.9697 0.9795	1.007 1.006	0.384 0.396	0,466 0,467	0.726 0.737
80 80 E		0 5000	0.0001	1 140	A 105	0.000		0.0555		0.104	0.007	
50 ₂ -80 ₂ F ₂	273.0	0.5000	0.8301	1.147	0.195 0.180	0.250 0.226	0.380	0.8575	1.105	0.184	0.237	0.366
	323.0	0.5000	0.8086	1.145			0.334	0.8357	1.104	0.163	0.205	0.305
	373.0	0.5000	0.7975	1.148	0.130	0.219	0.380	0.8245	1.107	0.120	0.200	0.347
	423.0	0.5000	0.7094	1.156	0.107	0.179	0.309	0.8174	1.115	0.096	0.159	0.276
	473.0	0.7500	0.7931	1.175	0.122	0. 165	0.269	0.8208	1.134	0.115	0.174	0.297
	523.0	0.5000	0.7909	1.180	0.094	0.116	0.145	0.8182	1.139	0.092	0.114	0.157
	573.0	0.5000	0.7939	1.194	0.077	0.095	0.131	0.8213	1.152	0.075	0.092	0.115
	623.0 673.0	0.5000 0.5000	0.7963 0.7974	1.205 1.212	0.083 0.040	0.103 0.052	0.142 0.082	0.8239 0.8251	1.163 1.169	0.082 0.048	0.100 0.061	0.127 0.092
Air-CO ₂	290.0	0.6000	0.7059	1.325	0.037	0.045	0.063	0.7311	1.288	0.024	0.033	0.053
Air-CH4	293.2	0.5050	0.8956	1.010	0.575	0.691	1.170	0.9267	0.9563	0.591	0.714	1.224
	293.2	0.4410	0.9037	1.007	0.911	1.914	5.827	0.9346	0.9536	0.928	1.912	5. 801
	293.2	0.5050	0.8850	1.011	0.916	1.417	3.794	0.9160	0.9579	0.940	1.439	3. 825
	293.2	0.6360	0.9007	1.021	0.547	0.738	1.641	0.9325	0.9672	0.574	0.768	1.907
NH3-Air	288.7	0.3000	0.9083	0.8432	0.442	0.551	1.088	0.9322	0.7992	0.3 94	0.532	1.233
Air-HCl	289.7 291.3	0.6000 0.6000	0.7109 0.7111	1.141 1.141	0.335 0.490	0.369 0.654	0.483 1.188	0.7252 0.7254	1.124 1.125	0.311 0.465	0.342 0.634	0.464 1.170
H ₂ S-Air	290.36	0.8000	0.6766	1.154	0.133	0.145	0.208	0.6871	1.125	0.112	0.129	0.245
	200,00	0.000	J. J. 100	.,	100	4	4,200	4.0011			4.420	V. 97

References to Text

- Touloukian, Y. S., Gerritsen, J. K., and Moore, N. Y., Thermophysical Properties Research Literature Retrieval Guide, 3 books, Plenum Press, New York, 2936 pp., 1967.
- Chapman, S. and Cowling, T. G., The Mathematical Theory of Non-Uniform Gases, 3rd Edition, prepared in cooperation with D. Burnett, Cambridge University Press, London, 423 pp., 1970.
- Brush, S. G., "The Development of the Kinetic Theory of Gases. I. Herapath," Ann. Sci., 13, 188-98, 1957.
- Brush, S. G., "The Development of the Kinetic Theory of Gases. II. Waterson," Ann. Sci., 13, 273-82, 1957.
- Brush, S. G., "The Development of the Kinetic Theory of Gases. III. Clausius," Ann. Sci., 14, 185-96, 1958.
- Brush, S. G., "The Development of the Kinetic Theory of Gases. IV. Maxwell," Ann. Sci., 14, 243-55, 1958.
- Brush, S. G., "Development of the Kinetic Theory of Gases. V. The Equation of State," Am. J. Phys., 29, 593-605, 1961.
- Brush, S. G., "Development of the Kinetic Theory of Gases. VI. Viscosity," Am. J. Phys., 30, 269-81, 1962.
- Brush, S. G., "John James Waterston and the Kinetic Theory of Gases," Am. Sci., 49, 202-14, 1961.
- Chapman, S., "The Kinetic Theory of Gases Fifty Years Ago," in Lectures in Theoretical Physics (Brittin, W. E., Barut, A. O., and Guenin, M., Editors), Vol. IXC, Kinetic Theory, Gordon and Breach, Science Publishers, Inc., New York, 1-13, 1967.
- Kennard, E. H., Kinetic Theory of Gases, with an Introduction to Statistical Mechanics, McGraw-Hill, New York, 483 pp., 1938.
- Jeans, J. H., An Introduction to the Kinetic Theory of Gases, Cambridge University Press, London, 311 pp., 1946.
- Jeans, J. H., The Dynamical Theory of Gases, Dover Publication reprint, 444 pp., 1954.
- Loeb, L. B., The Kinetic Theory of Gases. Dover Publication reprint, 687 pp., 1961.
- Saha, M. N. and Srivastava, B. N., A Treatise on Heat, including Kinetic Theory of Gases, Thermodynamics and Recent Advances in Statistical Thermodynamics, Indian Press, Calcutta, 935 pp., 1950.
- Present, R. D., Kinetic Theory of Gases, McGraw-Hill, New York, 267 pp., 1958.
- Herzfeld, K. F. and Smallwood, H. M., "The Kinetic Theory of Ideal Gases," Chapter I, States Matter, in Vol. II of Treatise on Physical Chemistry (Taylor, H. S. and Glasstone, S., Editors), D. Van Nostrand Co., Inc., New York, 1-185, 1951.
- Cowling, T. G., Molecules in Motion, Anchor Press, Tiptree, Essex, 183 pp., 1950.
- Knudsen, M., The Kinetic Theory of Gases: Some Modern Aspects, Methuen, London, 61 pp., 1950.
- Guggenheim, E. A., "The Kinetic Theory of Gases," in Elements of the Kinetic Theory of Gases, Topic 6 of Vol. 1,

- The International Encyclopedia of Physical Chemistry and Chemical Physics, Pergamon Press, Oxford, 92 pp., 1960.
- Kauzmann, W., Kinetic Theory of Gases, Vol. 1 of Thermal Properties of Matter, Benjamin, New York, 248 pp., 1966.
- Golden, S., Elements of the Theory of Gases, Addison-Wesley Publishing Co., Reading, Mass., 154 pp., 1964.
- Desloge, E. A. and Matthysse, S. W., "Collision Term in the Boltzmann Transport Equation," Am. J. Phys., 28, 1-11, 1960.
- Desloge, E. A., "Fokker-Planck Equation," Am. J. Phys., 31, 237-46, 1963.
- Desloge, E. A., "Coefficients of Diffusion, Viscosity, and Thermal Conductivity of a Gas," Am. J. Phys., 30, 911-20, 1962
- Desloge, E. A., "Transport Properties of a Simple Gas," Am. J. Phys., 32, 733-42, 1964.
- Desloge, E. A., "Transport Properties of a Gas Mixture," Am. J. Phys., 32, 742-8, 1964.
- Hirschfelder, J. O., Curtiss, C. F., and Bird, R. B., Molecular Theory of Gases and Liquids, John Wiley, & Sons, New York, 1219 pp., 1954; reprinted with Notes added, 1249 pp., 1964.
- Mintzer, D., "Transport Properties of Gases," Chapter 1 in The Mathematics of Physics and Chemistry (Margenau. H. and Murphy, G. S., Editors), 2nd Edition, D. Van Nostrand Co., New York, 49 pp., 1956.
- Mazo, R. M., "Transport Phenomena," in Statistical Mechanical Theories of Transport Processes, Topic 9 of Vol. 1,
 The International Encyclopedia of Physical Chemistry and Chemical Physics, Pergamon Press, Oxford, 166 pp., 1967.
- Liboff, R. L., Introduction to the Theory of Kinetic Equations. John Wiley & Sons, New York, 397 pp., 1969.
- Cercignani, C., Mathematical Methods in Kinetic Theory. Plenum Press, New York, 227 pp., 1969.
- Waldmann, L., Statistical Mechanics of Equilibrium and Non-Equilibrium (Meixner, J., Editor), North-Holland Publishing Co., Amsterdam, 117 pp., 1965.
- Waldmann, L., Transporterscheinungen in Gasen von Mittlerem Druck (Flugge, S., Editor), Handbuch der Physik, Springer-Verlag, Berlin, Band 12, 1958.
- Hochstim, A. R., Editor, Kinetic Processes in Gases and Plasmas, Academic Press, New York, 458 pp., 1969.
- DeGroot, S. R., Thermodynamics of Irreversible Processes. North-Holland Publishing Co., Amsterdam, 242 pp., 1952.
- Prigogine, I., Non-Equilibrium Statistical Mechanics, Interscience Publishers, Inc., New York, 319 pp., 1962.
- Prigogine, I., Resibois, P., and Severne, G., "Irreversible Processes in Dilute Monatomic Gases," in Proc. International Seminar on the Transport Properties of Gases, Brown University, Providence, Rhode Island, 7-38, 1964.
- Montgomery, D., "The Foundations of Classical Kinetic Theory," in Lectures in Theoretical Physics (Brittin, W. E.,

- Barut, A. O., and Guenin, M., Editors), Vol. IXC, Kinetic Theory, Gordon and Breach, Science Publishers, Inc., New York, 791 pp., 1967.
- Monchick, L., "Equivalence of the Chapman-Enskog and the Mean-Free-Path Theory of Gases," *Phys. Fluids*, 11, 1393-8, 1962.
- Monchick, L. and Mason, E. A., "Free-Flight Theory of Gas Mixtures," Phys. Fhiids, 10, 1377-90, 1967.
- Touloukian, Y. S., Liley, P. E., and Saxena, S. C., Thermal Conductivity—Nonmetallic Liquids and Gases, Vol. 3 of Thermophysical Properties of Matter (The TPRC Data Series), IFI/Plenum Data Corp., New York, 707 pp., 1970.
- Liley, P. E., "Survey of Recent Work on the Viscosity, Thermal Conductivity and Diffusion of Gases and Gas Mixtures," in Thermodynamic and Transport Properties of Gases, Liquids and Solids, Symposium ASME, New York, 40-69, 1959.
- Liley, P. E., "Review of Work on the Transport Properties of Gases and Gas Mixtures," Purdue University, TPRC Report 10, 57 pp., 1959.
- Liley, P. E., "Review of Work on the Transport Properties of Gases and Gas Mixtures," Supplement 1, Purdue University, TPRC Report 12, 14 pp., 1961.
- Liley, P. E., "Survey of Recent Work on the Viscosity, Thermal Conductivity and Diffusion of Gases and Liquefied Gases Below 500 K," Purdue University, TPRC Report 13, 33 pp., 1961.
- Sutherland, W., "The Viscosity of Mixed Gases," Phil. Mag., 40, 421-31, 1895.
- Kirkwood, J. G., "The Statistical Mechanical Theory of Transport Processes. I. General Theory," J. Chem. Phys., 14, 180-201, 1946.
- Kirkwood, J. G., "The Statistical Mechanical Theory of Transport Processes. II. Transport in Gases," J. Chem. Phys., 15, 72-6, 1947.
- Grad, H., "Singular and Nonuniform Limits of Solutions of the Boltzmann Equation," Vol. I of SIAM-AMS Proceedings: Transport Theory, 269-308, 1967.
- Grad, H., "Accuracy and Limits of Applicability of Solutions of Equations of Transport: Dilute Monatomic Gases," in Proc. International Seminar on the Transport Properties of Gases, Brown University, Providence, R. I., 39-57, 1964.
- Kumar, K., "Polynomial Expansions in Kinetic Theory of Gases," Ann. Phys., 37, 113-41, 1966.
- Kumar, K., "The Chapman-Enskog Solution of the Boltzmann Equation: A Reformation in Terms of Irreducible Tensors and Matrices," Aust. J. Phys., 20, 205-52, 1967.
- Green, M. S., "Markoff Random Processes and the Statistical Mechanics of Time-Dependent Phenomena," J. Chem. Phys., 20, 1281-95, 1952.
- Green, M. S., "Boltzmann Equation from the Statistical Mechanical Point of View," J. Chem. Phys., 25, 836-55, 1956.
- Green, M. S., "The Non-Equilibrium Pair Distributing Function at Low Densities," Physica, 29, 393-403, 1958.
- Green, M. S. and Piccirelli, R. A., "Basis of the Functional Assumption in the Theory of the Boltzmann Equation," Phys. Rev., 132, 1388-410, 1963.
- Hoffmann, D. K. and Green, H. S., "On a Reduction of Liouville's Equation to Boltzmann's Equation," J. Chem. Phys., 43, 4007-16, 1965.
- Snider, R. F., "Variational Methods for Solving the Boltzmann Equation," J. Chem. Phys., 41, 591-5, 1964.
- Mazur, P. and Biel, J., "On the Derivation of the Boltzmann Equation," *Physica*, 32, 1633-48, 1966.

- Su, C. H., "Kinetic Equation of Classical Boltzmann Gases," Phys. Fluids, 7, 1248-55, 1964.
- McLennan, J. A., "Convergence of the Chapman-Enskog Expansion for the Linearized Boltzmann Equation," Phys. Fluids, 8, 1580-4, 1965.
- Garcia-Colin, L. S., Green, M. S., and Chaos, F., "The Chapman-Enskog Solution of the Generalized Boltzmann Equation," *Physica*, 32, 450-78, 1966.
- 64. Fujita, S., "Boltzmann Equation Approach to Transport Phenomena," in Lectures in Theoretical Physics (Britten, W. E., Barut, A. O., and Guenin, M., Editors), Vol. IX C. Kinetic Theory, Gordon and Breach, Science Publishers, Inc., New York, 231-63, 1967.
- 65. Bogoliubov, N N., "Problems of a Dynamical Theory in Statistical Physics," English translation by Gora, E. K., in Studies in Statistical Mechanics, Vol. I (de Boer, J. and Uhlenbeck, E. K., Editors), North-Holland Publishing Co., Amsterdam, 131 pp., 1962.
- Bogoliubov, N. N., "Kinetic Equations," J. Phys. (USSR), 10, 265-74, 1946.
- Desai, R. C. and Ross, J., "Solutions of Boltzmann Equation and Transport Processes," J. Chem. Phys., 49, 3754-64, 1968.
- Montroll, E. W. and Green, M. S., "Statistical Mechanics of Transport and Nonequilibrium Processes," Ann. Rev. Phys. Chem., 5, 449-76, 1954.
- Grad, H., "On the Kinetic Theory of Rarefied Gases," Commun. Pure Appl. Math., 2, 331-407, 1949.
- Grad, H., "Asymptotic Theory of the Boltzmann Equation," Phys. Fluids, 6, 147-81, 1963.
- Grad, H., "Statistical Mechanics, Thermodynamics, and Fluid Mechanics of Systems with an Arbitrary Number of Integrals," Commun. Pure Appl. Math., 5, 455-94, 1952.
- Zwanzig, R., "Time-Correlation Functions and Transport Coefficients in Statistical Mechanics," Ann. Rev. Phys. Chem., 16, 67-102, 1965.
- Bhatnagar, P. L., Gross, E. P., and Krook, M., "A Model for Collision Processes in Gases. I. Small Amplitude Processes in Charged and Neutral One-Component Systems," *Phys. Rev.*. 94, 511-25, 1954.
- Welander, P., "On the Temperature Jump in a Rarefied Gas," Ark. Fys., 7(44), 507-53, 1954.
- Gross, E. P. and Krook, M., "Model for Collision Processes in Gases: Small-Amplitude Oscillations of Charged Two-Component Systems," Phys. Rev., 102, 593-604, 1956.
- Gross, E. P. and Jackson, E. A., "Kinetic Models and the Linearized Boltzmann Equation," Phys. Fluids, 2, 432-41, 1950
- 77. Sirovich, L., "Kinetic Modeling of Gas Mixtures," Phys. Fluids, 5, 908-18, 1962.
- Enoch, J., "Kinetic Model for High Velocity Ratio Near Free Molecular Flow," Phys. Fluids, 5, 913-24, 1962.
- Hamel, B. B., "Kinetic Model for Binary Gas Mixtures," Phys. Fluids, 8, 418-25, 1965.
- Willis, D. R., "Comparison of Kinetic Theory Analysis of Linearized Conette Flow," Phys. Fluids, 5, 127-35, 1962.
- Holway, L. H., "New Statistical Models for Kinetic Theory: Methods of Construction," Phys. Fluids, 9, 1958-73, 1966.
- Mason, E. A., "Transport in Neutral Gases," Chapter 3 of Kinetic Pressures in Gases and Plasmas (Hochstim, A. R., Editor), Academic Press, New York, 57-100, 1969.
- Kihara, T., Imperfect Gases, Asakura Press, Tokyo, 334 pp., 1949; English translation by the United States Office of Air Research, Wright-Patterson Air Force Base.

- Kihara, T., "Virial Coefficients and Models of Molecules in Gases," Rev. Mod. Phys., 25, 831-43, 1953.
- Joshi, R. K., "The Rigid Sphere Perturbation Procedure for Theoretical Evaluation of the Transport Coefficients of Pure Gases," Chem. Phys. Letters, 1, 575-8, 1968.
- Joshi, R. K., "Self-Consistent Approximation Procedure for Theoretical Evaluation of Transport Properties of Binary Gas Mixtures," *Indian J. Pure Appl. Phys.*, 7, 381-4, 1969.
- Saxena, S. C., "On the Two Schemes of Approximating the Transport Coefficients (Chapman-Cowling and Kihara), J. Phys. Soc. (Japan), 11, 367-9, 1956.
- Curtiss, C. F. and Hirschfelder, J. O., "Transport Properties of Multicomponent Gas Mixtures," J. Chem. Phys., 17, 550-5, 1949.
- Saxena, S. C. and Joshi, R. K., "Evaluation of the Determinant Elements Occurring in the Second Approximation to the Viscosity of Binary Gas Mixtures," *Physica*, 29, 870-2, 1963.
- Saxena, S. C. and Joshi, R. K., "The Chapman-Cowling Second Approximation to the Viscosity Coefficient of Binary Gas Mixtures," *Indian J. Phys.*, 37, 479-85, 1963.
- Joshi, R. K., "The Chapman-Cowling Third Approximation to the Viscosity Coefficient of Binary Gas Mixtures," *Phys. Letters*, 15, 32-4, 1965.
- Mason, E. A., "Higher Approximations for the Transport Properties of Binary Gas Mixtures. I. General Formulas," J. Chem. Phys., 27, 58-84, 1957.
- Joshi, R. K. and Saxena, S. C., "A Second Approximation Formula for the Viscosity Coefficient of Binary Gas Mixtures," *Physica*, 31, 762-3, 1965.
- 94. Waldmann, L., "Remarks on the Transport Properties of Gaseous Isobar Mixtures," *Physica*, 30, 914-27, 1964.
- Hirschfelder, J. O., Taylor, M. H., Kihara, T., and Rutherford, R., "Viscosity of Two-Component Gaseous Mixtures," *Phys. Fluids*, 4, 663-8, 1961.
- Curtiss, C. F., "Kinetic Theory of Nonspherical Molecules," J. Chem. Phys., 24, 225-41, 1956.
- Curtiss, C. F. and Muckenfuss, C., "Kinetic Theory of Nonspherical Molecules. II," J. Chem. Phys., 26, 1619; Ibid, 36, 1957
- Muckenfuss, C. and Curtiss, C. F., "Kinetic Theory of Nonspherical Molecules. III," J. Chem. Phys., 29, 1257-72, 1958.
- Livingston, P. M. and Curtiss, C. F., "Kinetic Theory of Nonspherical Molecules. IV. Angular Momentum Transport Coefficient," J. Chem. Phys., 31, 1643-5, 1959.
- Curtiss, C. F. and Dahler, J. S., "Kinetic Theory of Nonspherical Molecules. V," J. Chem. Phys., 38, 2352-62, 1963.
- Sandler, S. I. and Dahler, J. S., "Transport Properties of Polyatomic Fluids. II. A Dilute Gas of Spherocylinders," J. Chem. Phys., 44, 1229-37, 1966.
- 102. Kagan, Yu. and Afana'sev, A. M., "On the Kinetic Theory of Gases with Rotational Degrees of Freedom," Zh. Eksp. Teor. Fiz., 41, 1536-45, 1961; English translation: Sov. Phys.— JETP, 14, 1096-101, 1962.
- Dahler, J. S. and Sather, N. F., "Kinetic Theory of Loaded Spheres. I," J. Chem. Phys., 38, 2363-82, 1963.
- Sandler, S. I. and Dahler, J. S., "Kinetic Theory of Loaded Spheres. II," J. Chem. Phys., 43, 1750-9, 1965.
- 105. Pidduck, F. B., "The Kinetic Theory of a Special Type of Rigid Molecules," Proc. Roy. Soc. (London), A101, 101-12, 1922.
- Condiff, D. W., Lu, W.-K., and Dahler, J. S., "Transport Properties of Polyatomic Fluids, a Dilute Gas of Perfectly Rough Spheres," J. Chem. Phys., 42, 3445-75, 1965.

- McLaughlin, I. L. and Dahler, J. S., "Transport Properties of Polyatomic Fluids. III. The Transport-Relaxation Equations for a Dilute Gas of Rough Spheres," J. Chem. Phys., 44, 4453-9, 1966.
- 108. Waldmann, L., "Kinetische Theorie des Lorentz-Gases ans Rotierenden Molekillen," Z. Naturforsch, 18a, 1033-48, 1963.
- 109. Dahler, J. S., "Introductory Comments on the Theory of Transport in Polyatomic Fluids," in Proc. International Seminar on the Transport Properties of Gases, Brown University, Providence, R. I., 85-96, 1964.
- Pople, J. A., "The Statistical Mechanics of Assemblies of Axially Symmetric Molecules. I. General Theory," Proc. Roy. Soc. (London), 221A, 498-507, 1954.
- Pople, J. A., "The Statistical Mechanics of Assemblies of Axially Symmetric Molecules. II. Second Virial Coefficients," Proc. Roy. Soc. (London), 221A, 508-16, 1954.
- Castle, B. J., Jansen, L., and Dawson, J. M., "On the Second Virial Coefficients for Assemblies of Nonspherical Molecules," J. Chem. Phys., 24, 1078-83, 1956.
- Saksena, M. P. and Saxena, S. C., "Second Virial Coefficient of Non-Polar Non-Spherical Molecules," *Phys. Letters*, 18, 120-2, 1965.
- 114. McCourt, F. R. and Snider, R. F., "Thermal Conductivity of a Gas with Rotational States," J. Chem. Phys., 41, 3185-94, 1964.
- McCourt, F. R. and Snider, R. F., "Transport Properties of Gases with Rotational States. II," J. Chem. Phys., 43, 2276-83, 1965.
- Kagan, Yu. and Maksimov, L. A., "Transport Phenomena in a Paramagnetic Gas," Zh. Eksp. Theor. Fiz., 41, 842-52, 1961; English translation: Sov. Phys.—JETP, 14, 604-10, 1962.
- Dahler, J. S., "Transport Phenomena in a Fluid Composed of Diatomic Molecules," J. Chem. Phys., 30, 1447-75, 1959.
- Brout, R., "Rotational Energy Transfer in Diatomic Molecules," J. Chem. Phys., 22, 1189-90, 1954.
- Belov, V. A. and Dubner, V. M., "Angular Distribution and Transport Cross Sections," Teplofiz. Vys. Temp., 4, 872-7, 1966; English translation: High Temp., 4, 806-7, 1966.
- O'Toole, J. T. and Dahler, J. S., "Molecular Friction in Dilute Gases," J. Chem. Phys., 33, 1496-1504, 1960.
- Sather, N. F. and Dahler, J. S., "Molecular Friction in Dilute Gases. II. Thermal Relaxation of Translational and Rotational Degrees of Freedom," J. Chem. Phys., 35, 2029-37, 1961.
- Sather, N. F. and Dahler, J. S., "Molecular Friction in Dilute Gases. III. Rotational Relaxation in Polyatomic Fluids," J. Chem. Phys., 37, p. 1947, 1962.
- Bjerre, A., "Kinetic Theory of Nonspherical Molecules," J. Chem. Phys., 48, 3540-4, 1968.
- Morse, T. F., "Kinetic Model for Gases with Internal Degrees of Freedom," Phys. Fluids, 7, 159-69, 1964.
- Brau, C., "Kinetic Theory of Polyatomic Gases: Models for the Collision Processes," Phys. Fluids, 10, 48-55, 1967.
- Gioumousis, G. and Curtiss, C. F., "Molecular Collisions. I. Formal Theory and the Pauli Principle," J. Chem. Phys., 29, 996-1001, 1958.
- Gioumousis, G. and Curtiss, C. F., "Molecular Collisions. II. Diatomic Molecules," J. Math. Phys., 2, 96-104, 1961.
- Gioumousis, G., "Molecular Collisions. III. Symmetric Top Molecules," J. Math. Phys., 2, 723-7, 1961.

- Gioumousis, G. and Curtiss, C. F., "Molecular Collisions.
 Nearly Spherical Rigid Body Approximation," J. Math. Phys., 3, 1059-72, 1962.
- Curtiss, C. F. and Hardisson, A., "Molecular Collisions. V. Nearly Spherical Potentials," J. Chem. Phys., 46, 2618-33, 1967.
- Curtiss, C. F., "Molecular Collisions. VI. Diagrammatic Methods," J. Chem. Phys., 48, 1725-31, 1968.
- Biolsi, L. and Curtiss, C. F., "Molecular Collisions. VII. Nuclear Spin and Statistics Effects," J. Chem. Phys., 48, 4508-16, 1968.
- Curtiss, C. F., "Molecular Collisions. VIII," J. Chem. Phys., 49, 1952-7, 1968.
- Curtiss, C. F. and Bernstein, R. B., "Molecular Collisions. IX. Restricted Distorted-Wave Approximation for Rotational Excitation and Scattering of Diatomic Molecules," *J. Chem. Phys.*, 50, 1168-76, 1969.
- 135. Fenstermaker, R. W., Curtiss, C. F., and Bernstein, R. B., "Molecular Collisions. X. Restricted-Distorted-Wave-Born and First-Order Sudden Approximations for Rotational Excitation of Diatomic Molecules," J. Chem. Phys., 51, 2439-48, 1969.
- Wang, C. C. S. and Uhlenbeck, G. E., "On the Transport Phenomena in Rarefied Gases," University of Michigan, Ann Arbor, Mich., Report No. CM-443, Feb. 20, 1948.
- Wang, C. C. S. and Uhlenbeck, G. E., "Transport Phenomena in Polyatomic Gases," University of Michigan, Ann Arbor, Mich., Report No. CM-681, July 10, 1951.
- 138. Wang, C. C. S., Uhlenbeck, G. E., and de Boer, J., "The Heat Conductivity and Viscosity of Polyatomic Gases," Part C, Vol. II of Studies in Statistical Mechanics (de Boer, J. and Uhlenbeck, G. E., Editors), North-Holland Publishing Co., Amsterdam. 243-68. 1964.
- Finkelstein, L. and Harris, S., "Kernel of the Linearized Wang Chang-Uhlenbeck Collision Operator," Phys. Fluids, 9, 8-11, 1966.
- Finkelstein, L., "Structure of Boltzmann Collision Operator," *Phys. Fluids.* 8, 431-6, 1965.
- Hanson, F. B. and Morse, T. F., "Kinetic Models for a Gas with Internal Structure," Phys. Fluids, 10, 345-53, 1967.
- Taxman, N., "Classical Theory of Transport Phenomena in Dilute Polyatomic Gases," Phys. Rev.. 110, 1235-9, 1958.
- Mason, E. A. and Monchick, L., "Heat Conductivity of Polyatomic and Polar Gases," J. Chem. Phys., 36, 1622-39, 1962.
- 144. Monchick, L., Yun, K. S., and Mason, E. A., "Relaxation Effects in the Transport Properties of a Gas of Rough Spheres," J. Chem. Phys., 38, 1282-7, 1963.
- 145. Monchick, L., Yun, K. S., and Mason, E. A., "Formal Kinetic Theory of Transport Phenomena in Polyatomic Gas Mixtures," J. Chem. Phys., 39, 654-69, 1963.
- 146. Monchick, L., Pereira, A. N. G., and Mason, E. A., "Heat Conductivity of Polyatomic and Polar Gases and Gas Mixtures," J. Chem. Phys., 42, 3241-56, 1965.
- 147. Monchick, L., Munn, R. J., and Mason, E. A., "Thermal Diffusion in Polyatomic Gases: A Generalized Stefan-Maxwell Diffusion Equation," J. Chem. Phys., 45, 3051-8, 1966.
- Monchick, L., Sandler, S. I., and Mason, E. A., "Thermal Diffusion in Polyatomic Gases: Non-Spherical Interactions," J. Chem. Phys., 49, 1178-84, 1968.
- 149. Sandler, S. I. and Dahler, J. S., "Kinetic Theory of Loaded Spheres. IV. Thermal Diffusion in a Dilute-Gas Mixture of D₂ and HT," J. Chem. Phys., 47, 2621-30, 1967.

- 150. Sandler, S. I. and Mason, E. A., "Thermal Diffusion in a Loaded Sphere-Smooth Sphere Mixture: A Model for ⁴He-HT and ³He-HD," J. Chem. Phys., 47, 4653-8, 1967.
- Alievskii, M. Ya and Zhdanov, V. M., "Transport and Relaxation Phenomena in Polyatomic Gas Mixtures," Soviet Phys.—JETP, 28, 116-21, 1969.
- Zhdanov, V. M., "The Kinetic Theory of a Polyatomic Gas," Soviet Phys.—JETP, 26 1187-91, 1968.
- Grad, H., "Note on N-Dimensional Hermite Polynomials," Commun. Pure Appl. Math., 2, 325-30, 1949.
- 154. Zhdanov, V. M., Kagan, Yu., and Sazykin, A., "Effect of Viscous Transfer of Momentum on Diffusion in a Gas Mixture," Sov. Phys.—JETP, 15, 596-602, 1962.
- 155. Waldmann, L. and Trübenbacher, E., "Formale Kinetische Theorie von Gasgemischen aus Arregbaren Molekülen," Z. Naturforsc., 17a, 363-76, 1962.
- Buckingham, A. D. and Pople, J. A., "The Statistical Mechanics of Imperfect Polar Gases, Part I. Second Virial Coefficients," *Trans. Faraday Soc.*, 51, 1173-9, 1955.
- 157. Buckingham, A. D. and Pople, J. A., "The Statistical Mechanics of Imperfect Polar Gases, Part 2. Dielectric Polarization," *Trans. Faraday Soc.*, 51, 1179-83, 1955.
- Saxena, S. C. and Joshi, K. M., "Second Virial Coefficient of Polar Gases," Phys. Fluids, 5, 1217-22, 1962.
- Krieger, F. J., "The Viscosity of Polar Gases," Rand Corporation, Santa Monica, California, Research Memorandum RM-646, 20 pp., 1951.
- 160. Stockmayer, W. H., "Second Virial Coefficient of Polar Gases," J. Chem. Phys., 9, 398-402, 1941.
- Stockmayer, W. H., "Second Virial Coefficients of Polar Gas Mixtures," J. Chem. Phys., 9, 863-70, 1941.
- Joshi, K. M. and Saxena, S. C., "Viscosity of Polar Gases," *Physica*, 27(3), 329-36; *Ibid*. 27(12), p. 1101, 1961.
- 163. Liley, P. E., "Collision Integrals for the Viscosi", ef Polar Gases," J. Chem. Eng. Data, 5, 307-8, 1960.
- 164. Itean, E. C., Glueck, A. R., and Svehla, R. Collision Integrals for a Modified Stockmayer Potential." NASA Technical Note D-481, 29 pp., 1961.
- Monchick, L. and Mason, E. A., "Transport Properties of Polar Gases," J. Chem. Phys., 35, 1676-97, 1961.
- Hornig, J. F. and Hirschfelder, J. O., "Concept of Intermolecular Forces in Collisions," *Phys. Rev.*, 103, 908-17, 1956
- Mason, E. A., Vanderslice, J. T., and Yos, J. M., "Transport Properties of High-Temperature Multicomponent Gas Mixtures," *Phys. Fluids*, 2, 688-94, 1959.
- Mason, E. A. and Monchick, L., "Transport Properties of Polar-Gas Mixtures," J. Chem. Phys., 36, 2746-57, 1962.
- Mott, N. F. and Massey, H. S., The Theory of Atomic Collisions, Clarendon Press, Oxford, 388 pp., 1949.
- Bernstein, R. B., "Quantum Effects in Elastic Molecular Scattering," in *Molecular Beams*, Vol. X of *Advances in Chemical Phys.* (Ross, J., Editor), Interscience Publishers, New York, 75-134, 1966.
- Uehling, E. A. and Uhlenbeck, G. E., "Transport Phenomena in Einstein-Bose and Fermi-Dirac Gases," Phys. Rev., 43, 552-61, 1933.
- 172. Buckingham, R. A. and Gal, E., "Applications of Quantum Theory to the Viscosity of Dilute Gases," in Advances in Atomic and Molecular Physics, Vol. 4 (Bates, D. R. and Estermann, Editors), Academic Press, New York, 37-61, 1968.

- 173. de Boer, J., "Transport-Properties of Gaseous Helium at Low Temperatures," Chapter 18 of Vol. I in *Progress in Low Temperature Physics* (Gorter, C. J., Editor), North-Holland Publishing Co., Amsterdam, 381-406, 1955.
- 174. Mori, H., Oppenheim, I., and Ross, J., "Some Topics in Quantum Statistics: The Wigner Function and Transport Theory," Part C of Studies in Statistical Mechanics, Vol. I (de Boer, J. and Uhlenbeck, G. E., Editors), North-Holland Publishing Co., Amsterdam, 217-98, 1962.
- Waldman, L., "The Boltzmann Equation-for Gases from Spin Particles," A. Naturforsch., 13a, 609-20, 1958.
- Snider, R. F., "Quantum-Mechanical Modified Boltzmann Equation for Degenerate Internal States," J. Chem. Phys., 32, 1051-60, 1960.
- Snider, R. F., "Perturbation Variation Methods for a Quantum Boltzmann Equation," J. Math. Phys., 5, 1580-7, 1964.
- Hoffman, D. K., Mueller, J. J., and Curtiss, C. F., "Quantum-Mechanical Boltzmann Equation," J. Chem. Phys., 43, 2878-84, 1965.
- Hoffman, D. K., "On a Derivation of a Quantum-Mechanical Linearized Boltzmann Equation," J. Chem. Phys., 44, 2644– 51, 1966.
- Prigogine, I. and Résibois, P., "On the Approach to Equilibrium of a Quantum Gas," *Physica*. 24, 705-816, 1958.
- Prigogine, I. and Ono, S., "On the Transport Equation in Quantum Gases," *Physica*, 25, 171-8, 1959.
- Prigogine, I. and Balescu, R., "Irreversible Processes in Gases.
 I. The Diagram Technique," *Physica*, 25, 281-301, 1959; "II.
 The Equation of Evolution," *Physica*, 25, 302-23, 1959.
- 183. Mueller, J. J. and Curtiss, C. F., "Quantum-Mechanical Kinetic Theory of Loaded Spheres," J. Chem. Phys., 46, 283-302 1967.
- Mueller, J. J. and Curtiss, C. F., "Quantum-Mechanical Kinetic Theory of Loaded Spheres. II. The Classical Limit," J. Chem. Phys., 46, 1252-64, 1967.
- 185. de Boer, J. and Bird, R. B., "Quantum Corrections to Transport Properties at High Temperatures," Phys. Rev.. 83, 1259-60, 1951.
- 186. de Boer, J. and Bird, R. B., "Quantum Corrections to the Transport Coefficients of Gases at High Temperatures," *Physica*, 20, 185-98, 1954.
- Saxena, S. C., Kelley, J. G., and Watson, W. W., "Temperature Dependence of the Thermal Diffusion Factor for Helium, Neon and Argon," *Phys. Fluids*, 4, 1216–25, 1961.
- 188. Choi, S. and Ross, J., "Quantum Corrections for Transport Coefficients," J. Chem. Phys., 33, 1324-31, 1960.
- 189. Buckingham, R. A. and Corner, J., "Tables of Second Virial and Low-Pressure Joule-Thomson Coefficients for Intermolecular Potentials with Exponential Repulsion," Proc. Roy. Soc., A189, 118-29, 1948.
- Imam-Rahajoe, S., Curtiss, C. F., and Bernstein, R. B., "Numerical Evaluation of Quantum Effects on Transport Cross Sections," J. Chem. Phys., 42, 530-6, 1965.
- Munn, R. J., Smith, F. J., Mason, E. A., and Monchick, L., "Transport Collision Integrals for Quantum Gases Obeying a 12-6 Potential," J. Chem. Phys., 42, 537-9, 1965.
- Curtiss, C. F. and Power, R. S., "An Expansion of Binary Collision Phase Shifts in Fowers of h," J. Chem. Phys., 40, 2145-50, 1964.
- Wood, H. T. and Curtiss, C. F., "Quantum Corrections to the Transport Cross Sections," J. Chem. Phys., 41, 1167-73, 1964.

- 194. Munn, R. J., Mason, E. A., and Smith, F. J., "Some Aspects of the Quantal and Semiclassical Calculation of Phase Shifts and Cross Sections for Molecular Scattering and Transport," J. Chem. Phys., 41, 3978-88, 1964; Erratum Ibid., 43, 2158, 1965.
- 195. Smith, F. J., Mason, E. A., and Vanderslice, J. T., "Higher-Order Stationary-Phase Approximations in Semiclassical Scattering," J. Chem. Phys., 42, 3257-64, 1965.
- Burnstein, R. B., Curtiss, C. F., Imam-Rahajoe, S., and Wood,
 H. T., "Numerical Evaluation of Barrier Penetration and Resonance Effects on Phase Shifts," J. Chem. Phys., 44, 4072-81, 1966.
- Massey, H. S. W. and Mohr, C. B. O., "Free Paths and Transport Phenomena in Gases and the Quantum Theory of Collisions. I. The Rigid Sphere Model," Proc. Roy. Soc. (London), A141, 434-53, 1933.
- 198. Massey, H. S. W. and Mohr, C. B. O., "Free Paths and Transport Phenomena in Gases and the Quantum Theory of Collisions. II. The Determination of the Laws of Force Between Atoms and Molecules," Proc. Roy. Soc. (London), A144, 188-205, 1934.
- 199. Massey, H. S. W. and Buckingham, R. A., "The Low-Temperature Properties of Gaseous Helium," Proc. Roy. Soc. (London), A168, 378-89, 1938.
- Massey, H. S. W. and Buckingham, R. A., "The Low Temperature Properties of Gaseous Helium, Errata," Proc. Roy. Soc. (London), A169, 205, 1938.
- Slater, J. C. and Kirkwood, J. G., "The van der Waals Forces in Gases," Phys. Rev., 37, 682-97, 1931.
- Buckingham, R. A., Hamilton, J., and Massey, H. S. W., "The Low-Temperature Properties of Gaseous Helium. II," Proc. Roy. Soc. (London), A179, 103-22, 1941.
- 203. de Boer, J., "Transport Phenomena of Gaseous He at Very Low Temperatures," *Physica*, 10, 348-56, 1943.
- 204. Keller, W. E., "Calculation of the Viscosity of Gaseous He³ and He⁴ at Low Temperatures," Phys. Rev., 105, 41-5, 1957
- Monchick, L., Mason, E. A., Munn, R. J., and Smith, F. J., "Transport Properties of Gaseous He³ and He⁴," Phys. Rev.. 139, A1076-82, 1965.
- Larsen, S. Y., Witte, K., and Kilpatrick, J. E., "On the Quantum-Mechanical Pair-Correlation Function of He⁴ at Low Temperatures." J. Chem. Phys., 44, 213-20, 1966.
- de Boer, J. and Michels, A., "Quantum-Mechanical Calculation of the Second-Virial Coefficient of Helium at Low Temperatures," *Physica*, 6, 409-20, 1939.
- Mason, E. A. and Rice, W. E., "The Intermolecular Potentials of Helium and Hydrogen," J. Chem. Phys., 22, 522-35, 1954.
- Buckingham, R. A. and Temperley, H. N. V., "The Viscosity of Liquid He³," Phys. Rev., 78, 482, 1950.
- 210. de Boer, J. and Cohen, E. G. D., "The Viscosity of Gaseous He³ at Low Temperatures," *Physica*, 17, 993-1000, 1951.
- Buckingham, R. A. and Seriven, R. A., "Diffusion in Gaseous Helium at Low Temperatures," Proc. Phys. Soc. (London), 65A, 376-7, 1952.
- Cohen, E. G. D., Offerhaus, M. J., and de Boer, J., "The Transport Properties and Equation of State of Gaseous Mixtures of the Helium Isotopes," *Physica.* 20, 501-15, 1954.
- 213. Halpern, O. and Buckingham, R. A., "Symmetry Effects in Gas Kinetics. I. The Helium Isotopes," *Phys. Rev.*, 98, 1626-31, 1955.

- 215. Cohen, E. G. D., Offerhaus, M. J., van Leeuwen, J. M. J., Roos, B. W., and de Boer, J., "The Transport Properties and the Equation of State of Gaseous Para- and Ortho-Hydrogen and Their Mixtures Below 40 K," *Physica*, 22, 791-815, 1956.
- Buckingham, R. A., Davies, A. R., and Gilles, D. C., "Symmetry Effects in Gas Kinetics. II. Ortho- and Parahydrogen," Proc. Phys. Soc. (London), 71, 457-69, 1958.
- Takayanagi, K. and Ohno, K., "Collisions Between Non-Spherical Molecules. I. Molecular Collisions in Hydrogen Gas at Lower Temperatures," Prog. Theor. Phys. (Kyoto), 13, 243-59, 1955.
- Niblett, P. D. and Takayanagi, K., "The Calculation of Some Properties of Hydrogen Gas at Low Temperatures," Proc. Roy. Soc. (London), A250, 224-47, 1959.
- Waldmann, L., "The Basic Kinetic Equations for Para-Ortho-Hydrogen Mixtures," *Physica*, 30, 17-37, 1964.
 Hartland A and Lineicas M. "Quantum Symmetry
- Hartland, A. and Lipsicas, M., "Quantum Symmetry Effects in Hydrogen Gas," Phys. Letters, 3, 212-3, 1963.
- Diller, D. E. and Mason, E. A., "Low-Temperature Transport Properties of Gaseous H₂, D₂, and HD," J. Chem. Phys., 44, 2604-9, 1966.
- Buckingham, R. A. and Fox, J. W., "The Coefficient of Viscosity of Atomic Hydrogen from 25 to 300 K," Proc. Roy. Soc. (London), A267, 102-18, 1962.
- Buckingham, R. A., Fox, J. W., and Gal, E., "The Coefficients of Viscosity and Thermal Conductivity of Atomic Hydrogen from 1 to 400 K," Proc. Roy. Soc. (London), A284, 237-51, 1965
- 224. Browning, R. and Fox, J. W., "The Coefficient of Viscosity of Atomic Hydrogen and the Coefficient of Mutual Diffusion for Atomic and Molecular Hydrogen," Proc. Roy. Soc. (London), A278, 274-86, 1964.
- Konowalow, D. D., Hirschfelder, J. O., and Linder, B., "Low-Temperature, Low-Pressure Transport Coefficients for Gaseous Oxygen and Sulfur Atoms," J. Chem. Phys., 31, 1575-9, 1959.
- Knuth, E. L. and Fisher, S. S., "Low-Temperature Viscosity Cross Sections Measured on a Supersonic Argon Beam," J. Chem. Phys., 48, 1674-84, 1968.
- Spitzer, L., Physics of Fully Ionized Gases, Interscience Publishers, New York, 1962.
- Ahtye, W. F., "A Critical Evaluation of Methods for Calculating Transport Coefficients of a Partially Ionized Gas," in Proc. Heat Transfer and Fluid Mechanics Institute (Giedt, W. H. and Levy, S., Editors), Stanford University Press, 211-25, 1964.
- Ahtye, W. F., "A Critical Evaluation of Methods for Calculating Transport Coefficients of Partially and Fully Ionized Gases," NASA TN D-2611, 110 pp., 1965.
- Brokaw, R. S., "Transport Properties of High Temperature Gases," NASA TM X-52315, 15 pp. and 12 figures, 1967.
- Amdur, I. and Mason, E. A., "Properties of Gases at Very High Temperatures," Phys. Fluids, 1, 370-83, 1958.
- Kamnev, A. B. and Leonas, V. B., "Kinetic Coefficients for Inert Gasea at High Temperatures," Teplofiz. Vys. Temp., 4, 288-9, 1966.
- Balyaev, Y. N. and Leonas, B. V., "Kinetic Coefficients of Molecular Oxygen and Nitrogen," Teplofiz. Vys. Temp., 4.

- 732-3, 1966; English translation: High Temp., 4, 686, 1966.
- Amdur, I. and Ross, J., "On the Calculation of Properties of Gases at Elevated Temperatures," Combust. Flame, 2, 412-20, 1952
- 235. Amdur, I., "An Experimental Approach to the Determination of Gaseous Transport Properties at Very High Temperatures," in Proceedings of the Conference on Physical Chemistry in Aerodynamics and Space Flight (Greenberg, M., Editor), Pergamon Press, New York, Vol. 3, 228-35, 1961.
- Amdur, I., "High Temperature Transport Properties of Gases; Limitations of Current Calculating Methods in the Light of Recent Experimental Data," Am. Inst. Chem. Eng. J., 8, 521-6, 1962.
- 237. Brokaw, R. S., "Energy Transport in High Temperature and Reacting Gases," in Proceedings of the Conference on Physical Chemistry in Aerodynamics and Space Flight (Greenberg, M., Editor), Pergamon Press, New York, Vol. 3, 238-52, 1961.
- Yos, J. M., "Transport Properties of Nitrogen, Hydrogen, Oxygen, and Air to 30,000 K," AVCO Technical Memorandum RAD-TM-63-7, 65 pp., 1963.
- Yos, J. M., "Revised Transport Properties for High Temperature Air and its Contents," AVCO Technical Release, 50 pp., 28 Nov. 1967.
- Spitzer, L. and Harm, R., "Transport Phenomena in a Completely Ionized Gas," Phys. Rev., 89, 977-81, 1953.
- Vanderslice, J. T., Weissman, S., Mason, E. A., and Fallon,
 R. J., "High-Temperature Transport Properties of Dissociating Hydrogen," Phys. Fluids, 5, 155-64, 1962.
- 242. Grier, N. T., "Calculation of Transport Properties and Heat-Transfer Parameters of Dissociating Hydrogen," NASA TN D-1406, 64 pp., 1962.
- 243. Yun, K. S., Weissman, S., and Mason, E. A., "High-Temperature Transport Properties of Dissociating Nitrogen and Dissociating Oxygen," Phys. Fluids, 5, 672-8, 1962.
- 244. Bade, W. L., Mason, E. A., and Yun, K. S., "Transport Properties of Dissociated Air," J. Am. Rocket Soc., 31, 1151-3, 1961.
- Yun, K. S. and Mason, E. A., "Collision Integrals for the Transport Properties of Dissociating Air at High Temperatures," *Phys. Fhiids*, 5, 380-6, 1962.
- 246. Krupenie, P. H., Mason, E. A., and Vanderslice, J. T., "Interaction Energies and Transport Coefficients of Li + H and O + H Gas Mixtures at High Temperatures," J. Chem. Phys., 39, 2399-408, 1963.
- Belov, V. A. and Klyuchnikov, N. I., "Collision Integrals for the LiH System Viscosity of an LiH Mixture," Teplofiz. Vys. Temp., 3, 645-8, 1965; English translation: High Temp., 3, 594-7, 1965.
- Davies, R. H., Mason, E. A., and Munn, R. J., "High-Temperature Transport Properties of Alkali Meta Vapors," Phys. Fluids. 8, 444-52, 1965.
- Tchen, C. M., "Kinetic Equations for Fully Ionized Plasmas," Chapter IV, in Kinetic Processes in Gases and Plasmas (Hochstim, A. R., Editor), Academic Press, New York, 101-14, 1969.
- Lewis, M. B., "The Boltzmann and Fokker-Planck Equations," Chapter V, in Kinetic Processes in Gases and Plasmas (Hochstim, A. R., Editor), Academic Press, New York, 115-39 1969
- Hochstim, A. R. and Massel, G. A., "Calculations of Transport Coefficients in Ionized Gases," Chapter VI, in Kinetic

- Processes in Gases and Plasmas (Hochstim, A. R., Editor), Academic Press, New York, 141-255, 1969.
- Devoto, R. S., "Transport Properties of Ionized Monatomic Gases," Phys. Fluids, 9, 1230-40, 1966.
- Devoto, R. S., "Third Approximation to the Viscosity of Multicomponent Mixtures," Phys. Fluids, 10, 2704-6, 1967.
- Devoto, R. S., "Transport Coefficients of Partially Ionized Argon," Phys. Fluids, 10, 354-64, 1967.
- Li, C. P. and Devoto, R. S., "Fifth and Sixth Approximations to the Electron Transport Coefficients," Phys. Fluids, 11, 448-50, 1968.
- Devoto, R. S., "Simplified Expressions for the Transport Properties of Ionized Monatomic Gases," Phys. Fluids, 10, 2105-12, 1967.
- Mason, E. A. and Sherman, M. P., "Effect of Resonant Charge Exchange on Heat Conduction in Plasmas," *Phys. Fluids*, 9, 1989-91, 1966.
- Chmieleski, R. M. and Ferziger, J. H., "Transport Properties of a Non-equilibrium Partially Ionized Gas," *Phys. Fluids*. 10, 364-71, 1967.
- 259. Sandler, S. I. and Mason, E. A., "Transport Properties of Almost-Lorentzian Mixtures," Phys. Fluids, 12, 71-7, 1969.
- Meador, W. E., "A Semiempirical Collision Model for Plasmas," NASA TR R-310, 32 pp., 1969.
- Devoto, R. S. and Li, C. P., "Transport Coefficients of Partially Ionized Helium," J. Plasma Phys., 2, 17-32, 1968.
- 262. Kulik, P. P., Panevin, I. G., and Khvesyuk, V. I., "Theoretical Calculation of the Viscosity, Thermal Conductivity and Prandtl Number for Argon in the Presence of Ionization," Teplofiz. Vys. Temp., 1, 56-63, 1963; English translation: High Temp., 1, 45-51, 1963.
- Devoto, R. S., "Transport Coefficients of Partially Ionized Krypton and Xenon," AIAA J., 7, 199-204, 1969.
- Devoto, R. S., "Transport Coefficients of Partially Ionized Hydrogen," J. Plasma Phys., 2, 617-31, 1968.
- Devoto, R. S., "Comments on Transport Properties of Hydrogen," AIAA J., 4, 1149-50, 1966.
- Grier, N. T., "Calculation of Transport Properties of Ionizing Atomic Hydrogen," NASA TN D-3186, 85 pp., 1966.
- Mason, E. A., Munn, R. J., and Smith, F. J., "Transport Coefficients of Ionized Gases," Phys. Fluids, 10, 1827-32, 1967.
- 268. Smith, F. J., Mason, E. A., and Munn, R. J., "Classical Collision Integrals for the Repulsive Screened Coulomb Potential," Phys. Fluids. 8, 1907-8, 1965.
- 269. Beshinske, R. J. and Curtiss, C. F., "A Statistical Derivation of the Hydrodynamic Equations of Change for a System of Ionized Molecules. I. General Equations of Change and the Maxwell Equations," J. Statistical Phys., 1, 163-74, 1969.
- Dalgarno, A. and Smith, F. J., "The Viscosity and Thermal Conductivity of Atomic Hydrogen," Proc. Roy. Soc. (London), A267, 417-23, 1962.
- Dalgarno, A., "Transport Properties of Atomic Hydrogen," in Proc. Conference on Phys. Chem. in Aerodynamics and Space Flight (Greenberg, M., Editor), Pergamon Press, New York, Vol. 3, 236-7, 1961.
- 272. Everhart, E., Stone, G., and Carbone, R. J., "Classical Calculation of Differential Cross Section for Scattering from a Coulomb Potential with Exponential Screening," Phys. Rev., 99, 1287-90, 1955.
- 273. Lane, G. H. and Everhart, E., "Calculations of Total Cross Sections for Scattering from Coulomb Potentials

- with Exponential Screening," Phys. Rev., 117, 920-4, 1960.
- Curtiss, C. F., "Transport Phenomena in Gases," Ann Rev. Phys. Chem., 18, 125-34, 1967.
- 275. Cohen, E. G. D., "Transport Phenomena in Dense Gases," in Proceedings of the International Seminar on the Transport Properties of Gases, Brown University, Providence, R. I., 125-42, 1964.
- Cohen, E. G. D., "Kinetic Theory of Dense Gases," in Lectures in Theoretical Physics, Vol. IX C, Kinetic Theory (Brittin, W. E., Barut, A. O., and Guenin, M., Editors), Gordon and Breach, Science Publishers, Inc., New York, 791 pp., 1967.
- Cohen, E. G. D., "The Kinetic Theory of Dense Gases," in Fundamental Problems in Statistical Mechanics II (Cohen, E. G. D., Editor), North-Holland Publishing Co., Amsterdam, 228-75, 1968.
- Ernst, M. H., Haines, L. K., and Dorfman, J. R., "Theory of Transport Coefficients for Moderately Dense Gases," Rev. Mod. Phys., 41, 296-316, 1969.
- 279. Ernst, M. H., "Transport Coefficients from Time Correlation Functions," in Lectures in Theoretical Physics, Vol. IX C, Kinetic Theory (Brittin, W. E., Barut, A. O., and Guenin, M., Editors), Gordon and Breach, Science Publishers, Inc., New York, 791 pp., 1967.
- Cohen, E. G. D., "On the Connection Between Various Derivations of the Boltzmann Equation," *Physica*. 27, 163-84, 1961.
- Sengers, J. V. and Cohen, E. G. D., "Statistical Mechanical Derivation of the Generalized Boltzmann Equation for a Fluid Consisting of Rigid Spherical Molecules," *Physica*, 27, 230-44, 1961.
- Cohen, E. G. D., "On the Generalization of the Boltzmann Equation to General Order in the Density," *Physica*, 28, 1025-44, 1962.
- Cohen, E. G. D., "Cluster Expansions and the Hierarchy I. Nonequilibrium Distribution Functions," *Physica*. 28, 1045–59, 1962.
- Cohen, E. G. D., "Cluster Expansions and the Hierarchy II. Equilibrium Distribution Functions," *Physica*, 28, 1060-73, 1962.
- Cohen, E. G. D., "On the Kinetic Theory of Dense Gases,"
 J. Math. Phys., 4, 183-9, 1963.
- Piccirelli, R. A., "Some Properties of the Long-Time Values of the Probability Densities for Moderately Dense Gases," J. Math. Phys., 7, 922-34, 1966.
- 287. García-Colin, L. S., "A Theory of the Hydrodynamical State for Dense Gases," in *Lectures in Theoretical Physics*. Vol. IX C. Kinetic Theory (Brittin, W. E., Barut, A. O., and Guenin, M., Editors), Gordon and Breach, Science Publishers, Inc., New York, 791 pp., 1967.
- García-Colin, L. S. and Green, M. S., "Definition of Temperature in the Kinetic Theory of Dense Gases," *Phys. Rev.*, 150, 153-8, 1966.
- Ernst, M. H., "Transport Coefficients and Temperature Definition," Physica, 32, 252-72, 1966.
- Dymond, J. H. and Alder, B. J., "Van der Waals Theory of Transport in Dense Fluids," J. Chem. Phys., 45, 2061-8, 1966.
- Longuet-Higgins, H. C. and Pople, J. A., "Transport Properties of a Dense Fluid of Hard Spheres," J. Chem. Phys., 25, 884-9, 1956.

- Longuet-Higgins, H. C. and Valleau, J. P., "Transport of Energy and Momentum in a Dense Fluid of Hard Spheres," Faraday Soc. Discuss., 22, 47-53, 1956.
- Valleau, J. P., "Transport of Energy and Momentum in a Dense Fluid of Rough Spheres," Mol. Phys., 1, 63-7, 1958.
- Longuet-Higgins, H. C. and Valleau, J. P., "Transport Coefficients of Dense Fluids of Molecules Interacting According to a Square Well Potential," Mol. Phys., 1, 284-94, 1958.
- Valleau, J. P., "Transport in Dense Square-Well Fluid Mixtures," J. Chem. Phys., 44, 2626-32, 1966.
- Naghizadeh, J., "Transport in a Two Component Square-Well Fluid," J. Chem. Phys., 39, 3406-11, 1963.
- McLaughlin, I. L. and Davis, H. T., "Kinetic Theory of Dense Fluid Mixtures. I. Square-Well Model," J. Chem. Phys., 45, 2020-31, 1966.
- McCoy, B. J., Sandler, S. I., and Dahler, J. S., "Transport Properties of Polyatomic Fluids. IV. The Kinetic Theory of a Dense Gas of Perfectly Rough Spheres," J. Chem. Phys., 45, 3485-512, 1966.
- Sandler, S. I. and Dahler, J. S., "Kinetic Theory of Loaded Spheres. III. Transport Coefficients for the Dense Gas," J. Chem. Phys., 46, 3520-31, 1967.
- Sather, N. F. and Dahler, J. S., "Approximate Theory of Viscosity and Thermal Conductivity in Dense Polyatomic Fluids," *Phys. Fluids*, 5, 754-68, 1962.
- O'Toole, J. T. and Dahler, J. S., "On the Kinetic Theory of a Fluid Composed of Rigid Spheres," J. Chem. Phys., 32, 1097-106, 1960.
- Livingston, P. M. and Curtiss, C. F., "Kinetic Theory of Moderately Dense, Rigid-Sphere Gases," *Phys. Fluids*, 4, 816-32, 1961.
- Ono, S. and Shizume, T., "Statistical Mechanics of Transport Phenomena in Gases at Moderate Densities," J. Phys. Soc. (Japan), 18, 29-54, 1963.
- 304. Snider, R. F. and Curtiss, C. F., "Kinetic Theory of Moderately Dense Gases," Phys. Fluids, 1, 122-38, 1958.
- Irving, J. H. and Kirkwood, J. G., "The Statistical Mechanical Theory of Transport Processes. IV. The Equation of Hydrodynamics," J. Chem. Phys., 18, 817-29, 1950.
- 306. Reference withdrawn.
- Snider, R. F. and McCourt, F. R., "Kinetic Theory of Moderately Dense Gases: Inverse Power Potentials," *Phys. Fluids*, 6, 1020-5, 1963.
- Curtiss, C. F., McEiroy, M. B., and Hoffman, D. K., "The Transport Properties of a Moderately Dense Lennard-Jones Gas," Int. J. Eng. Sci., 3, 269-83, 1965.
- García-Colin, L. S. and Flores, A., "On the Transport Coefficients of Moderately Dense Gases," *Physica*, 32, 289– 303, 1966.
- Garcia-Colin, L. S. and Flores, A., "The Generalization of Choh-Uhlenbeck's Method in the Kinetic Theory of Dense Gases," J. Math. Phys., 7, 254-9, 1966.
- 311. Reference withdrawn.
- 312. Stogryn, D. E. and Hirschfelder, J. O., "Initial Pressure Dependence of Thermal Conductivity and Viscosity," J. Chem. Phys., 31, 1545-54, 1959.
- Hill, T. L., "Molecular Cluster in Imperfect Gases," J. Chem. Phys., 23, 617-22, 1955.
- Hill, T. L., Statistical Mechanics, Chapter 5, McGraw-Hill Book Co., Inc., New York, 432 pp., 1956.
- Stogryn, D. E. and Hirschfelder, J. O., "Contribution of Bound, Metastable and Free Molecules to the Second Virial

- Coefficient and Some Properties of Double Molecules," J. Chem. Phys., 31, 1531-45, 1959.
- Barua, A. K. and Das Gupta, A., "Pressure Dependence of the Viscosity of Superheater Steam," Trans. Faraday Soc., 59(490), 2243-7, 1963.
- Das Gupta, A. and Barua, A. K., "Calculation of the Viscosity of Ammonia at Elevated Pressures," J. Chem. Phys., 42, 2849-51, 1965.
- Pal, A. K. and Barua, A. K., "Effect of Cluster Formation on the Viscosity of Dense Gases," *Indian J. Phys.*, 41(5), 323-6, 1967.
- Singh, Y., Deb, S. K., and Barua, A. K., "Dimerization and the Initial Pressure Dependence of the Viscosity of Polar Gases," J. Chem. Phys., 46, 4036-40, 1967.
- Pal, A. K. and Barua, A. K., "Viscosity of Some Quadrupolar Gases and Vapors," J. Chem. Phys., 48, 872-4, 1968.
- Singh, Y. and Bhattacharyya, P. K., "Thermal Conductivity and Viscosity of Moderately Dense Quadrupolar Gases," J. Phys. B (Proc. Phys. Soc.), 1(2), 922-8, 1968.
- 322. Singh, Y. and Das Gupta, A., "Formations of Dimers in Quadrupolar Gases," J. Phys. B (Proc. Phys. Soc.), 1(2), 914-21, 1968.
- 323. Singh, Y. and Manna, A., "Thermal Conductivity and Viscosity of Moderately Dense Dipolar Gases," J. Phys. B (Atom. Mol. Phys.), 2(2), 294-302, 1969.
- Singh, Y., Deb, S. K., and Barua, A. K., "Dimerization and the Initial Pressure Dependence of the Viscosity of Polar Gases," J. Chem. Phys., 46(10), 4036-40, 1967.
- Kim, S. K. and Ross, J., "Viscosity of Moderately Dense Gases," J. Chem. Phys., 42, 263-71, 1965.
- Hollinger, H. B. and Curtiss, C. F., "Kinetic Theory of Dense Gases," J. Chem. Phys., 33, 1386-1402, 1960.
- 327. Hollinger, H. B., "Molecular Chaos and the Boltzmann Equation," J. Chem. Phys., 36, 3208-20, 1962.
- Hoffman, D. K. and Curtiss, C. F., "Kinetic Theory of Dense Gases. III. The Generalized Enskog Equation," Phys. Fluids, 7, 1887-97, 1964.
- Hoffman, D. K. and Curtiss, C. F., "Kinetic Theory of Dense Gases. IV. Transport Virial Coefficients," Phys. Fluids, 8, 667-82, 1965.
- Hoffman, D. K. and Curtiss, C. F., "Kinetic Theory of Dense Gases. V. Evaluation of the Second Transport Virial Coefficients," *Phys. Fluids*, 8, 890-5, 1965.
- Bennett, D. E. and Curtiss, C. F., "Density Effects on the Transport Coefficients of Gaseous Mixtures," J. Chem. Phys., 51, 2811-25, 1969.
- Sengers, J. V., "Density Expansion of the Viscosity of a Moderately Dense Gas," Phys. Rev. Letters, 15, 515-7, 1965.
- Sengers, J. V., "Triple Collision Contribution to the Transport Coefficients of a Rigid Sphere Gas," Phys. Fluids. 9, 1333-47, 1966.
- Sengers, J. V., "Divergence in the Density Expansion of the Transport Coefficients of a Two-Dimensional Gas," *Phys. Fluids*, 9, 1685-96, 1966.
- Sengers, J. V., "Triple Collision Effects in the Thermal Conductivity and Viscosity of Moderately Dense Gases," AEDC-TR-69-68, 156 pp., 1969.
- Sengers, J. V., "Triple Collision Contributions to the Transport Coefficients of Gases," in Lectures in Theoretical Physics, Vol. IX C, Kinetic Theory (Brittin, W. E., Barut, A. O., and Guenin, M., Editors), Gordon and Breach, Science Publishers, Inc., New York, 791 pp., 1967.

- Dorfman, J. R. and Cohen, E. G. D., "On the Density Expansion of the Pair Distribution Function for a Dense Gas Not in Equilibrium," Phys. Letters, 16, 124-5, 1965.
- Dorfman, J. R. and Cohen, E. G. D., "Difficulties in the Kinetic Theory of Dense Gases," J. Math. Phys., 8, 282-97, 1967.
- Dorfman, J. R., "The Binary Collision Expansion Method in Kinetic Theory," in *Lectures in Theoretical Physics*, Vol. IX C, Kinetic Theory (Brittin, W. E., Barut, A. O., and Guenin, M., Editors), Gordon and Breach, Science Publishers, Inc., New York, 791 pp., 1967.
- Dorfman, J. R., "Transport Coefficients for Dense Gases," in *Dynamics of Fluids and Plasmas*. Academic Press, Inc., New York, 199-212, 1966.
- Stecki, J., "On the Divergence of Ternary Scattering Operator in Two Dimensions," Phys. Letters, 19, 123-4, 1965.
- Andrews, F. C., "On the Solution of the BBGKY Equations for a Dense Classical Gas," J. Math. Phys., 6, 1496-1505, 1965.
- Andrews, F. C., "On the Validity of the Density Expansion Solution of the BBGKY Equations," Phys. Letters, 21, 170-1, 1966.
- Fujita, S., "On the Nonpower Density Expansion of Transport Coefficients," Proc. Natl. Acad. Sci. (USA), 56, 794-800, 1966
- Fujita, S., "Does a Logarithmic Term Exist in the Density Expansion of a Transport Coefficient," Phys. Letters, 24A, 235-6, 1967.
- Sengers, J. V., "Thermal Conductivity and Viscosity of Simple Fluids," Int. J. Heat Mass Transfer, 8, 1103–16, 1965.
- 347. Sengers, J. V., "Transport Properties of Compressed Gases," in *Recent Advances in Engineering Science* (Eringen, A. C., Editor), Gordon and Breach, Science Publishers, Inc., New York, Vol. 3, 153-96, 1968.
- Hanley, H. J. M., McCarty, R. D., and Sengers, J. V., "Density Dependence of Experimental Transport Coefficients of Gases," J. Chem. Phys., 50, 857-70, 1969.
- Iman-Rahajoe, S. and Curtiss, C. F., "Collisional Transfer Contributions in the Quantum Theory of Transport Coefficients," J. Chem. Phys., 47, 5269-89, 1967.
- Grossmann S., "Occupation Number Representation with Localized One-Particle Functions (Macroscopic Description of Quantum Gases I)," *Physica*, 29, 1373-92, 1963.
- Grossmann, S., "Macroscopic Time Evolution and Inhomogeneous Master-equation (Macroscopic Description of Quantum Gases)," *Physica*, 30, 779-807, 1964.
- 352. Grossmann, S., "On Transport Theory in Real Gases," Nuovo Cimento. 37, 698-713, 1965.
- Grossmann, S., "Transport Coefficients in Moderately Dense Gases," Z. Naturforsch., 20a, 861-9, 1965.
- Baerwinkel, K. and Grossmann, S.. "On the Derivation of the Boltzmann-Landau Equation from the Quantum Mechanical Hierarchy," Z. Phys., 198, 277-87, 1967.
- Fujita, S., "Generalized Boltzmann Equation for a Quantum Gas Obeying Classical Statistics," J. Math. Phys., 7, 1004-8, 1965.
- Fujita, S., "Connected-Diagram Expansion of Transport Coefficients. II. Quantum Gas Obeying Boltzmann Statistics," Proc. Natl. Acad. Sci. (USA), 56, 16-21, 1966.
- Morita, T., "Derivation of the Generalized Boltzmann Equation in Quantum Statistical Mechanics," J. Math. Phys., 7, 1039-45, 1966.

- 358. Heliand, E., "The Correlation Function Method," in Proceedings of the International Seminar on the Transport Properties of Gases, Brown University, Providence, R. I., 143-67, 1964.
- Kawasaki, K. and Oppenheim, I., "Triple Collision Operators in the Transport Theory of Dense Gases," *Phys. Letters.* 11, 124-6, 1964.
- Kawasaki, K. and Oppenheim, I., "Correlation-Function Method for the Transport Coefficients of Dense Gases. I. First Density Correction to the Shear Viscosity," Phys. Rev.. 136, A1519-34, 1964.
- 361. Kawasaki, K. and Oppenheim, I., "Correlation-Function Method for the Transport Coefficients of Dense Gases. II. First Density Correction to the Shear Viscosity for Systems with Attractive Forces," Phys. Rev., 139, 649-63, 1965.
- Kawasaki, K. and Oppenheim, I., "Logarithmic Term in the Density Expansion of Transport Coefficients," *Phys. Rev.*. 139, 1763-8, 1965.
- Frisch, H. L. and Berne, B., "High-Temperature Expansion of Thermal Transport Coefficients," J. Chem. Phys., 43, 250-6, 1965.
- Storer, R. G. and Frisch, H. L., "Transport Coefficients for Systems with Steep Intermolecular Potentials," J. Chem. Phys., 43, 4539-40, 1965.
- 365. Prigogine, I., "Transport Processes, Correlation Functions, and Reciprocity Relations in Dense Media," in Liquids: Structure. Properties Solid Interactions (Hughel, T. J., Editor), Elsevier Publishing Co., Amsterdam, 384 pp., 1965.
- 366. Cohen, E. G. D., Dorfman, J. R., and Ernst, M. H. J. J., "Transport Coefficients from Correlation Functions and Distribution Functions," Phys. Letters. 12, 319-20, 1964.
- Ernst, M. H., Dorfman, J. R., and Cohen, E. G. D., "Transport Coefficients in Dense Gases. I. The Dilute and Moderately Dense Gas." *Physica*, 31, 493-521, 1965.
- Ernst, M. H., "Formal Theory of Transport Coefficients to General Order in the Density," *Physica*, 32(2), 209-43, 1966.
- Ernst, M. H., "Hard Sphere Transport Coefficients from Time Correlation Functions," *Physica*, 32(2), 273-88, 1966.
- Certain, P. R. and Bruch, L. W., "Intermolecular Forces,"
 MTP International Review of Science, Physical Chemistry
 Series One, Vol. 1 of Theoretical Chemistry (Buckingham,
 A. D., Consultant Editor; Brown, W. B., Vol. Editor),
 Butterworth and Co., Publishers, 113-65, 1972.
- Zwanzig, R., "Method for Funding the Density Expansion of Transport Coefficients of Gases," *Phys. Rev.*. 129, 486-94, 1963.
- Zwanzig, R., "Elementary Derivation of Time-Correlation Formulas for Transport Coefficients," J. Chem. Phys., 40, 2527-33, 1964.
- Weinstock, J., "Cluster Formulation of the Exact Equation for the Evolution of a Classical Many-Body System," *Phys. Rev.*. 132, 454-69, 1963.
- Weinstock, J., "Generalized Master Equation for Quantum-Mechanical Systems to All Orders in Density," *Phys. Rev.*, 136, A879-88, 1964.
- Weinstock, J., "Nonanalyticity of Transport Coefficients and the Complete Density Expansion of Momentum Correlation Functions," *Phys. Rev.*, 149, A460-5, 1965.
- Weinstock, J., "Divergence in the Density Expansion of Quantum-Mechanical Transport Coefficients," Phys. Rev. Letters, 17, 130-2, 1966.

- 377. Weinstock, J., "Density Expansion of Quantum Mechanical Transport Coefficients," in *Lectures in Theoretical Physics*. Vol. IX C, Kinetic Theory (Brittin, W. E., Barut, A. O., and Guenin, M., Editors), Gordon and Breach, Science Publishers, Inc., New York, 791 pp., 1967.
- Williams, R. H. and Weinstock, J., "Failure of the Weak Coupling Model in the Transport Theory of Dense Real Gases," Phys. Rev., 169, 196-9, 1968.
- Goldman, R., "Higher Order Behavior in the Boltzmann Expansion of the Bogoliubov-Born-Green-Kirkwood-Yvon Hierarchy," Phys. Rev. Letters, 17, 910-2, 1966.
- García-Colin, L. S. and Flores, A., "Note on the Transport Coefficients of a Moderately Dense Gas," *Physica*, 32, 444-9, 1966.
- Chao, F and Garcia-Colin, L. S., "Density Expansions of the Transport Coefficients for a Moderately Dense Gas," Phys. Fluids. 9, 382-9, 1966.
- Stecki, J. and Taylor, H. S., "On the Areas of Equivalence of the Bogoliubov Theory and the Prigogine Theory of Irreversible Processes in Classical Gases," Rev. Mod. Phys., 37, 762-73, 1965.
- Prigogine, I. and Resibois, P., "On the Kinetics of the Approach to Equilibrium," Physica. 27, 629-46, 1961.
- Beenakker, J. J. M., "The Influence of Electric and Magnetic Fields on the Transport Properties of Polyatomic Dilute Gases," Festkörperprobleme VIII, 276 pp., 1968.
- Resibois, P., "Structure of the Three-Particle Scattering Operator in Classical Gases," J. Math. Phys., 4, 166-73, 1963.
- Resibois, P., "On the Asymptotic Form of the Transport Equation in Dense Homogeneous Gases," Phys. Letters. 9, 139-41, 1964.
- Reisbois, P., "On the Connection Between the Kinetic Approach and the Correlation-Function Method for Thermal Transport Coefficients," J. Chem. Phys., 41, 2979-92, 1964.
- Brocas, J. and Resibois, P., "On the Equivalence Between the Master Equation and the Functional Approaches to the Generalized Transport Equation," *Physica*, 32, 1050-64, 1966.
- Nicolis, G. and Severne, G., "Nonstationary Contributions to the Bulk Viscosity and Other Transport Coefficients," J. Chem. Phys., 44, 1477-86, 1966.
- Senftleben, H., "Influence of a Magnetic Field on the Thermal Conductivity of a Paramagnetic Gas," Phys. Z., 31, 961-3, 1930.
- Trautz, M. and Fröschel, E., "Note on the Influence of a Magnetic Field on the Viscosity of O₂," Phys. Z., 33, 947, 1932.
- 392. Engelhardt, H. and Sach, H., "The Influence of a Magnetic Field on the Viscosity of O₂," *Phys. Z.*, 33, 724-7, 1932.
- Senftleben, H. and Gladisch, H., "The Influence of Magnetic Fields on the Viscosity of Gases," Ann. Phys., 30, 713-27, 1937.
- Senftleben, H. and Gladisch, H., "The Effect of Magnetic Fields on the Internal Viscosity of Gases (Investigation of Nictric Acid)," Ann. Phys., 33, 471-6, 1938.
- Senftleben, H. and Pietzner, J., "The Effect of Magnetic Fields on the Heat Conduction of (Paramagnetic) Gases," Ann. Phys., 16, 907-29, 1933.
- Senftleben, H. and Pietzner, J., "The Influence of Magnetic Fields on the Thermal Conductivity of Gases, Part I," Ann. Phys., 27, 108-16, 1936.
- Senftleben, H. and Pietzner, J., "The Influence of Magnetic Fields on the Thermal Conductivity of Gases, Part III," Ann. Phys., 27, 117-22, 1936.

- Senftleben, H. and Pietzner, J., "The Effect of Magnetic Fields on the Thermal Conductivity of Gases. IV. Mixtures of Oxygen with Diamagnetic Gases," Ann. Phys.. 30, 541-54, 1937.
- Reiger, E., "The Influence of Magnetic Fields on the Thermal Conductivity of Gases (Temperature Dependence)," Ann. Phys., 31, 453-72, 1938.
- Torwegge, H., "Action of Magnetic Fields on the Thermal Conductivity Power of NO and NO₂," Ann. Phys.. 33, 459-70, 1938.
- Gorter, C. J., "The Interpretation of the Senftleben Effect," Naturwissenschaften, 26, p. 140, 1938.
- Zernike, F. and Van Lier, C., "Theory of the Senftleben Effect," Physica. 6, 961-71, 1939.
- Beenakker, J. J. M., Scoles, G., Knaap, H. F. P., and Jonkman, R. M., "The Influence of a Magnetic Field on the Transport Properties of Diatomic Molecules in the Gaseous State," Phys. Letters. 2, 5-6, 1962.
- 404. Korving, J., Hulsman, H., Knaap, H. F. P., and Beenakker, J. J. M., "The Influence of a Magnetic Field on the Viscosity of CH₄ and CF₄ (Rough Spherical Molecules)," *Phys. Letters*, 17, 33-4, 1965.
- 405. Beenakker, J. J. M., Hulsman, H., Knaap, H. F. P., Korving, J., and Scoles, G., "The Influence of a Magnetic Field on the Viscosity and Other Transport Properties of Gaseous Diatomic Molecules," from Advances in Thermophysical Properties at Extreme Temperatures and Pressures (Gratch, S., Editor), ASME Symp., Purdue University, Lafayette, Ind., 216-20, 1965.
- 406. Korving, J., Hulsman, H., Scoles, G., Knaap, H. F. P., and Beenakker, J. J. M., "The Influence of a Magnetic Field on the Transport Properties of Gases of Polyatomic Molecules, Part I. Viscosity," *Physica*, 36, 177-97, 1967.
- Gorelik, L. L. and Sinitsyn, V. V., "Influence of a Magnetic Field on the Thermal Conductivity of Gases with Nonspherical Molecules," Zh. Eksp. Teor. Phys. (USSR), 46, 401-2, 1964; English translation: Soviet Phys.—JETP, 19, 272-3, 1964.
- 408. Gorelik, L. L., Redkoborodyi, Yu. N., and Sinitsyn, V. V., "Influence of a Magnetic Field on the Thermal Conductivity of Gases with Nonspherical Molecules," Zh. Eksp. Teor. Phys. (USSR), 48, 761-5, 1965; English translation: Soviet Phys.— JETP, 21, 503-5, 1965.
- 409. Waldmann, L., "Dilute Monatomic Gases, Accuracy and Limits of Applicability of Transport Equation," in Proceedings of the International Seminar on the Transport Properties of Gases, Brown University, Providence, R. I., 59-84, 1964.
- Kagan, Yu. and Maksimov, L. A., "Kinetic Theory of Gases Taking into Account Rotational Degrees of Freedom in an External Field," Zh. Eksp. Teor. Phys. (USSR), 51, 1893-908, 1966; English translation: Soviet Phys.—JETP, 24, 1272-81, 1967.
- McCourt, F. R. and Snider, R. F., "Thermal Conductivity of a Gas of Rotating Diamagnetic Molecules in an Applied Magnetic Field," J. Chem. Phys., 46, 2387-98, 1967.
- 412. Knaap, H. F. P. and Beenakker, J. J. M., "Heat Conductivity and Viscosity of a Gas of Nonspherical Molecules in a Magnetic Field," *Physica*. 33, 643-70, 1967.
- Tip, A., "The Influence of Angular Momentum Anisotropy on the Heat Conductivity of Dilute Diatomic Gases," *Physica*, 37, 82-96, 1967.

 Levi, A. C. and McCourt, F. R., "Odd Terms in Angular Momentum and Transport Properties of Polyatomic Gases in a Field," *Physica*, 38, 415-37, 1968.

THE RESIDENCE

- Tip, A., Levi, A. C., and McCourt, F. R., "Magnetic Dispersion Relations in the Senftleben-Beenakker Effect," *Physica*, 40, 435-45, 1968.
- Tip, A., "Some Aspects of the Influence of a Magnetic Field on Transport Phenomena in Dilute Gases," Ph.D. Thesis, Leiden, 86 pp., 1969.
- Hooyman, G. J., Mazur, P., and de Groot, S. R., "Coefficients of Viscosity for a Fluid in a Magnetic Field or in a Rotating System," *Physica*, 21, 355-9, 1955.
- Korvig, J., Hulsman, H., Knaap, H. F. P., and Beerakker, J. J. M., "Transverse Momentum Transport in Viscous Flow of Diatomic Gases in a Magnetic Field," Phys. Letters, 21, 5-7, 1966.
- Kikoin, I. K., Balashov, K. I., Lazarev, S. D., and Neushtadt,
 R. E., "On the Influence of a Magnetic Field on Viscous Gas Flow," Phys. Letters, 24A, 165-6, 1967.
- Kikoin, I. K., Balashov, K. I., Lazarev, S. D., and Neushtadt,
 P. E., "Viscous Flow of Gases in Strong Magnetic Fields," *Phys. Letters*, 26A, 650-1, 1968.
- Tip, A., "On the Magnetic Field Dependence of the Transport Properties of the Hydrogen Isotopic Molecules H₂, D₃ and HD," Phys. Letters, 25A, 409-10, 1967.
- 422. Korvig, J., Knaap, H. F. P., Gordon, R. G., and Beenakker, J. J. M., "The Influence of a Magnetic Field on the Transport Properties of Polyatomic Gases; A Comparison of Theory with Experiments," Phys. Letters, 24A, 755-6, 1967.
- 423. Korvig, J., Honeywell, W. I., Bose, T. K., and Beenakker, J. J. M., "The Influence of a Magnetic Field on the Transport Properties of Gases of Polyatomic Molecules. Part II, Thermal Conductivity," *Physics*, 36, 198-214, 1967.
- Gorelik, L. L. and Sinitsyn, V. V., "On the Influence of a Magnetic Field on the Thermal Conductivity of Gases," *Physica*, 41, 486-8, 1969.
- Levi, A. C., McCourt, F. R., and Hajdu, J., "Burnett Coefficients in a Magnetic Field. I. General Formulation for a Polyatomic Gas," *Physica*, 42, 347-62, 1969.
- Levi, A. C., McCourt, F. R., and Beenakker, J. J. M., "Burnett Coefficients in a Magnetic Field, II. The Linear Effects," *Physica*, 42, 363-87, 1969.
- McCourt, F. R., Knaap, H. F. P., and Moraal, H., "The Senftleben-Beenakker Effects for a Gas of Rough Spherical Molecules. I. The Thermal Conductivity," *Physica*, 43, 485-512, 1969.
- 428. Gorelik, L. L., Nikolaevskii, V. G., and Sinitsyn, V. V., "Transverse Heat Transfer in a Molecular-Thermal Stream Produced in a Gas of Nonspherical Molecules in the Presence of a Magnetic Field," *JETP Letters*, 4, 307-10, 1966.
- 429. Tip, A., "On the Senftleben-Beenakker Effect in Mixtures. I. The Magnetic Field Dependence of the Shear Viscosity Tenso in Mixtures of Diamagnetic Gases," *Physica*, 37, 411-22, 1967.
- Tip, A., de Vries, A. E., and Los, J., "Thermal Diffusion and the Senftleben Effect," Physica, 32, 1429-36, 1966.
- Vugts, H. F., Tip, A., and Los, J., "The Senftleben Effect on Diffusion," Physica, 38, 579-86, 1968.
- Senftleben, H., "The Influence of Electrical Fields on the Transport Phenomena in Gases," Ann. Phys., VII, 15(5-6), 273-7, 1965.

Committee of the

- Amme, R. C., "Viscoelectric Effect in Gases," Phys. Fluids, 7, 1387-8, 1964.
- Borman, V. D., Gorelik, L. L., Nikolaev, B. I., and Sinitsyn,
 V. V., "Influence of Alternating Electric Field on Transport Phenomena in Polar Gases," *JETP Letters*, 5, 85-7, 1967.
- Borman, V. D., Nikolaev, B. I., and Nikolaev, N. I., "Transport Phenomena in a Mixture of Monatomic and Polar Gases," Z. Eksp. Teor. Fiz. (USSR), 51, 579-85, 1966; English translation: Soviet Phys.—JETP, 24, 387-91, 1967.
- Gallinaro, G., Meneghetti, G., and Scoles, G., "Viscoelectric Effect in Polar Polyatomic Gases," Phys. Letters, 24A, 451-2, 1967.
- Levi, A. C., McCourt, F. R., and Tip, A., "Electric Field Senftleben-Beenakker Effects," Physica, 39, 165-204, 1968.
- Green, M. S. and Seagers, J. V., Editors, "Critical Phenomena," Proc. Conf. held in Washington, D.C., April 1965, National Bureau of Standards Miscellaneous Publications 273, 242 pp., 1966.
- Sengers, J. V., "Behavior of Viscosity and Thermal Conductivity of Fluids Near the Critical Point," Critical Phenomena 165-78, NBS Publ. 273, 1966.
- Sengers, J. V. and Sengers, A. L., "The Critical Region," Chem. Eng. News, 46, 104-18, 1968.
- Deutch, J. M. and Zwanzig, R., "Anomalous Specific Heat and Viscosity of Binary van der Waals Mixtures," J. Chem. Phys., 46, 1612-20, 1967.
- Fixman, M., "Comments on Transport Coefficients in the Gas Critical Region," J. Chem. Phys., 48, 4329-30, 1968.
- 443. Teague, R. K. and Pings, C. J., "Refractive Index and the Lorentz-Lorenz Function for Gaseous and Liquid Argon, Including a Study of the Coexistence Curve Near the Critical State," J. Chem. Phys., 48, 4973-84, 1968.
- 444. Cercignani, C. and Sernagiotto, F., "Cylindrinal Poiseuille Flow of a Rarefied Gas," Phys. Fluids, 9, 40-4, 1966.
- Reid, R. C. and Sherwood, T. K., "Viscosity," in The Properties of Gases and Liquids: Their Estimation and Correlation, IMcGraw-Hill Book Co., New York, Chapter 9, 395-455, 1966.
- 446. Westenberg, A. A., "A Critical Survey of the Major Methods for Measuring and Calculating Dilute Gas Transport Properties," in Advances in Heat Transfer, Academic Press, Inc., New York, Vol. 3, 253-302, 1966.
- 447. Hilsenrath, J. and Touloukian, Y. S., "The Viscosity, Thermal Conductivity, and Prandtl Number for Air, O₂, N₂, NO, H₂, CO, CO₂, H₂O, He and Ar," *Trans. ASME*, 76, 967-85, 1954.
- 448. Hilsenrath, J., Beckett, C. W., Benedict, W. S., Fano, L., Hoge, H. J., Mass, J. F., Nuttall, R. L., Touloukian, Y. S., and Woolley, H. W., "Tables of Thermal Properties of Gases," from Tables of Thermodynamic and Transport Properties of Air, Argon, Carbon Dioxide, Carbon Monoxide, Hydrogen, Nitrogen, Oxygen, and Steam, NBS Circular 264, Pergamon Press, Oxford, 478 pp., 1960.
- Svehla, R. A., "Estimated Viscosines and Thermal Conductivities of Gases at High Temperatures," NASA TR R-132, 120 pp., 1962.
- Svehla, R. A., "Thermodynamic and Transport Properties for the Hydrogen-Oxygen System," NASA SP-3011, 419 pp., 1964.
- Simon, H. A., Liu, C. S., and Hartnett, J. P., "Properties of Hydrogen: Carbon Dioxide, and Carbon Dioxide: Nitrogen Mixtures," NASA CR-387, 133 pp., 1966.

- Gonzalez, M., Eakin, B. E., Lee, A. L., Viscosity of Natural Gases, American Petroleum Institute Publication (Associated with Research Project 65), 109 pp., 1970.
- Lee, A. L., Viscosity of Light Hydrocarbons, American Petroleum Institute, New York, 128 pp., 1965.
- 454. ASTM Viscosity Index Calculated from Kinematic Viscosity, ASTM Data Series DS 39a (Formerly STP 168), American Society for Testing and Materials, 1916 Race St., Philadelphia, Pa., 964 pp., 1965.
- Margenau, H. and Kestner, N. R., Theory of Intermolecular Forces, Pergamon Press, New York, 360 pp., 1969.
- Hirschfelder, J. O., Editor, Intermolecular Forces, Vol. XII of Advances in Chemical Phys., Interscience Publishers, 643 pp., 1967.
- Margenau, H., "Van der Waals Forces," Rev. Mod. Phys., 11, 1-35, 1939.
- Fitts, D. D., "Statistical Mechanics: A Study of Intermolecular Forces," Ann. Rev. Phys. Chem., 17, 59-82, 1966.
- 459. Pauly, H. and Toennies, J. P., "The Study of Intermolecular Potentials with Molecular Beams at Thermal Energies," in Advances in Atomic and Molecular Physics (Bates, D. R. and Estermann, I., Editors), Academic Press, New York, Vol. 1, 408 pp., 1965.
- Lichten, W., "Resonant Charge Exchange in Atomic Collisions," in Advances in Chemical Physics (Prigogine, I., Editor), Interscience Publishers, Vol. XIII, 398 pp., 1967.
- 461. Buckingham, R. A., "The Present Status of Intermolecular Potentials for Calculations of Transport Properties," in Proceedings of the Conference on Physical Chemistry in Aerodynamics and Space Flight, Planetary and Space Science, Pergamon Press, New York, Vol. 3, 205-16, 1961.
- 462. Dalgarno, A., "Intermolecular Potentials for Ionic Systems," in Proceedings of the Conference on Physical Chemistry in Aerodynamics and Space Flight, Planetary and Space Science, Pergamon Press, New York, Vol. 3, 217-20, 1961.
- 463. Walker, R. E., Monchick, L., Westenberg, A. A., and Favin, S., "High Temperature Gaseous Diffusion Experiments and Intermolecular Potential Energy Functions," in Proceedings of the Conference on Physical Chemistry in Aerodynamics and Space Flight, Planetary and Space Science, Pergamon Press, New York, Vol. 3, 221-7, 1961.
- 464. Treanor, C. E. and Skinner, G. T., "Molecular Interactions at High Temperatures," in Proceedings of the Conference on Physical Chemistry in Aerodynamics and Space Flight, Planetary and Space Science, Pergamon Press, New York, Vol. 3, 253-70, 1961.
- Whalley, E., "Zero-Point Energy: A Contribution to Intermolecular Forces," Trans. Faraday Soc., 54, 1613-21, 1958.
- Dahler, J. S. and Hirschfelder, J. O., "Long-Range Intermolecular Forces," J. Chem. Phys., 25, 986-1005, 1956.
- Meath, W. J. and Hirschfelder, J. O., "Long-Range (Retarded) Intermolecular Forces," J. Chem. Phys., 44, 3210-5, 1966.
- Chang, T. Y., "Long-Range Interatomic Forces," Mol. Phys., 13, 487-8, 1967.
- Wilson, J. N., "On the London Potential Between Pairs of Rare-Gas Atoms," J. Chem. Phys., 43, 2564-5, 1965.
- Chang, T. Y., "Moderately Long-Range Interatomic Forces," Rev. Mod. Phys., 39, 911-42, 1967.
- Meath, W. J. and Hirschfelder, J. O., "Relativistic Intermolecular Forces, Moderately Long Range," J. Chem. Phys., 44, 3197-3209, 1966.

- Cottrell, T. L., "Intermolecular Repulsive Forces," Faraday Soc., Discuss., 22, 10-16, 1956.
- 473. Barua, A. K. and Chatterjee, S., "Repulsive Energy Between Hydrogen and Helium Atoms," Mol. Phys., 7, 433-8, 1964.
- Brown, W. B., "Interatomic Forces at Very Short Range," Faraday Soc. Discuss., 40, 140-9, 1965.
- 475. Hirschfelder, J. O., "Perturbation Theory for Exchange Forces. I," Chem. Phys. Letters, 1, 325-9, 1967.
- 476. Hirschfelder, J. O., "Perturbation Theory for Exchange Forces. II," Chem. Phys. Letters. 1, 363-8, 1967.
- Jansen, L. and Slawsky, Z. I., "Deviations from Additivity of the Intermolecular Field at High Densities," J. Chem. Phys., 22, 1701-4, 1954.
- Sherwood, A. E. and Prausnitz, J. M., "Intermolecular Potential Functions and the Second and Third Virial Coefficients," J. Chem. Phys., 41, 429-37, 1964.
- Sherwood, A. E., de Rocco, A. G., and Mason, E. A., "Non-additivity of Intermolecular Forces: Effects on the Third Virial Coefficient," J. Chem. Phys., 44, 2984-94, 1966.
- Hamann, S. D. and Lambert, J. A., "The Behavior of Fluids of Quasi-Spherical Molecules. I. Gases at Low Densities," Aust. J. Chem., 7, 1-17, 1954.
- Hamann, S. D. and Lambert, J. A., "The Behavior of Fluids of Quasi-Spherical Molecules. II. High Density Gases and Liquids," Aust. J. Chem., 7, 18-27, 1954.
- Bennett, L. A. and Vines, R. G., "The Molecular Complexity of Polar Organic Vapors," Aust. J. Chem., 8, 451-4, 1955.
- Lichten, W., "Resonant Charge Exchange in Atomic Collisions," in Advances in Chemical Phys. (Prigogine, I., Editor), Interscience Publishers, New York, Vol. 13, 398 pp., 1967.
- 484. Hasted, J. B., "Recent Measurements on Charge Transfer," in Advances in Atomic and Molecular Phys. (Bates, D. R. and Estermann, I., Editors), Academic Press, New York, 465 pp., 1968.
- 485. Amdur, I., "Intermolecular Potentials from Scattering Experiments: Results, Applications, and Limitations," in Progress in Int. Res. on Thermodynamic and Transport Properties, Second Symp. on Thermophysical Properties, ASME, New York, 369-77, 1962.
- 486. Amdur, I. and Jordan, J. E., "Elastic Scattering of High-Energy Beams: Repulsive Forces," in Molecular Beams, Vol. 10 of Advance in Chemical Physics (Ross, J., Editor), Interscience Publishers, New York, 29-73, 1966.
- 487. Hirschfelder, J. O., "Determination of Intermolecular Forces," J. Chem. Phys., 43, S199-S201, 1965.
- Woolley, H. W., "Empirical Intermolecular Potential for Inert Gas Atoms," J. Chem. Phys., 32, 405-9, 1960.
- Saxena, S. C. and Mathur, B. P., "Thermal Diffusion in Binary Gas Mixtures and Intermolecular Forces," Rev. Mod. Phys., 37, 316-25, 1965.
- Saxena, S. C. and Mathur, B. P., "Thermal Diffusion in Isotopic Gas Mixtures and Intermolecular Forces," Rev. Mod. Phys., 38, 380-90, 1966.
- Axilrod, B. M., "A Survey of Some Empirical and Semi-Empirical Interatomic and Intermolecular Potentials," NBS Tech. Note 246, 52 pp., 1966.
- 492. Mann, J. B., "Collision Integrals and Transport Properties for Gases Obeying an Exponential Repulsive Potential: Application to Hydrogen and Helium," Los Alamos Scientific Lab, Rept. LA-2383, 85 pp., 1960.
- Monchick, L., "Collision Integrals for the Exponential Repulsive Potential," Phys. Fluids, 2, 695-700, 1959.

- Kihara, T., Taylor, M. H., and Hirschfelder, J. O., "Transport Properties for Gases Assuming Inverse Power Intermolecular Potentials," *Phys. Fluids*, 3, 715-20, 1960.
- Munn, R. J., Mason, E. A., and Smith, F. J., "Collision Integrals for the Exponential Attractive Potential," *Phys. Fluids*, 8, 1103-5, 1965.
- Brokaw, R. S., "Estimated Collision Integrals for the Exponential Attractive Potential," Phys. Fluids, 4, 944-6, 1961.
- Hirschfelder, J. O., Bird, R. B., and Spotz, E. L., "The Transport Properties for Nonpolar Gases," J. Chem. Phys., 16, 968-81, 1948.
- Hirschfelder, J. O., Bird, R. B., and Spotz, E. L., "The Transport Properties for Nonpolar Gases," J. Chem. Phys., 17, 1343-4, 1949.
- Liley, P. E., "Collision Integrals for the Lennard-Jones (6-12)
 Potential," Purdue University, TPRC Rept. 15, 15 pp., 1963.
- Smith, F. L., Mason, E. A., and Munn, R. J., "Transport Collision Integrals for Gases Obeying 9-6 and 28-7 Potentials," J. Chem. Phys., 42, 1334-9, 1965.
- Klein, M. and Smith, F. J., "Tables of Collision Integrals for the (m, 6) Potential Function for 10 Values of m," J. Res. Natl. Bur. Std.—A. Phys. and Chem., 72A, 359-423, 1968.
- Mason, E. A., "Transport Properties of Gases Obeying a Modified Buckingham (Exp-six) Potential," J. Chem. Phys., 22, 169-86, 1954.
- Mason, E. A., "Higher Approximations for the Transport Properties of Binary Gas Mixtures. II. Applications," J. Chem. Phys., 27, 782-90, 1957.
- 504. Smith, F. J. and Munn, R. J., "Automatic Calculation of the Transport Collision Integrals with Tables for the Morse Potential," J. Chem. Phys., 41, 3560-8, 1964.
- 505. Samoilov, E. V. and Tsitelauri, N. N., "Collision Integrals for the Morse Potential," *Teplofiz. Vys. Temp..* 2, 565-72, 1964.
- Smith, F. J., Munn, R. J., and Mason, E. A., "Transport Properties of Quadrupolar Gases," J. Chem. Phys., 46, 317-21, 1967.
- Barker, J. A., Fock, W., and Smith, F., "Calculation of Gas Transport Properties and the Interaction of Argon Atoms," Phys. Fluids, 7, 897-903, 1964.
- Suggenheim, E. A. and McGlashan, M. L., "Interaction Between Argon Atoms," Proc. Roy. Soc. (London), A255, 456-76, 1960.
- Pollara, L. Z. and Funke, P. T., "Note on a New Potential Function," J. Chem. Phys., 31, 855-6, 1959.
- Saxena, S. C. and Joshi, K. M., "Second Virial and Zero Pressure Joule-Thomson Coefficients of Nonpolar Quasi-Spherical Molecules," *Indian J. Phys.*, 36, 422-30, 1962.
- Saxena, S. C. and Joshi, K. M., "Second Virial Coefficient of Polar Gases," Phys. Fluids, 5, 1217-22, 1962.
- Saxena, S. C., Joshi, K. M., and Ramaswamy, S., "Zero Pressure Joule-Thomson Coefficient of Polar Gases," *Indian* J. Pure Appl. Phys., 1, 420-6, 1963.
- Saksena, M. P. and Saxena, S. C., "Equilibrium Properties of Gases and Gaseous Mixtures," Nat. Inst. Sci. (India), 32A, 177-95, 1966.
- 514. Saxena, S. C. and Saksena, M. P., "Certain Equilibrium Properties of Gases and Gas Mixtures on Steeper Lennard-Jones and Stockmayer Type Potentials," *Def. Sci. J.*, 17, 79-94, 1967.

- 515. Saksena, M. P., Nain, V. P. S., and Saxena, S. C., "Second Virial and Zero-Pressure Joule-Thomson Coefficients of Polar and Nonpolar Gases and Gas Mixtures," *Indian J. Phys.*. 41, 123-33, 1967.
- Varshni, V. P., "Intermolecular Potential Function for Helium," J. Chem. Phys., 45, 3894-5, 1966.
- Dymond, J. H., Rigby, M., and Smith, E. B., "Intermolecular Potential-Energy Function for Simple Molecules," J. Chem. Phys., 42, 2801-6, 1965.
- Nain, V. P. S. and Saxena, S. C., "On the Appropriateness of Dymond Rigby and Smith Intermolecular Potential," *Chem. Phys. Letters*, 1, 46-7, 1967.
- 519. Feinberg, M. J. and deRocco, G., "Intermolecular Forces: The Triangle Well and Some Comparisons with the Square Well and Lennard-Jones," J. Chem. Phys., 41, 3439-50, 1964.
- de Rocco, A. G. and Hoover, W. G., "Second Virial Coefficient for the Spherical Shell Potential," J. Chem. Phys., 36(4), 916-26, 1962.
- de Rocco, A. G., Spurling, T. H., and Storvick, T. S., "Intermolecular Forces in Globular Molecules. II. Multipolar Gases with a Spherical-Shell Central Potential," J. Chem. Phys., 46, 599-602, 1967.
- Spurling, T. H. and de Rocco, A. G., "Intermolecular Forces in Globular Molecules. III. A Comparison of the Spherical Shell and Kihara Models," *Phys. Fluids.* 10, 231-2, 1967.
- Storvick, T. S., Spurling, T. H., and de Rocco, A. G., "Intermolecular Forces in Globular Molecules. IV. Additive Third Virial Coefficients and Quadrupolar Corrections," J. Chem. Phys., 46, 1498-1506, 1967.
- 524. McKinley, M. D. and Reed, T. M., "Intermolecular Potential-Energy Functions for Pairs of Simple Polyatomic Molecules." J. Chem. Phys., 42, 3891-9, 1965.
- Lawley, K. P. and Smith, E. B., "Contribution of Off-Centre Dipoles to the Second Virial Coefficients of Polar Gases," Trans. Faraday Soc., 59, 301-8, 1963.
- Dymond, J. H. and Smith, E. B., "Off-Center Dipole Model and the Second Virial Coefficients of Polar Gases," *Trans. Faraday Soc.*. 60, 1378-85, 1964.
- Spurling, T. H. and Mason, E. A., "On the Off-Center Dipole Model for Polar Gases," J. Chem. Phys., 46, 404-5, 1967.
- Carra, S. and Konowalow, D. D., "An Improved Intermolecular Potential Function," Nuovo Cimento, 34, 205-14, 1964.
- 529. Nain, V. P. S. and Saxena, S. C., "Second Virial Coefficient of Nonpolar Gases and Gas Mixtures and Buckingham-Carra-Konowalow Potential," *Indian J. Phys.*, 41, 199-208, 1967.
- Nain, V. P. S. and Saksena, M. P., "The Modified-BCK Potential for Nonpolar Molecules," *Chem. Phys. Letters*, 1, 125-6, 1967.
- Konowalow, D. D., "Comment on the Modified Buckingham-Carra-Konowalow Potential for Nonpolar Molecules," Chem. Phys. Letters. 2, 179-81, 1968.
- Mason, E. A. and Monchick, L., "Methods for the Determination of Intermolecular Forces," Adv. Chem. Phys., 12, 329-87, 1967.
- Bernstein, R. B. and Muckerman, J. T., "Determination of Intermolecular Forces Via Low-Energy Molecular Beam Scattering," Adv. Chem. Phys., 12, 389-486, 1967.
- Birnbaum, G., "Microwave Pressure Broadening and Its Application to Intermolecular Forces," Adv. Chem. Phys., 12, 487-548, 1967.

- Bloom, M. and Oppenheim, I., "Intermolecular Forces Determined by Nuclear Magnetic Resonance," Adv. Chem. Phys., 12, 549-99, 1967.
- Flynn, L. W. and Thodos, G., "Lennard-Jones Force Constants from Viscosity Data: Their Relationship to Critical Properties," Am. Inst. Chem. Eng. J., 8, 362-5, 1962.
- Stiel, L. I. and Thodos, G., "Lennard-Jones Force Constants Predicted from Critical Properties," J. Chem. Eng. Data, 7, 234-6, 1962.
- Saksena, M. P. and Saxena, S. C., "On Possible Correlation Between Potential Parameters and Critical or Boiling Point Constants," *Indian J. Pure Appl. Phys.*, 4, 86-7, 1966.
- Konowalow, D. D. and Guberman, S. L., "Estimation of Morse Potential Parameters from the Critical Constants and the Acentric Factor," Ind. Eng. Chem. Fundam., 7, 622-5, 1968.
- Reed, T. M., and McKinley, M. D., "Estimation of Lennard-Jones Potential Energy Parameters from Liquid Densities," J. Chem. Eng. Data, 9, 553-6, 1964.
- Barker, J. A. and Leonard, P. J., "Long-Range Interaction Forces Between Inert Gas Atoms," *Phys. Letters.* 13, 127-8, 1964.
- Munn, R. J., "On the Calculation of the Dispersion-Forces Coefficient Directly from Experimental Transport Data," J. Chem. Phys., 42, 3032-3, 1965.
- 543. Mason, E. A. and Vanderslice, J. T., "High Energy Elastic Scattering of Atoms, Molecules and Ions," in *Atomic and Molecular Process* (Bates, D. R., Editor), Academic Press, New York, 663-95, 1962.
- 544. Kamnev, A. B. and Leonas, V. B., "Experimental Determination of the Repulsion Potential and the Kinetic Properties of Noble Gases at High Temperatures," *Teplofiz. Vys. Temp.*. 3, 744-6, 1965.
- 545. Zumino, B. and Keller, J. B., "Determination of Intermolecular Potentials from Thermodynamic Data and the Law of Corresponding States," J. Chem. Phys., 30, 1351-3, 1959.
- Munn, R. J., "Interaction Potential of the Inert Gases. I," J. Chem. Phys., 40(5), 1439-46, 1964.
- 547. Munn, R. J. and Smith, F. J., "Interaction Potential of the Inert Gases, II." J. Chem. Phys., 43, 3998-4002, 1965.
- Klein, M., "Determination of Intermolecular Potential Functions from Macroscopic Measurements," J. Res. Natl. Bur. Std., 76A, 259-69, 1966.
- 549. Hanley, H. J. M. and Klein, M., "On the Selection of the Intermolecular Potential Function: Application of Statistical Mechanical Theory to Experiment," NBS Tech. Note 360, 82 pp., 1967.
- Hanley, H. J. M. and Klein, M., "Selection of the Intermolecular Potential Function: III. From the Isotopic Thermal Diffusion Factor," J. Chem. Phys., 50, 4765-70, 1969.
- 551. Klein, M. and Hanley, H. J. M., "Selection of the Intermolecular Potential. Part 2—From Data of State and Transport Properties Taken in Pairs," Trans. Faraday Soc., 64, 2927-38, 1968.
- Muller, C. R. and Brackett, J. W., "Quantum Calculation of the Sensitivity of Diffusion, Viscosity, and Scattering Experiments to the Intermolecular Potential," J. Chem. Phys., 40, 654-61, 1964.
- 553. Bird, R. B., Hirschfelder, J. O., and Curtiss, C. F., "Theoretical Calculation of the Equation of State and Transport Properties of Gases and Liquids," Trans. Am. Soc. Mech. Eng., 1011-38, 1954.

- 554. Srivastava, B. N. and Madan, M. P., "The Temperature Dependence of Viscosity of Nonpolar Gases," Proc. Natl. Acad. Sci. (India), 21A, 254-60, 1952.
- Hawksworth, W. A., "A Shorter Method of Calculating Lennard-Jones (12-6) Potential Parameters from Gas Viscosity Data," J. Chem. Phys., 35, 1534, 1961.
- 556. Whalley, E. and Schneider, W. G., "The Lennard-Jones 12:6 Potential and the Viscosity of Gases," J. Chem. Phys.. 20, 657-61, 1952.
- 557. Robinson, J. D. and Ferron, J. R., "Direct Determination of Intermolecular Potentials from Transport Data," Preprint 33A of Am. Inst. Chem. Eng., Symp. on Transport Properties, Part II. Sixty-First Annual Meeting, Los Angeles, Calif., 39 pp., 5 Tables and 2 Figures, 1968.
- Mason, E. A. and Rice, W. E., "The Intermolecular Potentials for Some Simple Nonpolar Molecules," J. Chem. Phys.. 22, 843-51, 1954.
- 559. Hanley, H. J. M., "The Viscosity and Thermal Conductivity Coefficients of Dilute Argon Between 100 and 2000 K," NBS Tech. Note No. 333, 23 pp., 1966.
- Hanley, H. J. M., "Comparison of the Lennard-Jones, Exp-6, and Kihara Potential Functions from Viscosity Data of Dilute Argon," J. Chem. Phys., 44, 4219-22, 1966.
- Hanley, H. J. M. and Childs, G. E., "The Viscosity and Thermal Conductivity Coefficients of Dilute Neon, Krypton, and Xenon," NBS Tech. Note No. 352, 24 pp., 1967.
- de Rocco, A. G. and Halford, J. O., "Intermolecular Potentials of Argon, Methane and Ethane." J. Chem. Phys., 28, 1152-4, 1958.
- Milligan, J. H. and Liley, P. E., "Lennard-Jones Potential Parameter Variation as Determined from Viscosity Data for Twelve Gases," Paper No. 64-HT-20, 8 pp., 1964.
- 564. Saran, A., "Potential Parameters for Like and Unlike Interactions on Morse Potential Model," *Indian J. Phys.*, 37, 491-9, 1963.
- 565. Pal, A. K., "Intermolecular Forces and Viscosity of Some Polar Organic Vapors," *Indian J. Phys.*, 41, 823-7, 1967.
- Chakraborti, P. K., "Gas Properties at High Temperatures on the Exponential Model," *Indian J. Phys.*, 35, 354-60, 1961.
- Saxena, S. C., "Thermal Conductivity and Force Between Like Molecules," *Indian J. Phys.*, 29, 587-602, 1955.
- Srivastava, K. P., "Force Constants for Like Molecules on Exp-Six Model From Thermal Conductivity," *Indian J. Phys.*. 31, 404-14, 1957.
- Srivastava, B. N. and Madan, M. P., "Intermolecular Force and Coefficient of Self-Diffusion," *Phil. Mag.*, 43, 968-75, 1952.
- Amdur, I. and Schatzki, T. F., "Diffusion Coefficients of the Systems Xe-Xe and Ar-Xe," J. Chem. Phys., 27, 1049-54, 1957
- Vugts, H. F., Boerboom, A. J. H., and Los, J., "Measurements of Relative Diffusion Coefficients of Argon," *Physica*, 44, 219-26, 1969.
- 572. Srivastava, B. N. and Madan, M. P., "Intermolecular Force Constants from Thermal Diffusion and Other Properties of Gases," J. Chem. Phys., 21, 807-15, 1953.
- Saxena, S. C. and Srivastava, B. N., "Second Approximation to the Thermal Diffusion Factor on the Lennard-Jones 12-6 Model," J. Chem. Phys., 23, 1571-4, 1955.
- Madan, M. P., "Potential Parameters for Krypton," J. Chem. Phys., 27, 113-5, 1957.

- 575. Saxena, S. C., Kelley, J. G., and Watson, W. W., "Temperature Dependence of the Thermal Diffusion Factor for Helium, Neon, and Argon," Phys. Fluids, 4, 1216-25, 1961.
- Yntema, J. L. and Schneider, W. G., "On the Intermolecular Potentials of Helium," J. Chem. Phys., 16, 646-50, 1950.
- Whalley, E. and Schneider, W. G., "Intermolecular Potentials of Argon, Krypton, and Xenon," J. Chem. Phys., 23, 1644-50, 1955.
- 578. Schamp, H. W., Mason, E. A., Richardson, A. C. B., and Altman, A., "Compressibility and Intermolecular Forces in Gases: Methane," Phys. Fluids, 1, 329-37, 1958.
- Schamp, H. W., Mason, E. A., and Su, K., "Compressibility and Intermolecular Forces in Gases. II. Nitrous Oxide," Phys. Fluids, 5, 769-75, 1962.
- 580. Barua, A. K., "Intermolecular Potential of Helium," Indian J. Phys., 34, 76-84, 1960.
- Barua, A. K., "Force Parameters for Some Nonpolar Molecules on the hap 6-8 Model," J. Chem. Phys., 31, 957-60, 1959.
- Srivastava, I. B., "Intermolecular Potential and Properties of Argon," *Indian J. Phys.*, 34, 539-48, 1960.
- Srivastava, I. B. and Barua, A. K., "Intermolecular Potentials of H₂ and D₂," *Indian. J. Phys.*, 35, 320-2, 1961.
- 584. Barua, A. K. and Saran, A., "The Difference in the Intermolecular Potential of H₂ and D₂," Physica, 29, 1393-6, 1963.
- Mason, E. A., Amdur, I., and Oppenheim, I., "Differences in the Spherical Intermolecular Potentials of Hydrogen and Deuterium," J. Chem. Phys., 43, 4458-63, 1965.
- 586. Gambhir, R. S. and Saxena, S. C., "Zero-Pressure Joule-Thomson Coefficient for a Few Nonpolar Gases on the Morse Potential," *Indian J. Phys.*, 37, 540-2, 1963.
- Ahlert, R. C. and Vogl, W., "Lennard-Jones Parameters for Methane," Am. Inst. Chem. Eng. J., 12, 1025-6, 1966.
- Saxena, S. C., "Zero-Pressure Joule-Thomson Coefficient and Exponential-Six Intermolecular Potential," Chem. Phys. Letters, 4, 81-3, 1969.
- 589. Saksena, M. P., Gandhi, J. M., and Nain, V. P. S., "Determination of Force Constants for the Spherically Symmetric Potential Functions," Chem. Phys. Letters, 1, 424-6, 1967.
- Whalley, E., "The Difference in the Intermolecular Forces of H₂O and D₂O," Trans. Faraday Soc., 53, 1578-85, 1957.
- Whalley, E., "Intermolecular Forces and Crystal Properties of Methane," Phys. Fluids, 2, 335-6, 1959.
- 592. Whalley, E. and Falk, M., "Difference of Intermolecular Potentials of CH₃OH and CH₃OD," J. Chem. Phys., 34, 1569-71, 1961.
- Saran, A. and Barua, A. K., "Intermolecular Potentials for Inert Gas Atoms," Canadian J. Phys., 42, 2026-9, 1964.
- Brown, J. S., "Interatomic Potential Parameters of Solid Neon and Argon," Proc. Phys. Soc., 89, 987-92, 1966.
- Mikolaj, P. G. and Pings, C. J., "Direct Determination of the Intermolecular Potential Function for Argon from X-Ray Scattering Data," Phys. Rev. Letters, 16, 4-6, 1966.
- Axilrod, B. M., "Comments on the Rosen Interaction Potential of Two Helium Atoms," J. Chem. Phys., 38, 275-7, 1963
- Nesbet, R. K., "Interatomic Potentials for HeNe, HeAr, and NeAr," J. Chem. Phys., 48, 1419-20, 1968.
- Beck, D. E., "Interatomic Potentials for Helium and Molecules of Helium Isotopes," J. Chem. Phys., 50, 541-2, 1969.
- Fender, B. E. F., "Potential Parameters of Krypton," J. Chem. Phys., 38, 2243-5, 1961.

TO THE STATE OF THE PARTY OF THE STATE OF TH

- Bahethi, O. P. and Saxena, S. C., "Intermolecular Potentials for Krypton," *Indian J. Phys.*, 3, 12-15, 1964.
- Barua, A. K. and Chakraborti, P. K., "Krypton-Krypton Molecular Interaction," *Physica*, 27, 753-62, 1961.
- Chakraborti, P. K., "Potential Exergy Curve for the Interaction of Two Xenon Atoms," Physica, 29, 227-33, 1963.
- Chakraborti, P. K., "Intermolecular Potential of Radon," J. Chem. Phys., 44, 3137-8, 1966.
- 604. Srivastava, B. N. and Saxena, S. C., "Generalized Relations for the Thermal Diffusion Factor of Inert Gas Mixtures with One Invariable Constituent," *Physica*, 22, 253-62, 1956.
- Konowalow, D. D., Taylor, M. H., and Hirschfelder, J. O., "Second Virial Coefficient for the Morse Potential," *Phys. Fluids*, 4, 622-8, 1961.
- Konowalow, D. D. and Hirschfelder, J. O., "Intermolecular Potential Functions for Nonpolar Molecules," *Phys. Fluids*. 4, 629-36, 1961.
- Bahethi, O. P. and Saxena, S. C., "Morse Potential Parameters for Hydrogen," Indian J. Pure Appl. Phys., 2, 267-9, 1964.
- 608. Bahethi, O. P. and Saxena, S. C., "Morse Potential Parameters for Helium," Phys. Fluids. 6, 1774-5, 1963.
- 609. Konowalow, D. D. and Carra, S., "Determination and Assessment of Morse Potential Functions for Some Nonpolar Gases," Phys. Fluids, 8, 1585-9, 1965.
- 610. Konowalow, D. D. and Carra, S., "Central Potential for Polyatomic Molecules. I. A Survey of Morse Potential Determined Separately from Viscosity and Second Virial Coefficient," Nuovo Cimento, 44, 133-8, 1966.
- Konowalow, D. D., "Central Potentials for Nonpolar Polyatomic Molecules," Phys. Fluids, 9, 23-7, 1966.
- 612. Konowalow, D. D., "Relationship Between Pitzer's Acentric Factor and the Morse Intermolecular Potential Function," J. Chem. Phys., 46, 818-9, 1967.
- 613. Saxena, S. C. and Bahethi, O. P., "Transport Properties of Some Simple Nonpolar Gases on the Morse Potential," Mol. Phys., 7, 183-9, 1963.
- 614. Hirschfelder, J. O., Bird, R. B., and Spotz, E. L., "The Transport Properties of Gases and Gaseous Mixtures. II," Chem. Rev., 44, 205-31, 1949.
- 615. Mason, E. A., "Forces Between Unlike Molecules and the Properties of Gaseous Mixtures," J. Chem. Phys., 23, 49-56, 1955.
- 616. Srivastava, B. N. and Srivastava, K. P., "Combination Rules for Potential Parameters of Unlike Molecules on Exp-Six Model," J. Chem. Phys., 24, 1275-6, 1956.
- 617. Saxena, S. C. and Gambhir, R. S., "Second Virial Coefficient of Gases and Gaseous Mixtures on the Morse Potential," Mol. Phys., 6, 577-83, 1963.
- 618. Srivastava, K. P., "Unlike Molecular Interactions and Properties of Gas Mixtures," J. Chem. Phys., 28, 543-9, 1958
- 619. Bahethi, O. P., Gambhir, R. S., and Saxena, S. C., "Properties of Gases and Gas Mixtures with a Morse Potential," Z. Naturforsch., 19a, 1478-85, 1964
- Srivastava, I. B., "Determination of Unlike Interactions from Binary Viscosity," Indian J. Phys., 38, 86-91, 1961.
- Saxena, S. C. and Gandhi, J. M., "Thermal Conductivity of Multicomponent Mixtures of Inert Gases," Rev. Mod. Phys., 35, 1022-32, 1963.
- 622. Gambhir, R. S. and Saxena, S. C., "Thermal Conductivity of Binary and Ternary Mixtures of Krypton, Argon, and Helium," Mol. Phys., 11, 233-41, 1966.

- 623. Gandhi, J. M. and Saxena, S. C., "Thermal Conductivity of Binary and Ternary Mixtures of Helium, Neon and Xenon," Mol. Phys., 12, 57-68, 1967.
- 624. Mathur, S., Tondon, P. K., and Saxena, S. C., "Thermal Conductivity of Binary, Ternary and Quaternary Mixtures of Rare Gases," Mol. Phys., 12, 569-79, 1967.
- 625. Gambhir, R. S. and Saxena, S. C., "Thermal Conductivity of the Gas Mixtures: Ar-D₂, Kr-D₂ and Ar-Kr-D₂," *Physica*, 32, 2037-43, 1966.
- 626. Gandhi, J. M. and Saxena, S. C., "Thermal Conductivities of the Gas Mixtures D₂-He, D₂-Ne, and D₂-He-Ne," Brit. J. Appl. Phys., 18, 807-12, 1967.
- 627. Mathur, S., Tondon, P. K., and Saxena, S. C., "Thermal Conductivity of the Gas Mixtures: D₂-Xe, D₂-Ne-Kr, D₂-Ne-Ar, and D₂-Ar-Kr-Xe," J. Phys. Soc. Japan. 25, 530-5, 1968.
- 628. Saxena, S. C. and Gupta, G. P., "Thermal Conductivity of Binary, Ternary, and Quaternary Mixtures of Polyatomic Gases," in Proceedings of the Seventh Conference on Thermal Conductivity, NBS Special Publ. 302, 605-13, 1968.
- 629. Amdur, I., Ross, J., and Mason, E. A., "Intermolecular Potentials for the Systems CO₂-CO₂ and CO₂-N₂O," J. Chem. Phys., 20, 1620-3, 1952.
- Amdur, I. and Shuler, L. M., "Diffusion Coefficients of the Systems CO-CO and CO-N₂," J. Chem. Phys., 38, 188-92, 1963.
- Amdur, I. and Beatty, J. W., "Diffusion Coefficients of Hydrogen Isotopes," J. Chem. Phys., 42, 3361-4, 1965.
- 632. Amdur, I. and Malinauskas, A. P., "Diffusion Coefficients of the Systems He-T₂ and He-TH," J. Chem. Phys., 42, 3355-60, 1965
- 633. Mason, E. A., Annis, B. K., and Islam, M., "Diffusion Coefficients of T₂-H₂ and T₂-D₂: The Nonequivalence of the H₂ and D₂ Cross Sections," J. Chem. Phys., 42, 3364-6, 1965.
- 634. Srivastava, K. P., "Mutual Diffusion of Binary Mixtures of Helium, Argon and Xenon at Different Temperatures," Physica, 25, 571-8, 1959.
- 635. Srivastava, K. P. and Barua, A. K., "The Temperature Dependence of Interdiffusion Coefficient for Some Pairs of Rare Gases," *Indian J. Phys.*, 23, 229-40, 1959.
- 636. Paul, R. and Srivastava, I. B., "Mutual Diffusion of the Gas Pairs H₂-Ne, H₂-Ar, and H₂-Xe at Different Temperatures," J. Chem. Phys., 35, 1621-4, 1961.
- 637. Srivastava, B. N. and Srivastava, I. B., "Studies on Mutual Diffusion of Polar-Nonpolar Gas Mixtures," J. Chem. Phys., 36, 2616-20, 1962.
- 638. Srivastava, I. B., "Mutual Diffusion of Binary Mixtures of Ammonia with He, Ne and Xe," *Indian J. Phys.*. 36, 193-9, 1962.
- 639. Walker, R. E. and Westenberg, A. A., "Molecular Diffusion Studies in Gases at High Temperature. II. Interpretation of Results on the He-N₂ and CO₂-N₂ Systems," J. Chem. Phys., 29, 1147-53, 1958.
- 640. Walker, R. E. and Westenberg, A. A., "Molecular Diffusion Studies in Gases at High Temperature. III. Results and Interpretation of the He-Ar System," J. Chem. Phys., 31, 519-22, 1959.
- 641. Walker, R. E. and Westenberg, A. A., "Molecular Diffusion Studies in Gases at High Temperature. IV. Results and Interpretation of the CO₂-O₂, CH₄-O₂, H₂-O₂, CO-O₂, and H₂O-O₂," J. Chem. Phys., 32, 436-42, 1960.

- 642. Westenberg, A. A. and Frazier, G., "Molecular Diffusion Studies in Gases at High Temperatures. V. Results for the H₂-Ar System," *J. Chem. Phys.*, 36, 3499-500, 1962.
- 643. Saxena, S. C. and Mathur, B. P., "Central Molecular Potentials, Combination Rules and Properties of Gases and Gas Mixtures." Chem. Phys. Letters, 1, 224-6, 1967.
- 644. Mathur, B. P. and Saxena, S. C., "Measurement of the Concentration Diffusion Coefficient for He-Ar and Ne-Kr by a Two-Bulb Method," Appl. Sci. Res., 18, 325-35, 1968.
- 645. Srivastava, B. N. and Madan, M. P., "Thermal Diffusion of Gas Mixtures and Forces Between Unlike Molecules," Proc. Phys. Soc. (London), 66A, 277-87, 1953.
- Saxena, S. C., "Thermal Diffusion of Gas Mixtures and Determination of Force Constants," *Indian J. Phys.*, 29, 131-40, 1955.
- 647. Saxena, S. C., "Higher Approximations to Diffusion Coefficients and Determination of Force Constants." *Indian J. Phys.*, 29, 453-60, 1955.
- 648. Srivastava, B. N., "Comments. Determination of Potential Parameters from Thermal Diffusion," *Phys. Fluids.* 4, 526, 1961.
- 649. Madan, M. P., "Transport Properties of Some Gas Mixtures," Proc. Natl. Inst. Sci. (India), 19, 713-9, 1953.
- 650. Caxena, S. C., "Transport Coefficients and Force Between Unlike Molecules," *Indian J. Phys.*, 31, 146-55, 1957.
- Srivastava, B. N. and Srivastava, K. P., "Force Constants for Unlike Molecules on Exp-Six Model from Thermal Diffusion," Physica, 23, 103-17, 1957.
- 652. Srivastava, K. P., "Intermolecular Potentials for Unlike Interaction on Exp-Six Model," J. Chem. Phys., 26, 579-81, 1957.
- 653. Mathur, B. P. and Saxena, S. C., "Composition Dependence of the Thermal Diffusion Factor in Binary Gas Mixtures," Z. Naturforsch., 22a, 164-9, 1967.
- 654. Mathur, B. P., Nain, V. P. S., and Saxena, S. C., "A Note on the Composition Dependence of the Thermal Diffusion Factor of Ar-He System," Z. Naturforsch., 22a, 840, 1967.
- 655. Nain, V. P. S. and Saxena, S. C., "Composition Dependence of the Thermal Diffusion Factor of Binary Gas Systems," J. Chem. Phys., 51, 1541-5, 1969.
- 656. Mathur, B. P., Joshi, R. K., and Saxena, S. C., "Thermal Diffusion Factors from the Measurements on a Trennschaukel: Ar-He and Kr-Ne," J. Chem. Phys., 46, 4601-3, 1967.
- 657. Saxena, V. K., Nain, V. P. S., and Saxena, S. C., "Thermal-Diffusion Factors from the Measurements on a Trennschaukel: Ne-Ar and Ne-Xe," J. Chem. Phys., 48, 3681-5, 1968.
- 658. Taylor, W. L., Weissman, S., Haubach, W. J., an. ** tt. P. T., "Thermal-Diffusion Factors for the Neon-Xenon System," J. Chem. Phys., 50, 4886-98, 1969.
- 659. Weissman, S., Saxena, S. C., and Mason, E. A., "Intermolecular Forces from Diffusion and Thermal Diffusion Measurements," Phys. Fhiids. 3, 510-8, 1960.
- 660. Weissman, S., Saxena, S. C., and Mason, E. A., 'P'ifusion and Thermal Diffusion in Ne-CO₂," Phys. Fluids, 4, 643-8, 1961.
- Mason, E. A., Islam, M., and Weissman, S., "Thermal Diffusion and Diffusion in Hydrogen-Krypton Mixtures," Phys. Fluids, 7, 1011-22, 1964.

- 662. McQuarrie, D. A. and Hirschfelder, J. O., "Intermediate-Range Intermolecular Forces in H₂," J. Chem. Phys., 47, 1775-80, 1967.
- 663. Kim, H. and Hirschfelder, J. O., "Energy of Interaction Between Two Hydrogen Atoms by the Gaussian-Type Functions," J. Chem. Phys., 47, 1005-8, 1967.
- 664. Certain, P. R., Hirschfelder, J. O., Kolos, W., and Wolniewicz, L., "Exchange and Coulomb Energy of H₂ Determined by Various Perturbation Methods," J. Chem. Phys., 49, 24-34, 1968.
- 665. Mason, E. A., Ross, J., and Schatz, P. N., "Energy of Interaction Between a Hydrogen Atom and a Helium Atom," J. Chem. Phys., 25, 626-9, 1956.
- 666. Ross, J. and Mason, E. A., "The Energy of Interaction of He and H-," Astrophys. J., 124, 485-7, 1956.
- Mason, E. A. and Hirschfelder, J. O., "Short-Range Intermolecular Forces, I," J. Chem. Phys., 26, 173-82, 1957.
- 668. Mason, E. A. and Hirschfelder, J. O., "Short-Range Intermolecular Forces. II. H₂-H₂ and H₂-H," J. Chem. Phys., 26, 756-66, 1957.
- 669. Mason, E. A. and Vanderslice, J. T., "Delta-Function Model for Short-Range Intermolecular Forces. 1. Rare Gases," J. Chem. Phys., 28, 432-8, 1958.
- 670. Vanderslice, J. T. and Mason, E. A., "Interaction Energies for the H-H₂ and H₂-H₂ System," J. Chem. Phys., 33, 492-4, 1960.
- Vanderslice, J. T. and Mason, E. A., "Quantum Mechanical Calculations of Short-Range Intermolecular Forces," Rev. Mod. Phys., 32, 417-21, 1960.
- 672. Fallon, R. J., Mason, E. A., and Vanderslice, J. T., "Energies of Various Interactions Between Hydrogen and Helium Atoms and Ions," Astrophys. J., 131, 12-14, 1960.
- 673. Mason, E. A. and Vanderslice, J. T., "Interaction Energies and Scattering Cross-Sections of Hydrogen Ions in Helium," J. Chem. Phys.. 27, 917-27, 1957.
- 674. Mason, E. A. and Vanderslice, J. T., "Scattering Cross Sections and Interaction Energies of Low-Velocity He⁺ Ions in Helium," *Phys. Rev.*, 106, 293-4, 1957.
- 675. Mason, E. A. and Vanderslice, J. T., "Interaction Energy and Scattering Cross Sections of H⁻ Ions in Helium," *J. Chem. Phys.*, 28, 253-7, 1958.
- 676. Mason, E. A. and Vanderslice, J. T., "Interactions of H⁻ Ions and H Atoms with Ne, Ar, and H₂," J. Chem. Phys., 28, 1070-4, 1958.
- 677. Mason, E. A., Schamp, H. W., and Vanderslice, J. T., "Interaction Energy and Mobility of Li⁺ Ions in Helium," *Phys. Rev.*, 112, 445-8, 1958.
- 678. Mason, E. A. and Vanderslice, J. T., "Mobility of Hydrogen Ions (H⁺, H₂⁺, H₃⁺) in Hydrogen," *Phys. Rev.*, 114, 497-502, 1959.
- 679. Mason, E A. and Vanderslice, J. T., "Determination of the Binding Energy of He⁺₂ from Ion Scattering Data," J. Chem. Phys., 29, 361-5, 1958.
- Mason, E. A. and Vanderslice, J. T., "Binding Energy of Ne⁺₂ from Ion Scattering Data," J. Chem. Phys., 30, 599-600, 1959.
- Cloney, R. D., Mason, E. A., and Vanderslice, J. T., "Binding Energy of Ar₂* from Ion Scattering Data," J. Chem. Phys., 36, 1103-4, 1962.
- 682. Vanderslice, J. T., Mason, E. A., Maisch, W. G., and Lippin-cott, E. R., "Ground-State of Hydrogen by the Rydberg-Klein-Rees Method," J. Mol. Spectroscopy, 3, 17-29, 1959; Errata: 5, 83, 1960.

- 683. Vanderslice, J. T., Mason, E. A., and Lippincott, E. R., "Interactions Between Ground-State Nitrogen Atoms and Molecules. The N-N, N-N₂, and N₂-N₂ Interactions," J. Chem. Phys., 30, 129-36, 1959.
- 684. Vanderslice, J. T., Mason, E. A., and Maisch, W. G., "Interactions Between Oxygen and Nitrogen: O-N. O-N₂, and O₂-N₂," J. Chem. Phys., 31, 738-46, 1959.
- 685. Vanderslice, J. T., Mason, E. A., and Maisch, W. G., "Interactions Between Ground-State Oxygen Atoms and Molecules: O-O and O₂-O₂," J. Chem. Phys.. 32, 515-24, 1960.
- Fallon, R. J., Vanderslice, J. T., and Mason, E. A., "Potential Energy Curves of Hydrogen Fluoride," J. Chem. Phys., 32, 698-700, 1960.
- 687. Fallon, R. J., Vanderslice, J. T., and Mason, E. A., "Potential Energy Curves for Lithium Hydride," J. Chem. Phys., 32, 1453-5, 1960; Erratum: "Potential Energy Curves for HF and LiH," J. Chem. Phys., 33, 944, 1960.
- 688. Tobias, I., Fallon, R. J., and Vanderslice, J. T., "Potential Energy Curves for CO," J. Chem. Phys., 33, 1638-40, 1960
- 689. Vanderslice, J. T., Mason, E. A., Maisch, W. G., and Lippin-cott, E. R., "Potential Curves for N₂, NO, and O₂," J. Chem. Phys., 33, 614-5, 1960.
- 690. Konowalow, D. D. and Hirschfelder, J. O., "More Potential Parameters for O-O, N-N, and N-O Interactions," Phys. Fluids, 4, 637-42, 1961.
- Tobias, I. and Vanderslice, J. T., "Potential Energy Curves for the X' \(\sum_{a}^{+}\) and B' \(\sum_{a}^{+}\) States of Hydrogen," J. Chem. Phys.. 35, 1852-5, 1961.
- 692. Vanderslice, J. T., "Modification of the Rydberg-Klein-Rees Method for Obtaining Potential Curves for Doublet States Intermediate Between Hund's Cases (a) and (b)," J. Chem. Phys., 37, 384-8, 1962.
- 693. Krupenie, P. H., Mason, E. A., and Vanderslice, J. T., "Interaction Energies and Transport Coefficients of Li + H and O + H Gas Mixtures at High Temperatures," J. Chem. Phys., 39, 2399-2408, 1963.
- 694. Weissman, S., Vanderslice, J. T., and Battino, R., "On the Recalculation of the Potential Curves for the Ground States of I₂ and H₂," J. Chem. Phys., 39, 2226-8, 1963.
- 695. Knof, H., Mason, E. A., and Vanderslice, J. T., "Interaction Energies, Charge Exchange Cross Sections, and Diffusion Cross Sections for N*- N and O*- O Collisions," J. Chem. Phys., 40, 3548-53, 1964.
- 696. Krupenie, P. H. and Weissman, S., "Potential-Energy Curves for CO and CO⁺," J. Chem. Phys.. 43, 1529-34, 1965.
- Benesch, W., Vanderslice, J. T., Tilford, S. G., and Wilkinson.
 P. G., "Potential Curves for the Observed States of N₂ Below 11 eV," Astrophys. J., 142, 1227-40, 1965.
- Benesch, W., Vanderslice, J. T., Tilford, S. G., and Wilkinson,
 P. G., "Franck-Condon Factors for Observed Transitions in
 N₂ Above 6 eV," Astrophys. J., 143, 236-52, 1966.
- Benesch, W., Vanderslice, J. T., Tilford, S. G., and Wilkinson, P. G., "Franck-Condon Factors for Permitted Transitions in N₂," Astrophys. J., 144, 408-18, 1966.
- Stiel, L. I. and Thodos, G., "The Normal Boiling Points and Critical Constants of Saturated Aliphatic Hydrocarbons," Am. Inst. Chem. Eng. J., 8, 527-9, 1962.
- Thodos, G., "Critical Constants of the Naphthenic Hydrocarbons," Am. Inst. Chem. Eng., J., 2, 508-13, 1956.
- Thodos, G., "Critical Constants of the Aromatic Hydrocarbons," Am. Inst. Chem. Eng. J., 3, 428-31, 1957.

- Thodos, G., "Critical Constants of Unsaturated Aliphatic Hydrocarbons," Am. Inst. Chem. Eng. J., 1, 165-8, 1955.
- Thodos, G., "Critical Constants of Saturated Aliphatic Hydrocarbons," Am. Inst. Chem. Eng. J., 1, 168-73, 1955.
- Forman, J. C. and Thodos, G., "Critical Temperatures and Pressures of Hydrocarbons," Am. Inst. Chem. Eng. J., 4, 356-61, 1958.
- Forman, J. C. and Thodos, G., "Critical Temperatures and Pressures of Organic Compounds," Am. Inst. Chem. Eng. J., 6, 206-9, 1960.
- Ekiner, O. and Thodos, G., "The Critical Temperatures and Critical Pressures of Binary Mixtures of Aliphatic Hydrocarbons," J. Appl. Chem., 15, 393-7, 1965.
- Ekiner, O. and Thodos, G., "Critical Temperatures and Pressures of the Ethane-n-Heptane System," Canadian J. Chem. Eng., 43(4), 205-8, 1965.
- Ekiner, O. and Thodos, G., "Critical Temperatures and Critical Pressures of the Ethane-n-Pentane System," J. Chem. Eng. Data, 11, 154-5, 1966.
- Grieves, R. B. and Thodos, G., "The Critical Temperatures and Critical Pressures of Binary Systems: Hydrocarbons of All Types and Hydrogen," Am. Inst. Chem. Eng. J., 6, 561-6, 1960.
- Grieves, R. B. and Thodos, G., "The Critical Temperatures and Critical Pressures of Binary Mixtures of the Fixed Gases and Aliphatic Hydrocarbons," Soc. Pet. Eng. J., 194-202, 1962.
- Grieves, R. B. and Thodos, G., "The Critical Temperatures of Multicomponent Hydrocarbon Systems," Am. Inst. Chem. Eng. J., 8, 550-3, 1962.
- 713. Grieves, R. B. and Thodos, G., "The Critical Pressures of Multicomponent Hydrocarbon Mixtures and the Critical Densities of Binary Hydrocarbon Mixtures," Am. Inst. Chem. Eng. J., 9, 25-30, 1963.
- Grieves, R. B. and Thodos, G., "The Critical Temperatures of Ternary Hydrocarbon Systems," *Ind. Eng. Chem. Fundam.*, 1, 45-8, 1962.
- 715. Mehra, V. S. and Thodos, G., "The Methane-Propane-n-Pentane System, Critical Temperatures and Pressures of Ternary Systems from Limited Data," J. Chem. Eng. Data, 7, 497-9, 1962.
- 716. Cota, H. M. and Thodos, G., "Critical Temperatures and Critical Pressures of Hydrocarbon Mixtures, Methane-Ethane-n-Butane System," J. Chem. Eng. Data, 7, 62-5, 1962.
- Forman, J. C. and Thodos, G., "Experimental Determination of Critical Temperatures and Pressures of Mixtures: The Methane-Ethane-n-Butane System," Am. Inst. Chem. Eng. J., 8, 209-13, 1962.
- 718. Ekiner, O. and Thodos, G., "Critical Temperatures and Critical Pressures of the Lihane-n-Pentane-n-Heptane System," J. Chem. Eng. Data, 11, 457-60, 1966.
- Grieves, R. B. and Thodos, G., "Critical Temperatures and Pressures of Ternary Hydrocarbon Mixtures: The Ethane-Propane-n-Butane System," J. Appl. Chem., 13, 466-70, 1963.
- Mehra, V. S. and Thodos, G., "Critical Temperatures and Critical Pressures for the Ethane-n-Butane-n-Pentane System," J. Appl. Chem., 14, 265-8, 1964.
- Ekiner, O. and Thodos, G., "Interaction Model for Critical Temperatures of Multicomponent Mixtures of Methane-Free Alphatic Hydrocarbons," Am. Inst. Chem. Eng. J., 11, 897– 900, 1965.

- Ekiner, O. and Thodos, G., "Critical Temperatures of Methane-Aliphatic Hydrocarbon Mixtures," *Ind. Eng. Chem. Fundam.*, 6, 222-4, 1967.
- Ekiner, O. and Thodos, G., "Interaction Model for Critical Pressures of Multicomponent Methane-Free Aliphatic Hydrocarbon Mixtures," Chem. Eng. Sci., 21, 353-60, 1966.
- Rastogi, R. P. and Girdhar, H. L., "Molecular Interaction in Saturated Hydrocarbons," J. Chem. Phys., 36, 998-1000, 1962.
- Gunn, R. D., Chuch, P. L., and Prausnitz, J. M., "Predictions of Thermodynamic Properties of Dense Gas Mixtures Containing One or More of the Quantum Gases," Am. Inst. Chem. Eng. J., 937-41, 1966.
- 726 Gambill, W. R., "Predict Critical Temperature," Chem. Eng., 66, 181-4, 1959.
- Gambill, W. R., "How to Predict Critical Pressure," Chem. Eng., 66, 157-60, 1959.
- Gambill, W. R., "How to Predict PVT Relations," Chem. Eng., 66, 195-202, 1959.
- 729. Keyes, F. G., "A Summary of Viscosity and Heat-Conduction Data for He, Ar, H₂, O₂, N₂, CO, CO₂, H₂O and Air," Trans. Am. Soc. Mech. Engrs., 73, 589-96, 1951.
- Gambill, W. R., "Estimate Low-Pressure Gas Viscosity," Chem. Eng., 65, 169-72, 1958.
- Westenberg, A. A., "Present Status of Information on Transport Properties Applicable to Combustion Research," Combust. Flame, 1(3), 346-59, 1957.
- 732. Sutton, J. R., "A Method of Calculating the Viscosities of Polar Gases," from Progress in International Research on Thermodynamic and Transport Properties (Masi, J. F. and Tsai, D. H., Editors), Academic Press, New York, 266-70, 1962.
- Klimov, V. L., "Approximated Equations for Collision Integrals Ω^{(1.a)*}," Teplofiz. Vys. Temp.. 3, 807-8, 1965; English translation: High Temp.. 3, 747-8, 1965.
- Kim, S. K. and Ross, J., "On the Determination of Potential Parameters from Transport Coefficients," J. Chem. Phys., 46, 818, 1967.
- Brokaw, R. S., "Predicting Transport Properties of Dilute Gases," Ind. Eng. Chem. Process Des. Dev., 8, 240-53, 1969.
- Bromley, L. A. and Wilke, C. R., "Viscosity Behavior of Gases," *Ind. Eng. Chem.*, 43, 1641-8, 1951.
- Holmes, J. T. and Baerns, M. G., "Predicting Physical Properties of Gases and Gas Mixtures," Chem. Eng., 72, 103-8, 1965.
- Weintraub, M. and Corey, P. E., "High-Temperature Viscosity of Gases Estimated Quickly," Chem. Eng., 74(22), 204, 1967.
- 739. Brokaw, R. S., "Alignment Charts for Transport Properties Viscosity, Thermal Conductivity, and Diffusion Coefficients for Nonpolar Gases and Gas Mixtures at Low Density," NASA TR R-81, 23 pp., 1961.
- Brokaw, R. S., "Recent Advances Concerning the Transport Properties of Dilute Gases," Int. J. Eng. Sci., 3(3), 251-67, 1965.
- Licht, W. and Stechert, D. G., "The Variation of the Viscosity of Gases and Vapors with Temperature," J. Phys. Chem., 48, 23-47, 1944.
- Rogers, J. D., Zeigler, K., and McWilliams, P., "Hydrogen Transport Property Correlations," J. Chem. Eng. Data. 7, 179-82, 1962.

- 743. Fiore, A. W., "Viscosity of Air," J. Spacecr. Rockets, 3(5), 756-8, 1966.
- Bertram, M. H., "Comment on Viscosity of Air," J. Spacecr. Rockets, 4(2), 287, 1967.
- Fiore, A. W., "Reply by Author to M. H. Bertram's Comment," J. Spacecr. Rockets, 4(2), 288, 1967.
- Kestin, J. and Wang, H. E., "On the Correlation of Experimental Viscosity Data," *Physica*, 24, 604-8, 1958.
- 747. Smith, A. S. and Brown, G. G., "Correlating Fluid Viscosity," Ind. Eng. Chem., 35, 705-11, 1943.
- Whalley, E., "The Viscosity of Gases and the Theory of Corresponding States," Can. J. Chem., 32, 485-91, 1954.
- Othmer, D. F. and Josefowitz, S., "Correlating Viscosities of Gases with Temperature and Pressure," *Ind. Eng. Chem.*, 38, 111-6, 1946.
- Gambill, W. R., "Hot T and P Change Gas Viscosity," Chem. Eng., 65(21), 157-62, 1958.
- Bruges, E. A., Latto, B., and Ray, A. K., "New Correlations and Tables of the Coefficient of Viscosity of Water and Steam up to 1000 Bar and 1000 C," Int. J. Heat Mass Transfer, 9, 465-80, 1966.
- Lee, A. L., Starling, K. E., Dolan, J. P., and Ellington, R. T., "Viscosity Correlation for Light Hydrocarbon Systems," Am. Inst. Chem. Eng. J.. 10, 694-7, 1964.
- Lee, A. L. and Ellington, R. T., "Viscosity of n-Pentane,"
 J. Chem. Eng. Data. 10, 101-4, 1965.
- Gonzalez, M. H. and Lee, A. L., "Graphical Viscosity Correlation for Hydrocarbons," Am. Inst. Chem. Eng. J., 14, 242-4, 1968.
- Gegg, D. G. and Purchas, D. B., "Estimation of Viscosity of Gases," Br. Chem. Eng., 10, 850-1, 1965.
- Shimotake, H. and Thodos, G., "Viscosity: Reduced-State Correlation for the Inert Gases," Am. Inst. Chem. Eng. J., 4, 257-62, 1958.
- Trappeniers, N. J., Botzen, A., Ten Seldam, C. A., Van den Berg, H. R., and Van Oosten, J., "Corresponding States for the Viscosity of Noble Gases up to High Densities," *Physica*. 31, 1681-91, 1965.
- Brebach, W. J. and Thodos, G., "Viscosity-Reduced State Correlation for Diatomic Gases," *Ind. Eng. Chem.*, 50, 1095-100, 1958.
- 759. Stiel, L. I. and Thodos, G., "Viscosity of Hydrogen in the Gaseous and Liquid States for Temperatures up to 5000," Ind. Eng. Chem. Fundam., 2, 233-7, 1963.
- Rosenbaum, B. M. and Thodos, G., "Viscosity Correlation for Para-Hydrogen in the Gaseous and Liquid States," J. Spacecr. Rockets, 4, 122-4, 1967.
- Lo, H. Y., Carroll, D. L., and Stiel, L. I., "Viscosity of Gaseous Air at Moderate and High Pressures," J. Chem. Eng. Data, 11, 540-4, 1966.
- Kennedy, J. T. and Thodos, G., "The Transport Properties of Carbon Dioxide," Am. Inst. Chem. Eng. J., 7, 625-31, 1961.
- Groenier. W. S. and Thodos, G., "Viscosity and Thermal Conductivity of Ammonia in the Gaseous and Liquid States," J. Chem. Eng. Data, 6, 240-4, 1961.
- Theiss, R. V. and Thodos, G., "Viscosity and Thermal Conductivity of Water: Gaseous and Liquid States," J. Chem. Eng. Data, 8, 390-5, 1963.
- Stiel, L. I. and Thodos, G., "The Viscosity of Nonpolar Gases at Normal Pressures," Am. Inst. Chem. Eng. J., 7, 611-5, 1961.

- Mathur, G. P. and Thodos, G., "The Viscosity of Dissociated and Undissociated Gases for Temperatures up to 10,000 K." Am. Inst. Chem. Eng. J., 9, 596-600, 1963.
- Stiel, L. I. and Thodos, G., "The Viscosity of Polar Gases at Normal Pressures," Am. Inst. Chem. Eng. J., 8, 229-32, 1962.
- Starling, K. E. and Ellington, R. T., "Viscosity Correlations for Nonpolar Dense Fluids," Am. Inst. Chem. Eng. J., 10, 11-5, 1964.
- Lennert, D. A. and Thodos, G., "Application of the Enskog Relationships for Prediction of the Transport Properties of Simple Substances," *Ind. Eng. Chem. Fundam.*. 4, 139-41, 1965.
- Elzinga, D. J. and Thodos, G., "The Transport Properties of p-Hydrogen from the Enskog Theory," Cryogenics. 6(4), 216-21, 1966.
- Jossi, J. A., Stiel, L. I., and Thodos, G., "The Viscosity of Pure Substances in the Dense Gaseous and Liquid Phases," Am. Inst. Chem. Eng. J., 8, 59-63, 1962.
- Stiel, L. I. and Thodos, G., "The Viscosity of Polar Substances in the Dense Gaseous and Liquid Regions," Am. Inst. Chem. Eng. J., 10, 275-7, 1964.
- Simon, H. A., Liu, C. S., and Hartnett, J. P., "Properties of Hydrogen-Nitrogen and Hydrogen-Carbon Dioxide Mixtures," Int. J. Heat Mass Transfer. 8(8), 1176-8, 1965.
- 774. Rogers, J. D., Zeigler, R. K., and McWilliams, P., "Hydrogen Transport Property Correlations Part II." Los Alamos Scientific Laboratory Report LA-2719, 40 pp., 1962.
- 775. Childs, G. E. and Hanley, H. J. M. "The Viscosity and Thermal Conductivity Coefficients of Dilute Nitrogen and Oxygen," NBS Tech. Note 350, 27 pp., 1966.
- Brush, S. G. and Lawrence, J. D., "Transport Coefficients for the Square Well Potential Model," UCRL-7376, 25 pp., 1963.
- Kessel'man, P. M. and Chernyshev, S. K., "Thermal Properties of Some Hydrocarbons at High Temperatures," Teplofiz. Vys. Temp., 3, 700-7, 1965; English translation: High Temp., 3, 651-7, 1965.
- Partington, J., An Advanced Treatise on Physical Chemistry, Longmans. Green and Co., London, Vol. I, 943 pp., 1949.
- 779. Enskog, D., "Kinetic Theory of Processes in Moderately Low Pressure Gases," Inaugural Dissertation, Uppsala, Sweden, 1917. As quoted in Ref. 669.
- Gambell, W. R., "To Get Viscosity for a Gas Mixture," Chem. Eng., 65(23), 157-60, 1958.
- Buddenberg, J. W. and Wilke, C. R., "Calculation of Gas Mixture Viscosities," Ind. Eng. Chem., 41, 1345-7, 1949.
- Wilke, C. R., "A Viscosity Equation for Gas Mixtures," J. Chem. Phys., 18, 517-9, 1950.
- Saxena, S. C. and Narayanan, T. K. S., "Multicomponent Viscosities of Gaseous Mixtures at High Temperatures," *Ind. Eng. Chem. Fundam.*, 1, 191-5, 1962.
- 784. Mathur, S. and Saxena, S. C., "A Quick and Approximate Method for Estimating the Viscosity of Multicomponent Gas Mixtures" Indian J. Pure April Phys. 3, 138-40, 1965.
- Mixtures," Indian J. Pure Appl. Phys., 3, 138-40, 1965.
 785. Mathur, S. and Saxena, S. C., "Viscosity of Polar Gas Mixtures: Wilkes' Method," Appl. Sci. Res., 15A, 404-10, 1965.
- Mathur, S. and Saxena, S. C., "Viscosity of Polar-Nonpolar Gas Mixtures: Empirical Method," *Indian J. Phys.*, 39, 278-82, 1965.
- Herning, F. and Zipperer, L., "Calculation of the Viscosities of Technical Gas Mixtures from the Viscosity of the Individual Gases," Gas Wasserfach, 79, 49-54, 69-73, 1936.

- Tondon, P. K. and Saxena, S. C., "Calculation of Viscosities of Mixtures Containing Polar Gases," *Indian J. Pure Appl. Phys.*. 6, 475-8, 1968.
- Dean, D. E. and Stiel, L. I., "The Viscosity of Nonpolar Gas Mixtures at Moderate and High Pressures," Am. Inst. Chem. Eng. J., 11, 526-32, 1965.
- Strunk, M. R., Custead, W. G., and Stevenson, G. L.. "The Prediction of the Viscosity of Nonpolar Binary Gaseous Mixtures at Atmospheric Pressure," Am. Inst. Chem. Eng. J., 10, 483-6, 1964.
- 791. Strunk, M. R. and Fehsenfeld, G. D., "The Prediction of the Viscosity of Multicomponent, Nonpolar Gaseous Mixtures at Atmospheric Pressure," Am. Inst. Chem. Eng. J., 11, 389-90, 1965. (Tabular material has been deposited with the American Documentation Institute, Photoduplication Service, Library of Congress, Washington 25, D.C., as ADI Document 8254, 12 pp.)
- Ulybin, S. A., "Temperature Dependence of the Viscosity of Rarefied Gas Mixtures," Teplofiz. Vys. Temp., 2, 583-7, 1964; English translation: High Temp., 2, 526-30, 1964.
- Saxena, S. C., "Comments on the Ulybin et al. Method of Calculating Thermal Conductivities of Mixtures of Chemically Non-Reacting Gases at Ordinary Pressures," Mol. Phys., 18, 123-7, 1970.
- Cowling, T. G., "Appendix, The Theoretical Basis of Wassiljewa's Equation," Proc. Roy. Soc. (London), A263, 186-7, 1961.
- 795. Cowling, T. G., Gray, P., and Wright, P. G., "The Physical Significance of Formulae for the Thermal Conductivity and Viscosity of Gaseous Mixtures," *Proc. Roy. Soc. (London)*, A276, 69-82, 1963.
- Francis, W. E., "Viscosity Equations for Gas Mixtures," Trans. Faraday Soc., 54, 1492-7, 1958.
- Brokaw, R. S., "Approximate Formulas for the Viscosity and Thermal Conductivity of Gas Mixtures," J. Chem. Phys., 29, 391-7, 1958.
- Brokaw, R. S., "Approximate Formulas for the Viscosity and Thermal Conductivity of Gas Mixtures. II," J. Chem. Phys., 42, 1140-6, 1965.
- Hansen, C. F., "Interpretation of Linear Approximations for the Viscosity of Gas Mixtures," *Phys. Fluids*, 4, 926-7, 1961.
- 800. Wright, P. G. and Gray, P., "Collisional Interference Between Unlike Molecules Transporting Momentum or Energy in Gases," Trans. Faraday Soc., 58, 1-16, 1962.
- Burnett, D., "Viscosity and Thermal Conductivity of Gas Mixtures. Accuracy of Some Empirical Formulas," J. Chem. Phys., 42, 2533-40, 1965.
- 802. Yos, J. M., "Approximate Equations for the Viscosity and Translational Thermal Conductivity of Gas Mixtures," AVCO Missiles Space and Electronics Group Rept., Wilmington, Mass., 56 pp., 1967.
- Saxena, S. C. and Gambhir, R. S., "Semi-Empirical Formulae for the Viscosity and Translational Thermal Conductivity of Gas Mixtures," Proc. Phys. Soc., 81, 788-9, 1963.
- 804. Saxena, S. C. and Gambhir, R. S., "A Semi-Empirical Formula for the Viscosity of Multicomponent Gas Mixtures," *Indian J. Pure Appl. Phys.*, 1, 208-15, 1963.
- Mathur, S. and Saxena, S. C., "A Semi-Empirical Formula for the Viscosity of Polar Gas Mixtures," Br. J. Appl. Phys., 16, 389-94, 1965.

- 806. Gambhir, R. S. and Saxena, S. C., "Translational Thermal Conductivity and Viscosity of Multicomponent Gas Mixtures," Trans. Faraday Soc., 66, 38-44, 1964.
- Saksena, M. P. and Saxena, S. C., "Viscosity of Multicomponent Gas Mixtures," Proc. Natl. Inst. Sci. (India), 31A, 18-25, 1965.
- 808. Mathur, S. and Saxena, S. C., "Viscosity of Multicomponent Gas Mixtures of Polar Gases," Appl. Sci. Res., 15, 203-15, 1965
- 809. Brokaw, R. S., Svehla, R. A., and Baker, C. E., "Transport Properties of Dilute Gas Mixtures," NASA TN D-2580, 15 pp., 1965.
- Saxena, S. C. and Gambhir, R. S., "Viscosity and Translational Thermal Conductivity of Gas Mixtures," Br. J. Appl. Phys., 14, 436-38, 1963.
- 811. Gandhi, J. M. and Saxena, S. C., "An Approximate Method for the Simultaneous Prediction of Thermal Conductivity and Viscosity of Gas Mixtures," *Indian J. Pure Appl. Phys.*, 2, 83-5, 1964.
- Mason, E. A. and Saxena, S. C., "Approximate Formula for the Thermal Conductivity of Gas Mixtures," *Phys. Fluids*, 1, 361-9, 1958.
- 813. Tondon, P. K. and Saxena, S. C., "Modification of Brokaw's Method for Calculating Viscosity of Mixtures of Gases," Ind. Eng. Chem. Fundam., 7, 314, 1968.
- 814. Brokaw, R. S., "Viscosity of Gas Mixtures," NASA TN D-4496, 25 pp., 1968.
- 815. Gupta, G. P. and Saxena, S. C., "Calculation of Viscosity and Diffusion Coefficients of Nonpolar Gas Mixtures at Ordinary Pressures," Am. Inst. Chem. Eng. J., 14, 519-20, 1968. (See also document No. 9883 with the American Documentation Institute, Photoduplication Service, Library of Congress, Washington 25, D.C.)
- Saxena, S. C. and Agrawal, J. P., "Interrelation of Thermal Conductivity and Viscosity of Binary Gas Mixtures," Proc. Phys. Soc., 80, 313-5, 1962.
- 817. Saxena, S. C. and Tondon, P. K., "Thermal Conductivity of Multicomponent Mixtures of Rare Gases," in Proceedings of the Fourth Symposium on Thermophysical Properties (Moszynski, J. R., Editor). The American Society of Mechanical Engineers, New York, 398-404, 1968.
- Saxena, S. C. and Gupta, G. P., "Experimental Data and Prediction Procedures for Thermal Conductivity of Multicomponent Mixtures of Nonpolar Gases," J. Chem. Eng. Data. 15(1), 98-107, 1970.
- Gupta, S. C., "Transport Coefficients of Binary Gas Mixtures," Physica, 35, 395-404, 1967.
- Gupta, G. P. and Saxena, S. C., "Prediction of Thermal Conductivity of Pure Gases and Mixtures," Supp. Def. Sci. J., 17, 21-34, 1967.
- 821. Gandhi, J. M. and Saxena, S. C., "Correlation Between Thermal Conductivity and Diffusion of Gases and Gas Mixtures of Monatomic Gases," Proc. Phys. Soc., 87, 273-9, 1966.
- 822. Mathur, S. and Saxena, S. C., "Relations Between Thermal Conductivity and Diffusion Coefficients of Pure and Mixed Polyatomic Gases," Proc. Phys. Soc., 89, 753-64, 1966.
- 823. Nain, V. P. S. and Saxena, S. C., "Measurement of the Concentration Diffusion Coefficient for Ne-Ar, Ne-Xe, Ne-H₂, Xe-H₂, H₂-N₂, and H₂-O₂ Gas Systems," Appl. Sci. Res. (in press).

- Malinauskas, A. P. and Silverman, M. D., "Gaseous Diffusion in Neon-Noble Gas Systems," J. Chem. Phys., 50, 3263-70, 1969.
- 825. Wright, P. G., "A Method of Obtaining Sutherland-Wassiljewa Coefficients," in Proceedings Leeds Philosophical and Literary Soc., Scientific Section, Vol. IX, Pt. VIII, 215-21, 1964.
- Huck, R. J. and Thornton, E., "Sutherland-Wassiljewa Coefficients for the Viscosity of Binary Rare Gas Mixtures," Proc. Phys. Soc., 92, 244-52, 1967.
- O'Neal, C. and Brokaw, R. S., "Relation Between Thermal Conductivity and Viscosity for Some Nonpolar Gases," Phys. Fluids. 5, 567-74, 1962.
- Saxena, V. K. and Saxena, S. C., "Thermal Conductivity of Krypton and Xenon in the Temperature Range 350-1500 K," J. Chem. Phys., 51, 3361-8, 1969.
- 829. Saxena, S. C., Gupta, G. P., and Saxena, V. K., "Measurement of the Thermal Conductivity of Nitrogen (350 to 1500 K) by the Column Method," in Proceedings of the Eighth Conference on Thermal Conductivity (Ho, C. Y. and Taylor, R. E., Editors), Plenum Press. New York, 125-39, 1969.
- 830. Saxena, S. C. and Gupta, G. P., "The Column Method of Measuring Thermal Conductivity of Gases: Results on Carbon Monoxide and Oxygen in the Temperature Range 350 to 1500 K," AIAA 4th Thermophysics Conf., Paper No. 69-603, 8 pp., 1969.
- Dunstan, A. E. and Thole, F. B., The Viscosity of Liquids, Longmans, Green and Co., London, 91 pp., 1914.
- Hatschek, E., The Viscosity of Liquids, D. Van Nostrand Co., New York, 239 pp., 1928.
- Barr, G., A Monograph of Viscometry, Oxford University Press, London, 318 pp., 1931.
- 834. Van Wazer, J. R., Lyons, J. W., Kim, K. Y., and Colwell, R. E., Viscosity and Flow Measurement: A Laboratory Handbook of Rheology, Interscience Publishers, New York, 406 pp., 1963.
- 835. Kestin, J., "Direct Determination of the Viscosity of Gases at High Pressures and Temperatures," in Proc. Second Biennial Gas Dynamics Symp. on Transport Properties in Gases (Cambel, A. B. and Fenn, J. B., Editors), NorthWestern University Press. Evanston, Ill., 182 np., 1958.
- University Press, Evanston, Ill., 182 pp., 1958.

 836. Hagen, Ga "The Movement of Water in Narrow Cylindrical Tubes." Am. Phys. 46, 423-42, 1839.
- Tubes," Ann. Phys., 46, 423-42, 1839.
 837. Poiseville, J. L. M., Mém. Savants É'trangers, 9, p. 433, 1846;
 Compt. Rend., 11, 961, p. 1041, 1840; 12, 112, 1841; 15, 1167, 1842.
- 838. Fryer, G. M., "A Theory of Gas Flow Through Capillary Tubes," Proc. Roy. Soc. (London), A293, 329-41, 1966.
- 839. Shimotake, H. and Thodos, G., "The Viscosity of Ammonia: Experimental Measurements for the Dense Gaseous Phase and a Reduced State Correlation for the Gaseous and Liquid Regions," Am. Inst. Chem. Eng. J., 9, 68-72, 1963.
- 840. Flynn, G. P., Hanks, R. V., Lemaire, N. A., and Ross, J., "Viscosity of Nitrogen, Helium, Neon, and Argon from -78.5 to 100 C Below 200 Atmospheres," J. Chem. Phys., 38, 154-62, 1963.
- Giddings, J. G., Kao, J. T. F., and Kobayashi, R., "Development of a High-Pressure Capillary-Tube Viscometer and Its Application to Methane, Propane, and Their Mixtures in the Gaseous and Liquid Regions," J. Chem. Phys., 45(2), 578-86, 1966.

- 842. Carr, N. L., Parent, J. D., and Peck, R. E., "Viscosity of Gases and Gas Mixtures at High Pressures," Chem. Eng. Prog. Symp. Ser., 51(16), 91-9, 1955.
- 843. Graham, T., "On the Motion of Gases," Phil. Trans., 136, 573-631, 1846; 139, 349-91, 1849.
- 844. Edwards, R. S., "On the Effect of Temperature on the Viscosity of Air," Proc. Roy. Soc. (London), A117, 245-57, 1927
- 845. Williams, F. A., "The Effect of Temperature on the Viscosity of Air," Proc. Roy. Soc. (London), A 110, 141-67, 1926.
- Rankine, A. O., "The Effect of Temperature on the Viscosity of Air," Proc. Roy. Soc. (London), A111, 219-23, 1926.
- 847. Kenney, M. J., Sarjant, R. J., and Thring, M. W., "The Viscosity of Mixtures of Gases at High Temperatures," Br. J. Appl. Phys., 7, 324-9, 1956.
- 848. Bonilla, C. F., Brooks, R. D., and Walker, P. L., "The Viscosity of Steam and of Nitrogen at Atmospheric Pressure and High Temperatures," in *Proceedings of the General* Discussion on Heat Transfer, The Institution of Mechanical Engineers, London, 167-73, 1951.
- 849. White, C. M., "Streamline Flow Through Curved Pipes," Proc. Roy. Soc. (London), A123, 645-63, 1929.
- 850. Bonilla, C. F., Wang, S. J., and Weiner, H., "The Viscosity of Steam, Heavy-Water Vapor, and Argon at Atmospheric Pressure up to High Temperatures," Trans. Am. Soc. Mech. Eng., 78, 1285-9, 1956.
- McCoubrey, J. C. and Singh, N. M., "Intermolecular Forces in Quasi-Spherical Molecules," *Trans. Faraday Soc.*, 53, 877-83, 1957.
- 852. McCoubrey, J. C. and Singh, N. M., "The Vapor Phase Viscosities of the Pentanes," J. Phys. Chem., 67, 517-8, 1963
- Salzberg, H. W., "A Simple Gas Viscosity Experiment," J. Chem. Educ., 42, 663, 1965.
- Trautz, M. and Weizel, W., "Determination of the Viscosity of Sulfur Dioxide and its Mixtures with Hydrogen," Ann. Phys., 78, 305-69, 1925.
- Rankine, A. O., "On a Method of Determining the Viscosity of Gases, Especially Those Available only in Small Quantities," Proc. Roy. Soc. (London), 83A, 265-76, 1910.
- Rankine, A. O., "On the Viscosities of the Gases of the Argon Group," Proc. Roy. Soc. (London), 83A, 516-25, 1910.
- Rankine, A. O., "Viscosity of Gases of the Argon Group," Proc. Roy. Soc. (London), 84A, 181-92, 1910.
- Rankine, A. O., "A Simple Viscometer for Gases," J. Sci. Instrum., 1, 105-11, 1924.
- 859. Rankine, A. O. and Smith, C. J., "On the Viscosity and Molecular Dimensions of Gaseous Ammonia, Phosphine, and Arsine," Phil. Mag., 43, 603-14, 1921.
- Rankine, A. O., "The Viscosity and Molecular Dimensions of Gaseous Cyanogen," Proc. Roy. Soc. (London), 99A, 331-6, 1921.
- Rankine, A. O. and Smith, C. J., "On the Viscosities and Molecular Dimensions of Methane, Sulphuretted Hydrogen and Cyanogen," Phil. Mag., 42, 615-20, 1921.
- 862. Comings, E. W. and Egly, R. S., "Viscosity of Ethylene and of Carbon Dioxide under Pressure," Ind. Eng. Chem., 33, 1224-9, 1941.
- 863. Baron, J. D., Roof, J. G., and Wells, F. W., "Viscosity of Nitrogen, Methane, Ethane, and Propane at Elevated Temperature and Pressure," J. Chem. Eng. Data, 4, 283-8, 1959.

- Heath, H. R., "The Viscosity of Gas Mixtures," Proc. Phys. Soc. (London), 66B, 362-7, 1953.
- 865. Thornton, E., "Viscosity and Thermal Conductivity of Binary Gas Mixtures: Xenon-Krypton, Xenon-Argon, Xenon-Neon, and Xenon-Helium," Proc. Phys. Soc. (London), 76, 104-12, 1960.
- 866. Thornton, E., "Viscosity and Thermal Conductivity of Binary Gas Mixtures: Krypton-Argon, Krypton-Neon, and Krypton-Helium," Proc. Phys. Soc. (London), 77, 1166-9, 1961.
- Thornton, E. and Baker, W. A. D., "Viscosity and Thermal Conductivity of Binary Gas Mixtures: Argon-Neon, Argon-Helium, and Neon-Helium," Proc. Phys. Soc. (London), 80, 1171-5, 1962.
- Raw, C. J. G. and Ellis, C. P., "High-Temperature Gas Viscosities. I. Nitrous Oxide and Oxygen," J. Chem. Phys., 28, 1198-1200, 1958.
- Ellis, C. P. and Raw, C. J. G., "High-Temperature Gas Viscosities. II. Nitrogen, Nitric Oxide, Boron Trifluoride, Silicon Tetrafluoride, and Sulfur Hexafluoride," J. Chem. Phys., 30, 574-6, 1959.
- 870. Hawksworth, W. A., Nourse, H. H. E., and Raw, C. J. G., "High-Temperature Gas Viscosities. III. NO-N₂O Mixtures," J. Chem. Phys., 37, 918-9, 1962.
- Raw, C. J. G. and Tang, H., "Viscosity and Diff sion Coefficients of Gaseous Sulfur Hexafluoride-Carbon Tetra-fluoride Mixtures," J. Chem. Phys., 39, 2616-8, 1963.
- Burch, L. G. and Raw, C. J. G., "Transport Properties of Polar-Gas Mixtures. I. Viscosities of Ammonia-Methylamine Mixtures," J. Chem. Phys., 47, 2798-2801, 1967.
- 873. Chang, K. C., Hesse, R. J., and Raw, C. J. G., "Transport Properties of Polar Gas Mixtures SO₂ + SO₂F₂ Mixtures," Trans. Faraday Soc., 66, 590-6, 1970.
- Rigby, M. and Smith, E. B., "Viscosities of Inera Gases." Trans. Faraday Soc., 62, 54-8, 1966.
- Clarke, A. G. and Smith, E. B., "Low-Temperature Viscosities of Argon, Krypton, and Xenon," J. Chem. Phys., 48, 3988-91, 1968.
- Clarke, A. G. and Smith, E. B., "Low-Temperature Viscosities and Intermolecular Forces of Simple Gases," J. Chem. Phys.. 51, 4156-61, 1969.
- Dawe, R. A. and Smith, E. B., "Viscosity of Argon at High Temperatures," Science. 163, 675-6, 1969.
- 878. Timrot, D. L., "Determination of the Viscosity of Steam and Water at High Temperatures and Pressures," J. Phys. (USSR), 2, 419-35, 1940.
- 879. Makavetskas, R. A., Popov, V. N., and Tsederberg, N. V., "Experimental Study of the Viscosity of Helium and Nitrogen," Teplofiz. Vys. Temp., 1(2), 191-7, 1963.
- 880. Makavetskas, R. A., Popov, V. N., and Tsederberg, N. V., "An Experimental Investigation of the Viscosity of Mixtures of Nitrogen and Helium," *Tep.ofiz. Vys. Temp.*, 1(3), 348-55, 1963
- Vasilesco, V., "Experimental Research on the Viscosity of Gases at High Temperatures," Ann. Phys., 20, 137-76, 1945.
- 882. Lazarre, F. and Vodar, B., "Determination of the Viscosity of Nitrogen Compressed, Up to 3000 Kg cm²," Compt. Rend.. 242, 468, 1956.
- Lazarre, F. and Vodar, B., "Measurement of the Viscosity of Compressed Nitrogen up to 3000 Atmospheres," in Conference on Thermodynamic and Transport Properties of Fluids. London, 159-62, 1957.

- 884. Luker, J. A. and Johnson, C. A., "Viscosity of Helium, Oxygen, Helium-Oxygen, Helium-Steam, and Oxygen-Steam Mixtures at High Temperatures and Pressures," J. Chem. Eng. Data, 4, 176-82, 1959.
- Andreev, I. I., Tsederberg, V. N., and Popov, V. N., "Experimental Investigation of the Viscosity of Argon," Teploenergetika, 13(8), 78-81, 1966.
- Rivkin, S. L. and Levin, A. Ya., "Experimental Study of the Viscosity of Water and Steam," Teploenergetika, 13(4), 79-83, 1966.
- Lee, D. I. and Bonilla, C. F., "The Viscosity of the Alkali Metal Vapors," Nuc. Eng. Des., 7, 445-69, 1968.
- 888. Barua, A. K., Afzal, M., Flynn, G. P., and Ross, J., "Viscosity of Hydrogen, Deuterium, Methane, and Carbon Monoxide from - 50 to 150 C Below 200 Atmospheres," J. Chem. Phys., 41, 374-8, 1964.
- 889. Gracki, J. A., Flynn, G. P., and Ross, J., "Viscosity of Nitrogen, Helium, Hydrogen, and Argon from -100 to 24 C up to 150-250 Atmospheres," J. Chem. Phys., 51, 3856-63, 1969.
- 890. Kao, J. T. F. and Kobayashi, R., "Viscosity of Helium and Nitrogen and Their Mixtures at Low Temperatures and Elevated Pressures," J. Chem. Phys., 47, 2836-49, 1967.
- Michels, A. and Gibson, R. O., "The Measurement of the Viscosity of Gases at High Pressures—The Viscosity of Nitrogen to 1000 Atmospheres," Proc. Roy. Soc. (London), A134, 288-307, 1931.
- 892. Michels, A., Schipper, A. C. J., and Rintoul, W. H., "The Viscosity of Hydrogen and Deuterium at Pressures up to 2000 Atmospheres," *Physica*. 19, 1011-28, 1953.
- Michels, A., Botzen, A., and Schuurman, W., "The Viscosity of Argon at Pressures up to 2000 Atmospheres," *Physica*, 20, 1141-8, 1954.
- 894. Michels, A., Botzen, A., and Schuurman, W., "The Viscosity of Carbon Dioxide Between 0 and 75 C and at Pressures up to 2000 Atmospheres," *Physica*, 23, 95-102, 1957.
- 895. Trappeniers, N. J., Botzen, A., Van den Berg, H. R., and Van Oosten, J., "The Viscosity of Neon Between 25 C and 75 C at Pressures up to 1800 Atmospheres. Corresponding States for the Viscosity of the Noble Gases up to High Densities," Physica, 39, 985-6, 1964.
- 896. Trappeniers, N. J., Botzen, A., Van Oosten, J., and Van den Berg, H. R., "The Viscosity of Krypton Between 25 and 75 C and at Pressures up to 2000 Atmospheres," *Physica*, 31, 945– 52, 1965.
- Bond, W. N., "The Viscosity of Air," Proc. Phys. Soc., 49, 205-13, 1937.
- Rigden, P. J., "The Viscosity of Air, Oxygen, and Nitrogen," Phil. Mag.: 25, 961-81, 1938.
- Thacker, R. and Rowlinson, J. S., "The Physical Troperties of Some Polar Solutions, Part 2. The Viscosities of the Mixed Vanours." Trans. Faraday Soc., 30, 1158-63, 1954.
- Chakraborti, P. K. and Gray, P., "Viscosities of Gaseous Mixtures Containing Polar Gases: Mixtures with One Polar Constituent," Trans. Faraday Soc., 61, 2422-34, 1965.
- Chakraborti, P. K. and Gray, P., "Viscosities of Gaseous Mixtures Containing Polar Gases: More than One Polar Constituent," Trans. Faraday Soc., 62, 1769-75, 1966.
- Lambert, J. D., Cotton, K. J., Pailthorpe, M. W., Robinson, A. M., Scrivins, J., Vale, W. R. F., and Young, R. M., "Transport Properties of Gaseous Hydrocarbons," *Proc. Roy. Soc.* (*London*), A231, 280-90, 1955.

- Shimotake, H. and Thodos, G., "Viscosity of Sulfur Dioxide at 200 C for Pressures up to 3500 PSI," J. Chem. Eng. Data, 8, 88-90, 1968.
- Reynes, E. G. and Thodos, G., "The Viscosity of Argon, Krypton, and Xenon in the Dense Gaseous Region," *Physica*, 30, 1529-42, 1964.
- DeWitt, K. J. and Thodos, G., "Viscosities of Binary Mixtures in the Dense Gaseous State: The Methane-Tetrafluoromethane System," *Physica*, 32, 1459-72, 1966.
- DeWitt, K. J. and Thodos, G., "Viscosities of Binary Mixtures in the Dense Gaseous State: The Methane-Carbon Dioxide System," Can. J. Chem. Eng., 44(3), 148-51, 1966.
- Reynes, E. G. and Thodos, G., "Viacouity of Helium, Neon, and Nitrogen in the Dense Gaseous Region," J. Chem. Eng. Data, 11, 137-40, 1966.
- Eakin, B. E. and Ellington, R. T., "Improved High Pressure Capillary Tube Viscometer," *Petroleum Trans. AIME*, 216, 85-91, 1959.
- Starling, K. E., Eakin, B. E., and Ellington, R. T., "Liquid, Gas, and Dense-Fluid Viscosity of Propane," Am. Inst. Chem. Eng. J., 6, 438-42, 1960.
- Eakin, B. E., Starling, K. E., Dolan, J. P., and Ellington, R. T., "Liquid, Gas, and Dense Fluid Viscosity of Ethane," J. Chem. Eng. Data, 7, 33-6, 1962.
- Dolan, J. P., Starling, K. E., Lee, A. L., Eakin, B. E., and Ellington, R. T., "Liquid, Gas, and Dense Fluid Viscosity of n-Butane," J. Chem. Eng. Data, 8, 396-9, 1963.
- Dolan, J. P., Ellington, R. T., and Lee, A. L., "Viscosity of Methane-n-Butane Mixtures," J. Chem. Eng. Data, 9, 484-7, 1964
- Gonzalez, M. H. and Lee, A. L., "Viscosity of Isobutane," J. Chem. Eng. Data, 11, 357-9, 1966.
- 914. Lee, A. L., Gonzalez, M. H., and Eakin, B. E., "Viscosity of Methane-n-Decane Mixtures," J. Chem. Eng. Data, 11, 281-7, 1966.
- Gonzalez, M. H., Bukacek, R. F., and Lee, A. L., "Viscosity of Methane," Soc. Pet. Eng. J., 7(1), 75-9, 1967.
- Gonzalez, M. H. and Lee, A. L., "Viscosity of 2,2-Dimethylpropane," J. Chem. Eng. Data, 13, 66-9, 1968.
- Hanley, H. J. M. and Childs, G. E., "Discrepancies Between Viscosity Data for Simple Gases," Science, 189, 1114-7, 1968.
- Maxwell, J. D., "On the Viscosity or Internal Friction of Air and Other Gases," Phil. Trans. Roy. Soc. (London), 156, 249– 59, 1866.
- Craven, P. M. and Lambert, J. D., "The Viscosities of Organic Vapours," Proc. Roy. Soc. (London), A285, 439-49, 1951.
- Van Itterbeek, A. and Claes, A., "Viscosity of Gaseous Oxygen at Low Temperatures. Dependence on the Pressure," Physica, 3, 275-81, 1936.
- Van Itterbeek, A. and Claes, A., "Measurements on the Viscosity of Hydrogen and Deuterium Gas Between 293 K and 14 K," *Physica*, 5(10), 938-44, 1938.
- Van Itterbeek, A. and Keesom, W. H., "Measurements on the Viscosity of Helium Gas Between 293 and 1.6 K," Physica, 5, 257-69, 1938.
- 923. Van Itterbeek, A. and Van Paemel, O., "Measurement on the Velocity of Sound as a Function of Pressure in Oxygen Gas at Liquid Oxygen Temperatures. Calculation of the Sound Virial Coefficient and the Specific Heat," *Physica*, 5(7), 593-604, 1938.
- 924. Van Itterbeek, A. and Van Paemel, O., "Measurements of the Viscosity of Neon, Hydrogen, Deuterium, and Helium as a

- Function of the Temperature Between Room Temperature and Liquid-Hydrogen Temperatures," *Physica*, 7, 265-72, 1940.
- 925. Keesom, W. H. and Macwood, G. E., "The Viscosity of Liquid Helium," *Physica*, 5, 737-44, 1938.
- 926. Keesom, W. H. and Macwood, G. E., "The Viscosity of Hydrogen Vapor," *Physica*, 5, 749-52, 1938.
- Macwood, G. E., "The Theory of the Measurement of Viscosity and Slip of Fluids by the Oscillating Disk Method. I," Physica, 5, 374-84, 1938.
- Macwood, G. E., "The Theory of the Measurement of Viscosity and Slip of Fluids by the Oscillating Disk Method. II." Physica. 5, 763-8, 1938.
- Van Itterbeek, A. and Keesom, W. H., "Measurement of the Viscosity of Oxygen Gas at Liquid-Oxygen Temperatures," Physica, 2, 97-103, 1935.
- Van Itterbeek, A. and Van Paemel, O., "Measurements of the Viscosity of Argon Gas at Room Temperature and Between 90 and 55 K," *Physica*, 5, 1009-12, 1938.
- Van Itterbeek, A., Van Paemel, O., and Van Lierde, J., "Measurements on the Viscosity of Gas Mixtures," *Physica*, 13, 88-96, 1947.
- Rietveld, A. O., Van Itterbeek, A., and Van Den Berg, G. J., "Measurement on the Viscosity of Mixtures of Helium and Argon," *Physica*, 19, 517-24, 1953.
- Rietveld, A. O. and Van Itterbeek, A., "Measurements on the Viscosity of Ne-Ar Mixtures Between 300 and 70 K," *Physica*, 22, 785-90, 1956.
- 934. Rietveld, A. O. and Van Itterbeek, A., "Viscosity of Mixtures of H₂ and HD Between 300 and 14 K," Physica, 23, 838-42, 1957.
- 935. Coremans, J. M. J., Van Itterbeek, A., Beenakker, J. J. M., Knaap, H. F. P., and Zandbergen, P., "The Viscosity of Gaseous He, Ne, H₂, and D₂ Below 80 K," *Physica*, 24, 557-76, 1958.
- Coremans, J. M. J., Van Itterbeek, A., Beenakker, J. J. M., Knaap, H. F. P., and Zandbergen, P., "The Viscosity of Gaseous HD Below 80 K," *Physica*, 24, 1102-4, 1958.
- Rietveld, A. O., Van Itterbeek, A., and Velds, C. A., "Viscosity of Binary Mixtures of Hydrogen Isotopes and Mixtures of Helium and Neon," *Physica*, 25, 205-16, 1959.
- Sutherland, B. P. and Maass, O., "Measurement of the Viscosity of Gases over a Large Temperature Range," Can. J. Res., 6, 428-43, 1932.
- Mason, S. G. and Masss, O., "Measurement of Viscosity in the Critical Region. Ethylene," Can. J. Res., 18B, 128-37, 1940.
- Johnston, H. L. and McCloskey, K. E., "Viscosities of Several Common Gases Between 90 K and Room Temperature," J. Phys. Chem., 44, 1038-58, 1940.
- Johnston, H. L. and Grilly, E. R., "Viscosities of Carbon Monoxide, Helium, Neon, and Argon Between 80 and 300 K. Coefficients of Viscosity," J. Phys. Chem., 46, 948-63, 1942.
- Kestin, J. and Pilarezyk, K., "Measurement of the Viscosity of Five Gases at Elevated Pressures by the Oscillating Disk Method," Trans. ASME, 76, 987-99, 1954.
- Kestin, J. and Wang, H. E., "Corrections for the Oscillating Disk Viscometer," J. Appl. Mechanics Trans. ASME. 79, 197-206, 1957.
- Kestin, J. and Wang, H. E., "The Viscosity of Five Gases: A Re-Evaluation," Trans. ASME. 80, 11-7, 1958.

- Kestin, J., Leidenfrost, W., and Liu, C. Y., "On Relative Measurements of the Viscosity of Gases by the Oscillating Disk Method," Z. Angew. Math. Phys. (ZAMP), 10, 558-64, 1959
- Kestin, J. and Leidenfrost, W., "The Viscosity of Helium," *Physica*, 25, 537-55, 1959.
- Kestin, J. and Leidenfrost, W., "The Effect of Moderate Pressures on the Viscosity of Five Gases," from Thermodynamics and Transport Properties of Gases and Liquids (Touloukian, Y. S., Editor), ASME Symposium, McGraw-Hill, 321-38, 1959.
- Kestin, J. and Moszynski, J. R., "Instruments for the Measurement of the Viscosity of Steam and Compressed Water," Trans. ASME, 80, 1009-14, 1958.
- 949. Mariens, P. and Van Paemel, O., "Theory and Experimental Verification of the Oscillating Disk Method for Viscosity Measurements in Fluids," Appl. Sci. Res., A5(5), 411-24, 1955.
- 950. Dash, J. G. and Taylor, R. D., "Hydrodynamics of Oscillating Disks in Viscous Fluids: Density and Viscosity of Normal Fluid in Pure He⁴ from 1.2 K to the Lambda Point," *Phys. Rev.*, 105(1), 7-24, 1957.
- Newell, G. F., "Theory of Oscillation Type Viscometers. V. Disk Oscillating Between Fixed Plates," Z. Angew. Math. Phys. (ZAMP), 10(2), 160-74, 1959.
- 952. Kestin, J. and Leidenfrost, W., "An Absolute Determination of the Viscosity of Eleven Gases over a Range of Pressures," Physica, 25, 1033-62, 1959.
- Kestin, J. and Leidenfrost, W., "The Effect of Pressure on the Viscosity of N₂-CO₂ Mixtures," Physica, 25, 525-36, 1959.
- Iwasaki, H. and Kestin, J., "The Viscosity of Argon-Helium Mixtures," Physica, 29, 1345-72, 1963.
- Iwasaki, H., Kestin, J., and Nagashima, A., "Viscosity of Argon-Ammonia Mixtures," J. Chem. Phys., 40, 2988-95, 1964
- Kestin, J. and Nagashima, A., "Viscosity of Neon-Helium and Neon-Argon Mixtures at 20 and 30 C," J. Chem. Phys., 40, 3648-54, 1964.
- Kestin, J. and Nagashima, A., "Viscosity of the Isotopes of Hydrogen and their Intermolecular Force Potentials," Phys. Fluids, 7, 730-4, 1964.
- 958. Breetveld, J. D., Di Pippo, R., and Kestin, J., "Viscosity and Binary Diffusion Coefficient on Neon-Carbon Dioxide Mixtures at 20 and 30 C," J. Chem. Phys., 45, 124-6, 1966; Comment, Ibid, 46, 1541, 1967.
- Kestin, J., Kobayashi, Y., and Wood, R. T., "The Viscosity of Four Binary Gaseous Mixtures at 20 and 30 C," *Physica*, 32, 1065-89, 1966.
- Di Pippo, R., Kestin, J., and Oguchi, K., "Viscosity of Three Binary Gaseous Mixtures," J. Chem. Phys., 46, 4758-64, 1967.
- Kestin, J. and Yata, J., "Viscosity and Diffusion Coefficient of Six Binary Mixtures," J. Chem. Phys., 49, 4780-91, 1968.
- Di Pippo, R., Kestin, J., and Whitelaw, J. H., "A High-Temperature Oscillating Disk Viscometer," *Physica*, 32, 2064-80, 1966.
- Clifton, D. G., "Measurement of the Viscosity of Krypton," J. Chem. Phys., 38, 1123-31, 1963.
- Pal, A. K. and Barua, A. K., "Viscosity of Hydrogen-Nitrogen and Hydrogen-Ammonia Gas Mixtures," J. Chem. Phys., 47, 216-8, 1967.

- Kestin, J. and Whitelaw, J. H., "A Relative Determination of the Viscosity of Several Gases by the Oscillating Disk Method," *Physica*, 29(4), 335-56, 1963.
- Pal, A. K. and Barua, A. K., "Viscosity and Intermolecular Potentials of Hydrogen Sulphide," *Trans. Faraday Soc.*, 63, 341-6, 1967.
- Pal, A. K., "Intermolecular Forces and Viscosity of Some Polar Organic Vapours," *Indian J. Phys.*, 41, 823-7, 1967.
- 968. Pal, A. K. and Barua, A. K., "Viscosity of Polar-Nonpolar Gas Mixtures," *Indian J. Phys.*, 41, 713-8, 1967.
- Pal, A. K. and Barua, A. K., "Intermolecular Potentials and Viscosities of Some Polar Organic Vapours," Br. J. Appl. Phys. (J. Phys. D), 1, 71-6, 1968.
- Gururaja, G. J., Tirunarayanan, M. A., and Ramachandran. R., "Dynamic Viscosity of Gas Mixtures," J. Chem. Eng. Data, 12(4), 562-7, 1967.
- Gilchrist, L., "An Absolute Determination of the Viscosity of Air," Phys. Rev., 1, 124-40, 1913.
- Harrington, E. L., "A Redetermination of the Absolute Value of the Coefficient of Viscosity of Air," Phys. Rev., 8, 738-51, 1916.
- Yen, K. L., "An Absolute Determination of the Coefficients of Viscosity of Hydrogen, Nitrogen, and Oxygen," *Phil. Mag.*. 38, 582-97, 1919.
- 974. Van Dyke, K. S., "The Coefficients of Viscosity and of Slip of Air and of Carbon Dioxide by the Rotating Cylinder Method," *Phys. Rev.*, 21, 250-65, 1923.
- 975. Millikan, R. A., "Coefficients of Slip in Gases and the Law of Reflection of Molecules from the Surfaces of Solids and Liquids," Phys. Rev.. B21, 217-38, 1923.
- Stacy, L. J., "A Determination by the Constant Deflection Method of the Value of the Coefficient of Slip for Rough and for Smooth Surfaces in Air," Phys. Rev., 21, 239-49, 1923.
- 977. States, M. N., "The Coefficient of Viscosity of Helium and the Coefficients of Slip of Helium and Oxygen by the Constant Deflection Method," *Phys. Rev.*, 21, 662-71, 1923.
- Blankenstein, E., "Coefficients of Slip and Momentum Transfer in Hydrogen, Helium, Air and Oxygen," Phys. Rev., 22, 582-9, 1923.
- Day, R. K., "Variation of the Vapor Viscosities of Normal and Isopentane with Pressure by the Rotating Cylinder Method," Phys. Rev.. 40, 281-90, 1932.
- 980. Houston, W. V., "The Viscosity of Air," Phys. Rev., 52, 751-7, 1937
- Kellstrom, G., "A New Determination of the Viscosity of Air by the Rotating Cylinder Method," *Phil. Mag.*, 23, 313-38, 1937
- 982. Reamer, H. H., Cokelet, G., and Sage, B. H., "Viscosity of Fluids at High Pressures, Rotating Cylinder Viscometer and the Viscosity of n-Pentane," Anal. Chem., 31, 1422-8, 1959.
- 983. Carmichael, L. T. and Sage, B. H., "Viscosity of Ethane at High Pressures," J. Chem. Eng. Data, 8, 94-8, 1963.
- 984. Carmichael, L. T., Reamer, H. H., and Sage, B. H., "Viscosity of Ammonia at High Pressures," J. Chem. Eng. Data. 8, 400-4, 1963.
- Carmichael, L. T. and Sage, B. H., "Viscosity and Thermal Conductivity of Nitrogen-n-Heptane and Nitrogen-n-Octane Mixtures," Am. Inst. Chem. Eng. J., 12, 559-62, 1966.
- Carmichael, L. T., Berry, V., and Sage, B. H., "Viscosity of a Mixture of Methane and n-Butane," J. Chem. Eng. Data, 12, 44-7, 1967.

- Ishida, Y., "Determination of Viscosities and of the Stokes-Millikan Law Constant by the Oil-Drop Method," Phys. Rev., 21, 550-63, 1923.
- 988. Hawkins, G. A., Solberg, H. L., and Potter, A. A., "The Viscosity of Water and Superheated Steam," Trans. ASME, 57(7), 395-400, 1935.
- Hubbard, R. M. and Brown, G. G., "The Rolling Ball Viscometer," Ind. Eng. Chem., Anal. Educ., 15, 212-8, 1943.
- Bicher, L. B. and Katz, D. L., "Viscosities of the Methane-Propane System," Ind. Eng. Chem., 35, 754-61, 1943.
- Swift, G. W., Christy, J. A., Heckes, A. A., and Kurata, F., "Determining Viscosity of Liquefied Gaseous Hydrocarbons at Low Temperatures and High Pressures," Chem. Eng. Prog., 54, 47-50, 1958.
- 992. Swift, G. W., Lohrenz, J., and Kurata, F., "Liquid Viscosities Above the Normal Boiling Point for Methane, Ethane, Propane and n-Butane," Am. Inst. Chem. Eng. J., 6, 415-9, 1960.
- 993. Huang, E. T. S., Swift, G. W., and Kurata, F., "Viscosities of Methane and Propane at Low Temperatures and High Pressures," Am. Inst. Chem. Eng. J., 12, 932-6, 1966.
- 994. Huang, E. T. S., Swift, G. W., and Kurata, F., "Viscosities and Densities of Methane-Propane Mixtures at Low Temperatures and High Pressures," Am. Inst. Chem. Eng. J., 13, 846-50, 1967.
- Herzfeld, K. F. and Litovitz, T. A., Absorption and Dispersion of Ultrasonic Waves, Academic Press, Inc., New York, 535 pp., 1959.
- Carnevale, E. H., Carey, C. A., and Larsen, G. S., "Experimental Determination of the Transport Properties of Gases," Panametrics Technical Report AFML-TR-65-141, 57 pp., August 1965.
- Carnevale, E. H., Wolnik, S., Larson, G., Carey, C., and Wares, G. W., "Simultaneous Ultrasonic and Line Reversal Temperature Determination in a Shock Tube," *Phys. Fluids*, 10, 1459-67, 1967.
- Carnevale, E. H., Lynnworth, L. C., and Larson, G. S., "Ultrasonic Determination of Transport Properties of Monatomic Gases at High Temperatures," J. Chem. Phys., 46, 3040-7, 1967.
- Carnevale, E. H., Larson, G., Lynnworth, L. C., Carey, C., Panaro, M., and Marshall, T., "Experimental Determination of Transport Properties of High Temperature Gases," NASA CR-789, 67 + A44, June 1967.
- 1000. Carnevale, E. H., Carey, C., Marshall, T., and Uva, S., "Experimental Determination of Gas Properties at High Temperatures and/or Pressures," Panametrics Rept. AEDC-TR-68-105, 107 pp., June 1968.
- 1001. Carey, C., Carnevale, E. H., Uva, S., and Marshall, T., "Experimental Determination of Gas Properties at High Temperatures and/or Pressures," Panametrics Rept. AEDC-TR-69-78, 51 pp., March 1969.
- 1002. Ahtye, W. F., "A Critical Evaluation of the Use of Ultrasonic Absorption for Determining High-Temperature Gas Properties," NASA TN D-4433, 66 pp., March 1968.
- 1003. Madigosky, W. M., "Density Dependence of the Bulk Viscosity in Argon," J. Chem. Phys., 46, 4441-4, 1967.
- 1004. Carey, C. A., Carnevale, E. H., and Marshall, T., "Experimental Determination of the Transport Properties of Gases, Past II. Heat Transfer and Ultrasonic Measurements." Panametrics Rept. AFML-TR-65-141, Pt. II, 96 pp., September 1966.

- 1005. Hartunian, R. A. and Marrone, P. V., "Viscosity of Dissociated Gases from Shock-Tube Heat-Transfer Measurements," Phys. Fluids, 4, 535-43, 1961.
- 1006. Emmons, H. W., "Arc Measurement of High-Temperature Gas Transport Properties," Phys. Fluids, 10, 1125-36, 1967.
- 1007. Schreiber, P. W., Schumaker, K. H., and Benedetto, K. R., "Experimental Determination of Plasma Transport Properties," in Proceedings of the Eighth Conference on Thermal Conductivity (Ho, C. Y. and Taylor, R. E., Editors), Plenum Press, New York, 249-63, 1969.
- 1008. Frenkel, J., "Kinetic Theory of Liquids," Dover Publications, Inc., New York, 488 pp., 1955.
- 1009. Green, H. S., The Molecular Theory of Fluids, North-Holland Publishing Co., Amsterdam, 264 pp., 1952.
- 1010. Rice, S. A. and Gray, P., The Statistical Mechanics of Simple Liquids. An Introduction to the Theory of Equilibrium and Non-Equilibrium Phenomena, Interscience Publishers, New York, 582 pp., 1965.
- 1011. Kirkwood, J. G., Theory of Liquids (Alder, B. J., Editor), Gordon and Breach, Science Publishers, New York, 140 pp., 1968.
- 1012. Rice, S. A., "The Kinetic Theory of Dense Fluids," Colloquium Lectures in Pure and Applied Science, No. 9, Mobil Oil Corp. Research Dept. Field Research Lab., Dallas, Texas, 308 pp., 1964.
- 1013. Kimball, G. E., "The Liquid State," Chapter III of A Treatise on Physical Chemistry (Taylor, H. S. and Glasstone, S., Editors), D. Van Nostrand Co., Inc., New York, Vol. II of 3rd Edition, 701 pp., 1951.
- 1014. Levelt, J. M. H. and Cohen, E. G. D., "A Critical Study of Some Theories of the Liquid State Including a Comparison with Experiment," Part B in Studies in Statistical Mechanics, North-Holland Publishing Co., Amsterdam, 249 pp., 1962.
- 1015. Brush, S. G., "Theories of Liquid Viscosity," University of California, Lawrence Radiation Lab., Livermore, Calif., Rept. No. UCRL-6400, 106 pp., 1961.
- 1016. Partiagion, J. R., "An Advanced Treatise on Physical Chemistry," Vol. II of *The Properties of Liquids*, Longmans, Green and Co., New York, 448 pp., 1951.
- 1017. Hildebrand, J. H., "Models and Molecules—Seventh Spiers Memorial Lecture," Faraday Soc. Discus., 15, 9-23, 1953.
- 1018. Andrade, E. N. da C., "A Theory of the Viscosity of Liquids —Part I," Phil. Mag., 17, 497-511, 1934.
- 1019. Andrade, E. N. da C., "A Theory of the Viscosity of Liquids —Part II," Phil. Mag., 17, 698-732, 1934.
- 1020. Eyring, H., "Viscosity, Plasticity, and Diffusion as Examples of Absolute Reaction Rates," J. Chem. Phys., 4, 283-91, 1026.
- 1021. Glasstone, S., Laidler, K. J., and Eyring, H., The Theory of Rate Processes, McGraw-Hill, New York, 611 pp., 1941.
- 1022. Ewell, R. H. and Eyring, H., "Theory of the Viscosity of Liquids as a Function of Temperature and Pressure," J. Chem. Phys., 5, 726-36, 1937.
- 1023. Eyring, H. and Hirschfelder, J. O., "The Theory of the Liquid State," J. Phys. Chem., 41, 249-57, 1937.
- 1024. Hirschfelder, J. O., Stevenson, D., and Eyring, H., "A Theory of Liquid Structure," J. Chem. Phys., 5, 896-912, 1937.
- 1025. Walter, J. and Eyring, H., "A Partition Function for Normal Liquids," J. Chem. Phys., 9, 393-7, 1941.
- 1026. Eyring, H., Ree, T., and Hirai, N., "Significant Structures in the Liquid State. I," Proc. Natl. Acad. Sci., 44, 683-8, 1958.

- 1027. Fuller, E. J., Ree, T., and Eyring, H., "Significant Structures in Liquids. II," Proc. Natl. Acad. Sci., 45, 1594-9, 1959.
- 1028. Carlson, C. M., Eyring, H., and Ree, T., "Significant Structures in Liquids. III," Proc. Natl. Acad. Sci., 46, 333-6, 1960.
- 1029. Thomson, T. R., Eyring, H., and Ree, T., "Significant Structures in Liquids. IV. Liquid Chlorine," Proc. Natl. Acad. Sci., 46, 336-43, 1960.
- 1030. Ree, F. H., Ree, T., and Eyring, H., "Relaxation Theory of Transport Problems in Condensed Systems," *Ind. Eng. Chem.*, 50, 1036-40, 1958.
- 1031. Carlson, C. M., Eyring, H., and Ree, T., "Significant Structures in Liquids. V. Thermodynamic and Transport Properties of Molten Metals," *Proc. Natl. Acad. Sci.*. 46, 649-59, 1960.
- 1032. Eyring, H. and Ree, T., "Significant Liquid Structures. VI. The Vacancy Theory of Liquids," Proc. Natl. Acad. Sci., 47, 526-37, 1961.
- 1033. Ree, T. S., Ree, T., and Eyring, H., "Significant Liquid Structure Theory. IX. Properties of Dense Gases and Liquids," Proc. Natl. Acad. Sci., 48, 501-17, 1962.
- 1034. Lu, W-C., Ree, T., Gerrard, V. G., and Eyring, H., "Significant Structure Theory Applied to Molten Salts," J. Chem. Phys., 49, 797-804, 1968.
- 1035. Lennard-Jones, J. E. and Devonshire, A. F., "Critical Phenomena in Gases—I," Proc. Roy. Soc. (London), 163A, 53-70, 1947.
- 1036. Lennard-Jones, J. E. and Devonshire, A. F., "Critical Phenomena in Gases. II. Vapour Pressures and Boiling Points," Proc. Roy. Soc. (London), 165A, 1-11, 1938.
- 1037. Pople, J. A., "Molecular Association in Liquids. III. A Theory of Cohesion of Polar Liquids," Proc. Roy. Soc. (London), 215A, 67-83, 1952.
- 1038. Farth, R., "On the Theory of the Liquid State. III. The Hole Theory of the Viscous Flow of Liquids," Proc. Camb. Phil. Soc., 37, 281-90, 1941.
- 1039. Furth, R., "On the Theory of the Liquid State. I. The Statistical Treatment of the Thermodynamics of Liquids by the Theory of Holes," *Proc. Camb. Phil. Soc.*. 37, 252-75, 1941.
- 1040. Eisenschitz, R., "The Effect of Temperature on the Thermal Conductivity and Viscosity of Liquids," Proc. Phys. Soc. (London), 59, 1030-6, 1947.
- 104). Wentorf, R. H., Buehler, R. J., Hirschfelder, J. O., and Curtiss, C. F., "Lennard-Jones and Devonshire Equation of State of Compressed Gases and Liquids." J. Chem. Phys., 18, 1484-500, 1950.
- 1042. Kirkwood, J. G., "Critique of the Free Volume Theory of the Liquid State," J. Chem. Phys., 18, 380-2, 1950.
- 1043. Rowlinson, J. S. and Curtiss, C. F., "Lattice Theories of the Liquid State," J. Chem. Phys., 19, 1519-29, 1951.
- 1044. Buehler, R. J., Wentorf, R. H., Hirschfelder, J. O., and Curtiss, C. F., "The Free Volume for Rigid Sphere Molecules." J. Chem. Phys., 19, 61-71, 1951.
- 1045. Dahler, J. S., Hirschfelder, J. O., and Thacher, H. C., "Improved Free-Volume Theory of Liquids. I," J. Chem. Phys., 25, 249-60, 1956.
- 1046. Dahler, J. S. and Hirschfelder, J. O., "Improved Free-Volume Theory of Liquids. II," J. Chem. Phys., 32, 330-49, 1960.
- 1047. Chung, H. S. and Dahler, J. S., "Improved Free Volume Theory of Liquids. III. Approximate Theory of Molecular

- Correlations in Liquids," J. Chem. Phys., 37, 1620-30, 1962.
- 1048. De Boer, J., "Cell-Cluster Theory for the Liquid State. I," Physica, 20, 655-64, 1954.
- 1049. Cohen, E. G. D., De Boer, J., and Salsburg, Z. W.. "A Cell-Cluster Theory for the Liquid State. II," *Physica*. 21, 137-47, 1955.
- 1050. Dahler, J. S. and Cohen, E. G. D., "Cell-Cluster Theory for the Liquid State. VI. Binary Liquid Solutions and Hole Theory," *Physica*, 26, 81-102, 1960.
- 1051. Collins, F. C. and Raffel, H., "Approximate Treatment of the Viscosity of Idealized Liquids. I. The Collisional Contribution," J. Chem. Phys., 22, 1728-33, 1956.
- 1052. Mayer, J. E. and Montroll, E., "Molecular Distribution," J. Chem. Phys., 9, 2-16, 1941.
- 1053. Mayer, J. E., "Integral Equations Between Distribution Functions of Molecules," J. Chem. Phys., 15, 187-201, 1947.
- 1054. Born, M. and Green, H. S., "A General Kinetic Theory of Liquids. I. The Molecular Distribution Functions," Proc. Roy. Soc. (London), A188, 10-8, 1946.
- 1055. Born, M. and Green, H. S., "A General Kinetic Theory of Liquids. III. Dynamical Properties," Proc. Roy. Soc. (London), A190, 455-74, 1947.
- 1056. Green, H. S., "A General Kinetic Theory of Liquids. II. Equilibrium Properties," Proc. Roy. Soc. (London), A189, 103-16, 1947.
- 1057. Kirkwood, J. G., Buff, F. P., and Green, M. S., "The Statistical Mechanical Theory of Transport Processes. III. The Coefficients of Shear and Bulk Viscosity of Liquids," J. Chem. Phys., 17, 988-94, 1949.
- 1058. Kirkwood, J. G., "Statistical Mechanics of Fluid Mixtures." J. Chem. Phys., 3, 300-13, 1935.
- 1059. Kirkwood, J. G. and Salsburg, Z. W., "The Statistical Mechanical Theory of Molecular Distribution Functions in Liquids," Faraday Soc. Discuss., 15, 28-34, 1953.
- 1060. Kirkwood, J. G., "Molecular Distribution in Liquids," J. Chem. Phys., 7, 919-25, 1939.
- 1061. Kirkwood, J. G. and Boggs, E. M., "The Radial Distribution Function in Liquids," J. Chem. Phys., 10, 394-402, 1942.
- 1062. Kirkwood, J. G., Maun, E. K., and Alder, B. J., "Radial Distribution Function and the Equation of State of a Fluid Composed of Rigid Spherical Molecules," J. Chem. Phys., 18, 1040-7, 1950.
- 1063. Kirkwood, J. G., Lewinson, V. A., and Alder, B. J., "Radial Distribution Functions and the Equation of State of Fluids Composed of Molecules Interacting According to the Lennard-Jones Potential," J. Chem. Phys., 20, 929-38, 1952.
- 1064. De Boer, J., "Theories of the Liquid State," Proc. Roy. Soc. (London), A215, 4-29, 1952.
- 1065. Eisenschitz, R., "Transport Processes in Liquids," Proc. Roy. Soc. (London), A215, 29-36, 1952.
- Andrade, E. N. da C., "Viscosity of Liquids," Proc. Roy. Soc. (London), A215, 36-43, 1952.
- Collins, F. C. and Navidi, M. H., "The Calculation of the Free Volumes of Liquids from Measurements of Sonic Velocity," J. Chem. Phys., 22, 1254-5, 1954.
- 1068. Eisenschitz, R., "The Steady Non-Uniform State for a Liquid," Proc. Phys. Soc., A62, 41-9, 1949.
- 1069. Rice, S. A. and Allnatt, A. R., "On the Kinetic Theory of Dense Fluids. VI. Singlet Distribution Function for Rigid Spheres with an Attractive Potential," J. Chem. Phys.. 34, 2144-55, 1961.

- 1070. Allnatt, A. R. and Rice, S. A., "On the Kinetic Theory of Dense Fluids. VII. The Doublet Distribution Function for Rigid Spheres with an Attractive Potential," J. Chem. Phys., 34, 2156-65, 1961.
- 1071. Hiroike, K., Gray, P., and Rice, S. A., "On the Kinetic Theory of Dense Fluids. XIX. Comments on and a Rederivation of the Kinetic Equations," J. Chem. Phys., 42, 3134-43, 1965.
- 1072. Lowry, B. A., Rice, S. A., and Gray, P., "On the Kinetic Theory of Dense Fluids. XVII. The Shear Viscosity," J. Chem. Phys., 40, 3673-83, 1964.
- 1073. Wei, C. C. and Davis, H. T., "Kinetic Theory of Dense Fluid Mixtures. III. The Doublet Distribution Functions of the Rice-Allnatt Model," J. Chem. Phys., 46, 3456-67, 1967.
- 1074. Wei, C. C. and Davis, H. T., "Kinetic Theory of Dense Fluid Mixtures. II. Solution to the Singlet Distribution Functions for the Rice-Allnatt Model," J. Chem. Phys., 45, 2533-44, 1966.
- 1075. de Boer, J., "Quantum Properties of the Condensed State," in Proc. Intl. Conf. Theor., Phys., Kyoto and Tokyo, 507-30, 1953
- 1076. Dahler, J. S., "Calculation of the Radial Distribution Function from the Cell Theory of Liquids," J. Chem. Phys., 29, 1082-5, 1958.
- 1077. Davis, H. T., Rice, S. A., and Sengers, J. V., "On the Kinetic Theory of Dense Fluids. IX. The Fluid of Rigid Spheres with a Square-Well Attraction," J. Chem. Phys., 35, 2210-33, 1961.
- 1078. Davis, H. T. and Luks, K. D., "Transport Properties of a Dense Fluid of Molecules Interacting with a Square-Well Potential," J. Phys. Chem., 69, 869-80, 1965.
- 1079. Luks, K. D., Miller, M. A., and Davis, H. T., "Transport Properties of a Dense Fluid of Molecules Interacting with a Square-Well Potential: Part II," Am. Inst. Chem. Eng. J., 12, 1079-86, 1966.
- 1080. Kadanoff, L. P. and Martin, P. C., "Hydrodynamic Equations and Correlation Functions," Ann. Phys., 24, 419-69, 1963.
- 1081. Forster, D., Martin, P. C., and Yip, S., "Moment Method Approximation for the Viscosity of Simple Liquids: Application to Argon," Phys. Rev., 170, 160-3, 1968.
- 1082. Zwanzig, R. W., Kirkwood, J. G., Stripp, K. F., and Oppenheim, I., "The Statistical Mechanical Theory of Transport Processes. VI. A Calculation of the Coefficients of Shear and Bulk Viscosity of Liquids," J. Chem. Phys., 21, 2050-5, 1953.
- 1083. Levelt, J. M. H. and Hurst, R. P., "Quantum Mechanical Cell Model of the Liquid State. I," J. Chem. Phys., 32, 96-104, 1960.
- 1084. Alder, B. J. and Wainwright, T. E., "Studies in Molecular Dynamics. I. General Method," J. Chem. Phys., 31, 459-66, 1959.
- 1085. Bueche, F., "Viscosity of Entangled Polymers, Theory of Variation with Shear Rate," J. Chem. Phys., 48, 4781-4, 1968.
- 1086. Sharp, P. and Bloomfield, V. A., "Intrinsic Viscosity of Wormlike Chains with Excluded-Volume Effects," J. Chem. Phys., 48, 2149-55, 1968.
- 1087. Ishihara, A., "Viscosity of Rodlike Molecules in Solution," J. Chem. Phys., 49, 257-60, 1968.
- 1088. Ullman, R., "Intrinsic Viscosity of Wormlike Polymer Chains," J. Chem. Phys., 49, 5486-97, 1968.

- 1089. Imai, S., "Intrinsic Viscosity of Polyelectrolytes," J. Chem. Phys., 56, 2107-15, 1969.
- 1090. Helfand, E. and Rice, S. A., "Principle of Corresponding States for Transport Properties," J. Chem. Phys., 32, 1642-4, 1960.
- 1091. Rogers, J. D. and Brickwedde, F. G., "Comparison of Saturated-Liquid Viscosities of Low Molecular Substances According to the Quantum Principle of Corresponding States," Physica, 32, 1001-18, 1966.
- 1092. Boon, J. P. and Thomaes, G., "The Viscosity of Liquefied Gases," Physica, 29, 208-14, 1963.
- 1093. Boon, J. P., Legros, J. C., and Thomaes, G., "On the Principle of Corresponding States for the Viscosity of Simple Liquids," *Physica*, 33, 547-57, 1967.
- 1094. Boon, J. P. and Thomaes, G., "The Fluidity of Binary Mixtures," *Physica*, 28, 1074-6, 1962.
- 1095. Boon, J. P. and Thomaes, G., "The Fluidity of Argon-Methane and Krypton-Methane Mixtures," Physica. 29, 123-8, 1963.
- 1096. Fontaine-Limbourg, M. C., Legros, J. C., Boon, J. P., and Thomaes, G., "The Fluidity of Argon-Oxygen and Methane-Deuteromethane Mixtures," *Physica*, 31, 396-400, 1965.
- 1097. Holleman, Th. and Hijmans, J., "A Principle of Corresponding States for the Thermodynamic Excess Functions of Binary Mixtures of Chain Molecules," *Physica*, 28, 604-16, 1962.
- 1098. Gambill, W. R., "How to Calculate Liquid Viscosity Without Experimental Data," Chem. Eng., 66(1), 127-30, 1959.
- 1099. Gambill, W. R., "How P and T Change Liquid Viscosity," Chem. Eng., 66(3), 123-6, 1959.
- 1100. Lennert, D. A. and Thodos, G., "Thermal Pressure Applied to the Prediction of Viscosity of Simple Substances in the Dense Gaseous and Liquid Regions," Am. Inst. Chem. Eng. J., 11, 155-8, 1965.
- 1101. Dolan, J. P., Starling, K. E., Lee, A. L., Eakin, B. E., and Ellington, R. T., "Liquid, Gas and Dense Fluid Viscosity of n-Butane," J. Chem. Eng. Data, 8, 396-9, 1963.
- 1102. Lee, A. L. and Ellington, R. T., "Viscosity of n-Decane in the Liquid Phase," J. Chem. Eng. Data, 10, 346-8, 1965.
- 1103. Othmer, D. F. and Conwell, J. W., "Correlating Viscosity and Vapor Pressure of Liquids," Ind. Eng. Chem., 37, 1112-5, 1945.
- 1104. Othmer, D. F. and Silvis, S. J., "Correlating Viscosities," Ind. Eng. Chem., 42, 527-8, 1950.
- 1105. Thomas, L. H., "The Dependence of the Viscosities of Liquids on Reduced Temperature, and a Relation of Viscosity, Density, and Chemical Constitution," J. Chem. Soc., Part II, 573-9, 1946.
- 1106. Auluck, F. C., De, S. C., and Kothari, D. S., "The Hole Theory of Liquid State," Proc. Natl. Inst. Sci., 10(4), 397-405, 1944.
- [107. Das, T. R., Ibrahim, S. H., and Kuloor, N. R., "Correlations for Determining Normal Boiling Point and Kinematic Viscosity of Organic Liquids," *Indian. J. Tech.*, 7, 131-8, 1969.
- 1108. Gambill, W. R., "How to Estimate Mixture Viscosities," Chem. Eng., 66(5), 151-2, 1959.
- 1109. Katti, P. K. and Chaudhri, M. M., "Viscosities of Binary Mixtures of Benzyl Acetate with Dioxane, Aniline and m-Cresol," J. Chem. Eng. Data. 9, 442-3, 1964.

- 1110. Katti, P. K. and Prakash, O., "Viscosities of Binary Mixtures of Carbon Tetrachloride with Methanol and Isopropyl Alcohol," J. Chem. Eng. Data, 11, 46-7, 1966.
- 1111. Katti, P. K., Chaudhri, M. M., and Prakash, O., "Viscosities of Binary Mixtures Involving Benzene, Carbon Tetrachloride, and Cyclohexane," J. Chem. Eng. Data, 11, 593-4, 1966.
- 1112. Katti, P. K. and Prakash, O., "Boiling Points and Viscosities of Binary Mixtures of Ethanol and Carbon Tetrachloride," *Indian Chem. Engineer (Trans.)*, 8, 69-72, 1966.
- 1113. Heric, E. L., "On the Viscosity of Ternary Mixtures," J. Chem. Eng. Data, 11, 66-8, 1966.
- 1114. Kalidas, R. and Laddha, G. S., "Viscosity of Ternary Liquid Mixtures," J. Chem. Eng. Data. 9, 142-5, 1964.
- 1115. Huang, E. T. S., Swift, G. W., and Kurata, F., "Viscosities and Densities of Methane-Propane Mixtures at Low Temperatures and High Pressures," Am. Inst. Chem. Eng. J.. 13, 846-50, 1967.
- 1116. Reynolds, O., "On the Theory of Lubrication and its Application to Mr. Beauchamp Tower's Experiments, Including an Experimental Determination of the Viscosity of Olive Oil," Phil. Trans.. 177, 157-234, 1886.
- 1117. Lipkin, M. R., Davison, J. A., and Kurtz, S. S., "Viscosity of Propane, Butane, and Isobutane," Ind. Eng. Chem., 34, 976-8, 1942.
- 1118. Boon, J. P. and Thomaes, G., "The Viscosity of Liquid Deuteromethane," Physica. 28, 1197-8, 1962.
- 1119. Legros, J. C. and Thomaes, G., "The Viscosity of Liquid Xenon," Physica, 31, 703-5, 1965.
- 1120. Denny, V. E. and Ferenbaugh, R., "Properties of Super-heated Liquids: Viscosity of Carbon Tetrachloride," J. Chem. Eng. Data, 12, 397-8, 1967.
- 1121. Mullin, J. W. and Osman, M. M., "Diffusivity, Density, Viscosity, and Refractive Index of Nickel Ammonium Sulfate Aqueous Solutions," J. Chem. Eng. Data, 12, 516-7, 1967.
- 1122. Swindells, J. F., Coe, J. R., and Godfrey, T. B., 'Absolute Viscosity of Water at 20 C," J. Res. Natl. Bur. Stand., 48, 1-31, 1952.
- 1123. Van Itterbeek, A., Zink, H., and van Paemel, O., "Viscosity Measurements in Liquefied Gases," Cryogenics. 2(4), 210-1, 1962
- 1124. Van Itterbeek, A., Zink, H., and Hellemans, J., "Viscosity of Liquefied Gases at Pressures Above One Atmosphere." Physica, 32, 489-93, 1966.
- 1125. Van Itterbeek, A., Hellemans, J., Zink, H., and Van Cauteren, M., "Viscosity of Liquefied Gases at Pressures Between 1 and 100 Atmosphere," *Physica*, 32, 2171-2, 1966.
- 1126. Hubbard, R. M. and Brown, G. G., "Viscosity of n-Pentane." Ind. Eng. Chem., 35, 1276-80, 1943.
- 1127. Chacon-Tribin, H., Loftus, J., and Salterfield, C. N., "Viscosity of the Vandium Pentoxide-Potassium Sulfate Eutectic," J. Chem. Eng. Data, 11, 44-5, 1966.
- 1128. Riebling, E. F., "Improved Counterbalanced Sphere Viscometer for Use to 1750 C," Rev. Sci. Instrum., 34, 568-72, 1963.
- 1129. Moynihan, C. T. and Cantor, S., "Viscosity and its Temperature Dependence in Molten BeF₂," J. Chem. Phys., 48, 115-9, 1968.
- 1130. Cantor, S., Ward, W. T., and Moynihan, C. T., "Viscosity and Density in Molten BeF₂-LiF Solutions," J. Chem. Phys., 48, 2874-9, 1969

- 1131. Cottingham, D. M., "Simple Viscometer for Use with Low Melting Point Metals," Br. J. Appl. Phys., 12, 625-8, 1961.
- 1132. Welber, B., "Damping of a Torsionally Oscillating Cylinder in Liquid Helium at Various Temperatures and Densities." Phys. Rev., 119, 1816-22, 1960.
- 1133. Welber, B. and Qumby, S. L., "Measurement of the Product of Viscosity and Density of Liquid Helium with a Torsional Crystal," Phys. Rev., 107(3), 645-6, 1957.
- 1134. Webeler, R. W. H. and Hammer, D. C., "Viscosity × Normal Density of Liquid Helium in a Temperature Interval about the Lambda Point," *Phys. Letters.* 15, 233-4, 1965.
- 1135. Webeler, R. W. H. and Hammer, D. C., "Viscosity Coefficients and the Phonon Density Temperature Dependence in Liquid 4He," Phys. Letters, 19, 533-4, 1965.
- 1136. Webeler, R. W. H. and Hammer, D. C., "Viscosity Coefficients for Liquid Helium-3 in the Interval 0.36 to 2.6 K," Phys. Letters. 21, 403-4, 1966.
- 1137. De Bock, A., Grevendonk, W., and Awouters, H., "Pressure Dependence of the Viscosity of Liquid Argon and Liquid Oxygen, Measured by Means of a Torsionally Vibrating Quartz Crystal," *Physica*, 34, 49-52, 1967.
- 1138. De Bock, A., Grevendonk, W., and Herreman, W., "Shear Viscosity of Liquid Argon," Physica. 37, 227-32, 1967.
- 1139. Solov'ev, A. N. and Kaplun, A. B., "The Vibration Method of Measuring the Viscosity of Liquids," *Teplofiz. Vys. Temp.*. 3, 139-48, 1965.
- 1140. Krutin, V. N. and Smirnitskii, I. B., "Measurement of the Viscosity of Newtonian Fluids by Means of Vibratory Probes," Sov. Phys.-Acoustics, 12, 42-5, 1966.
- 1141. Andrade, E. N. da C. and Dodd, C., "The Effect of an Electric Field on the Viscosity of Liquids," Proc. Roy. Soc. (London), A187, 296-337, 1946.
- 1142. Andrade, E. N. da C. and Dodd, C.. "The Effect of an Electric Field on the Viscosity of Liquids. II," Proc. Roy. Soc. (London), A204, 449-64, 1951.
- 1143. Kincaid, J. F., Eyring, H., and Stearn, A. E., "The Theory of Absolute Reaction Rates and its Application to Viscosity and Diffusion in the Liquid State," Chem. Rev., 28, 301-65, 1941.
- 1144. Schrieber, P. W., Hunter, A. M., and Benedetto, K. R., "Argon Plasma Viscosity Measurements," AIAA Third Fluid and Plasma Dynamics Conf., Los Angeles, Calif., AIAA Paper No. 70-775, 9pp., June 29-July 1, 1970.
- 1145. Dedit, A., Galperin, B., Vermesse, J., and Vodar, B., "Enregistrement, En Fonction du Temps, Des Déplacements D'une Colonne De Mercure Placée A L'intérieur D'une Enceinte Hautes Pressions. Application A La Mesure Du Coefficient de Viscosite' Des Gaz Sous Hautes Pressions." J. Phys. Appliq.. 26, 189A-193A, 1965.
- 1146. Kao, J. T. F., Ruska, W., and Kobayashi, R., "Theory and Design of an Absolute Viscometer for Low Temperature-High Pressure Applications," Rev. Sci. Instrum., 39, 824-34, 1968.
- 1147. Masiá, A. P., Paniego, A. R., and Pinto, J. M. G., "Fuerzas Intermoleculares a Partir de Medidas de Viscosidad en Fase Vapor," An. de Fis. Quim., LXIII-B, 1093-1102, 1967.
- 1148. Peña, M. D. and Esteban, F., "Viscosidad de Vapores Organicos," An. Fis. Quim., 62A, 337-46, 1966.
- 1149. Peña, M. D. and Esteban, F., "Viscosity of Quasi-Spherical Molecules in Vapor Phase," An. Fis. Quim., 62A, 347-57, 1966.
- 1150. Stefanov, B. I., Timrot, D. L., Totskii, E. E., and Chu, Wen-hao, "Viscosity and Thermal Conductivity of the

- Vapors of Sodium and Potassium," Teplofiz. Vys. Temp., 4, 141-2, 1966.
- 1151. Dawe, R. A. and Smith, E. B., "Viscosities of the Inert Gases at High Temperatures," J. Chem. Phys., 52, 693-703, 1970.
- 1152. Dawe, R. A., Maitland, G. C., Rigby, M., and Smith, E. B., "High Temperature Viscosities and Intermolecular Forces of Quasi-Spherical Molecules," *Trans. Faraday Soc.*, 66, 1955-65, 1970.
- 1153. Comings, E. W. and Egly, R. S., "Viscosity of Gases and Vapors at High Pressures," Ind. Eng. Chem., 32, 714-8, 1940.
- 1154. Meyer, G. R. and Thodos, G., "Viscosity and Thermal Conductivity of Sulfur Dioxide in the Gaseous and Liquid States," J. Chem. Eng. Data, 7, 532-6, 1962.
- 1155. Flynn, L. W. and Thodos, G., "The Viscosity of Hydrocarbon Gases at Normal Pressures," J. Chem. Eng. Data. 6, 457-9, 1961.
- 1156. Belov, V. A., "Viscosity of Partially Ionized Hydrogen," Teplofiz. Vys. Temp., 5, 37-43, 1967.
- 1157. Agaev, N. A. and Yusibova, A. D., "Viscosity of Heavy Water at High Pressures," At. Energ., 23, 149-51, 1967.
- 1158. Kessel'man, P. M. and Litvinov, A. S., "Calculation of Viscosity of Gas Mixtures at Atmospheric Pressure," *Inzh.-Fiz. Zh.*. 10, 385-92, 1966.
- 1159. Lefrancois, B., "Viscosité des Gaz Sous Haute Pression Corps Purs," Chem. Ind. Génie Chim., 98, 1377-80, 1967.
- 1160. Barbe, C., "Calcul Automatique des Paramétres de Transport des Melanges de Gaz," Entropie, 20, 49-55, 1968.
- 1161. Aksarailian, A. and Cerceau, O., "Cálculo Teórico de la Viscosidad de Metano y del Cloruro de Metilo," Acta Cient. Venez., 16, 54-7, 1965.
- 1162. Singh, Y. and Das Gupta, A., "Transport and Equilibrium Properties of Polar Gases," J. Chem. Phys., 52, 3064-7, 1970.
- 1163. Singh, Y. and Das Gupta, A., "Transport Properties of Polar-Quadrupolar Gas Mixtures," J. Chem. Phys., 52, 3055-63, 1970.
- 1164. Fenstermaker, R. W., Curtiss, C. F., and Bernstein, R. B., "Molecular Collisions. X. Restricted-Distorted-Wave-Born and First-Order Sudden Approximations for Rotational Excitation of Diatomic Molecules," J. Chem. Phys., 51, 2439-48, 1969.
- 1165. Curtiss, C. F., "Molecular Collisions. XI," J. Chem. Phys., 52, 1078-81, 1970.
- 1166. Curtiss, C. F., "Molecular Collisions. XII. Generalized Phase Shifts," J. Chem. Phys., 52, 4832-41, 1970.
- 1167. Biolsi, L., "Molecular Collisions. XIII. Nuclear Spin and Statistics Effects for Nearly Spherical Potentials," J. Chem. Phys., 53, 165-77, 1970.
- 1168. Pattengill, M. D., Curtiss, C. F., and Bernstein, R. B., "Molecular Collisions. XIV. First Order Approximation of the Generalized Phase Shift Treatment of Rotational Excitation: Atom-Rigid Rotor," J. Chem. Phys., 54, 2197-207, 1971.
- 1169. Pattengill, M. D., Curtiss, C. F., and Bernstein, R. B., "Molecular Collisions. XV. Classical Limit of the Generalized Phase Shift Treatment of Rotational Excitation: Atom-Rigid Rotor," J. Chem. Phys., 55, 3682-93, 1971.
- 1170. Pattengill, M. D., LaBudde, R. A., Bernstein, R. B., and Curtiss, C. F., "Molecular Collisions. XVI. Comparison of GPS with Classical Trajectory Calculations of Rotational Inelasticity for the Ar-N₂ System," J. Chem. Phys., 55, 5517-22, 1971.

- 1171. Curtiss, C. F., "Transport Properties of a Gas of Diatomic Molecules," J. Chem. Phys., 54, 872-7, 1971.
- 1172. Tip, A., "Transport Equations for Dilute Gases with Internal Degrees of Freedom. II. The Generalized Master Equation Approach," *Physica*, 53, 183-92, 1971.
- 1173. Stevens, G. A., "Transport Properties of Methane," *Physica*. 46, 539-49, 1968.
- 1174. Sengers, J. V., "Triple Collision Effects in the Transport Properties for a Gas of Hard Spheres," in Kinetic Equations (Liboff, R. L. and Rostoker, N., Editors), Gordon and Breach, Science Publishers, Inc., New York, 137-93, 1971.
- 1175. Kestin, J., Paykoc, E., and Sengers, J. V., "Viscosity of Helium, Argon and Nitrogen as a Function of Density." Arnold Engrg. Development Center Rept. No. AEDC-TR-71-190, 38 pp., 1971.
- 1176. Sengers, J. V., "Transport Properties of Gases and Binary Liquids Near the Critical Point," NASA CR-2112, 67 pp., 1972.
- 1177. Sengers, J. V., "Transport Processes Near the Critical Point of Gases and Binary Liquids in the Hydrodynamic Regime," Ber. Bunsenges. Phys. Chem. (Z. Elektrochem.), 76, 234-49, 1972.
- 1178. Hunter, L. W. and Curtiss, C. F., "Molecular Collisions. XVII. Formal Theory of Rotational and Vibrational Excitation in Collisions of Polyatomic Molecules," J. Chem. Phys., 58, 3884-96, 1973.
- 1179. Hunter, L. W. and Curtiss, C. F., "Molecular Collisions. XVIII. Restricted Distorted Wave Approximation to Rotational and Vibrational Excitation of Polyatomic Molecules," J. Chem. Phys., 58, 3897-3902, 1973.
- 1180. Hulsman, H. and Burgmans, A. L. J.. "The Five Shear Viscosity Coefficients of a Polyatomic Gas in a Magnetic Field," Phys. Letters, 29A, 629-30, 1969.
- 1181. Moraal, H., McCourt, F. R., and Knaap, H. F. P., "The Senftleben-Beenakker Effects for a Gas of Rough Spherical Molecules. II. The Viscosity Scheme," *Physica*, 45, 455-68, 1969.
- 1182. Korving, J., "Viscosity of Ammonia in High Magnetic Fields," Physica. 46, 455-68, 1970.
- 1183. Tommasini, F., Levi, A. C., Scoles, G., de Groot, J. J., van den Broeke, J. W., van den Meijdenberg, C. J. N., and Beenakker, J. J. M., "Viscosity and Thermal Conductivity of Polar Gases in an Electric Field," *Physica*. 49, 299-341, 1970.
- 1184. Hulsman, H., van Waasdijk, E. J., Burgmans, A. L. J., Knaap, H. F. P., and Beenakker, J. J. M., "Transverse Momentum Transport in Polyatomic Gases under the Influence of a Magnetic Field," Physica. 50, 53-76, 1970.
- 1185. Hulsman, H. and Knaap, H. F. P., "Experimental Arrangements for Measuring the Five Independent Shear-Viscosity Coefficients in a Polyatomic Gas in a Magnetic Field," Physica, 50, 565-72, 1970.
- 1186. Beenakker, J. J. M. and McCourt, F. R., "Magnetic and Electric Effects on Transport Properties," Ann. Rev. Phys. Chem., 21, 47-72, 1970.
- 1187. Mo, K. C., Gubbins, K. E., and Dufty, J. W., "Perturbation Theory for Dense Fluid Transport Properties," in Proceedings of the Sixth Symposium on Thermophysical Properties, Am. Soc. Mech. Eng., 158-67, 1973.
- 1188. Tham, M. K. and Gubbins, K. E., "Kinetic Theory of Multicomponent Dense Fluid Mixtures of Rigid Spheres," J. Chem. Phys., 55, 268-79, 1971.

- 1189. Wakeham, W. A., Kestin, J., Mason, E. A., and Sandler, S. I., "Viscosity and Thermal Conductivity of Moderately Dense Gas Mixtures," J. Chem. Phys., 57, 295-301, 1972.
- 1190. Tham, M. J. and Gubbins, K. E., "Correspondence Principle for Transport Properties of Dense Fluids," *Ind. Eng. Chem. Fundam.*, 8, 791-5, 1969.
- 1191. Tham, M. J. and Gubbins, K. E., "Correspondence Principle for Transport Properties of Dense Fluids. Nonpolar Polyatomic Fluids," *Ind. Eng. Chem. Fundam.*, 9, 63-70, 1970
- 1192. Hahn, H-S., Mason, E. A., Miller, E. J., and Sandler, S. I., "Dynamic Shielding Effects in Partially Ionized Gases," J. Plasma Phys., 7, 285-92, 1972.
- 1193. Curtiss, C. F., "Transport Properties of a Gas of Diatomic Molecules. II," J. Chem. Phys., 55, 947-9, 1971.
- 1194. Pal, A. K. and Bhattacharyya, "Viscosity of Binary Polar-Gas Mixtures," J. Chem. Phys., 51, 828-31, 1969.
- 1195. Brokaw, R. S., "Viscosity of Binary Polar-Gas Mixtures," J. Chem. Phys., 52, 2796-7, 1970.
- 1196. Hogervorst, W., "Transport and Equilibrium Properties of Simple Gases and Forces Between Like and Unlike Atoms," Physica, 51, 77-89, 1971.
- 1197. Kong, C. L., "Combining Rules for Intermolecular Potential Parameters. I. Rules for the Dymond-Alder Potential," J. Chem. Phys., 59, 1953-8, 1973.
- 1198. Kong, C. L., "Combining Rules for Intermolecular Potential Parameters. II. Rules for the Lennard-Jones (12-6) Potential and the Morse Potential," J. Chem. Phys., 59, 2464-7, 1973.
- 1199. Alvarez-Rizzatti, M. and Mason, E. A., "Estimation of Dipole-Quadrupole Dispersion Energies," J. Chem. Phys., 59, 518-22, 1973.
- 1200. Sutherland, W., "The Viscosity of Gases and Molecular Force," Phil. Mag., 36, 507-31, 1893.
- 1201. Hattikudur, U. R. and Thodos, G., "Equations for the Collision Integrals Ω^{(1,1)**} and Ω^{(2,2)**}," J. Chem. Phys., 52, 4313, 1970.
- 1202. Neufeld, P. D., Janzen, A. R., and Aziz, R. A., "Empirical Equations to Calculate 16 of the Transport Collision Integrals Ω^{(1,2)*} for the Lennard-Jones (12-6) Potential," J. Chem. Phys., 57, 1100-2, 1972.
- 1203. Dymond, J. H., "Corresponding States: A Universal Reduced Potential Energy Function for Spherical Molecules," J. Chem. Phys., 54, 3675-81, 1971.

- 1204. Kestin, J., Ro, S. T., and Wakeham, W., "An Extended Law of Corresponding States for the Equilibrium and Transport Properties of the Noble Gases," *Physica*. 58, 165-211, 1972.
- 1205. Neufeld, P. D. and Aziz, R. A., "Test of Three New Corresponding States Potentials for Ne, Ar, Kr and Xe with Application to Thermal Diffusion," J. Chem. Phys., 59, 2234-43, 1973.
- 1206. Dymond, J. H., Rigby, M., and Smith, E. B., "Intermolecular Potential Energy Function for Simple Molecules," J. Chem. Phys., 42, 2801-6, 1965.
- Dymond, J. H. and Alder, B. J., "Pair Potential for Argon," J. Chem. Phys., 51, 309-20, 1969.
- 1208. Guevara, F. A., McInteer, B. B., and Wageman, W. E., "High-Temperature Viscosity Ratios for Hydrogen, Helium, Argon, and Nitrogen," Phys. Fluids. 12, 2493-505, 1969.
- 1209. Goldblatt, M., Guevara, F. A., and McInteer, B. B., "High Temperature Viscosity Ratios for Krypton," *Phys. Fluids*. 13, 2873-4, 1970.
- 1210. Guevara, F. A. and Stensland, G., "High Temperature Viscosity Ratios for Neon," Phys. Fluids, 14, 746-8, 1971.
- 1211. Goldblatt, M. and Wageman, W. E., "High Temperature Viscosity Ratios for Xenon," Phys. Fluids, 14, 1024-5, 1971
- 1212. Kestin, J., Wakeham, W., and Watanabe, K., "Viscosity, Thermal Conductivity and Diffusion Coefficient of Ar-Ne and Ar-Kr Gaseous Mixtures in the Temperature Range 25-700 C," J. Chem. Phys., 53, 3773-80, 1970.
- 1213. Kestin, J., Ro, S. T., and Wakeham, W. A., "Viscosity of the Binary Gaseous Mixture Neon-Krypton," J. Chem. Phys., 56, 4086-91, 1972.
- 1214. Kestin, J., Ro, S. T., and Wakeham, W. A., "Viscosity of the Noble Gases in the Temperature Range 25-700 C," J. Chem. Phys., 56, 4119-24, 1972.
- 1215. Kestin, J., Ro, S. T., and Wakeham, W. A., "Viscosity of the Binary Gases Mixture Helium-Nitrogen," J. Chem. Phys., 56, 4036-42, 1972.
- 1216. McAllister, R. A., "The Viscosity of Liquid Mixtures," Am Inst. Chem. Eng. J., 6, 427-31, 1960.
- 1217. Saxena, S. C., "A Semi-Empirical Formula for the Viscosity of Liquid Mixtures," Chem. Phys. Letters, 19, 32-4, 15.3.
- 1218. Saxena, S. C., "Viscosity of Multicomponent Mixtures of Gases," in Proceedings of the A.S.M.E. 6th Symposium on Thermophysical Properties, 100-10, August 6-8, 1973.

Numerical Data

Data Presentation and Related General Information

1. SCOPE OF COVERAGE

Presented in this volume are 1803 sets of viscosity data on 59 pure fluids and 129 systems of fluid mixtures. These substances were selected based on consideration of scientific and technological interest and needs.

Viscosity is strongly and intricately dependent on the shape and structure of the molecules. Consequently, different varieties and complexities of molecules and their different combinations in the mixtures have been selected. It is hoped that such an investigation of the viscosity of different categories of fluid molecules and their combinations will help in elucidating the various ways in which the viscosity of fluids and fluid mixtures can vary with changes in such variables as temperature, density (or pressure), and mixture composition.

The pure fluids include 13 elements, 10 inorganic compounds, and 36 organic compounds, and were originally selected to match parallel programs for thermal conductivity and for specific heat, the tables resulting from which have been published in Volumes 3 and 6, respectively. The data on pure fluids have been critically evaluated, analyzed, and synthesized, and "recommended reference values" are presented for the saturated liquid, saturated vapor, and gaseous states, with the available experimental data given in the departure plots.

The fluid mixtures selected include 99 binary systems, 8 ternary systems, 3 quaternary systems, and 19 multicomponent systems. These are further divided into monatomic-monatomic, monatomic-nonpolar polyatomic, monatomic-polar polyatomic, nonpolar polyatomic-nonpolar polyatomic, nonpolar polyatomic-polar polyatomic, and polar polyatomic-polar polyatomic systems. The data on fluid mixtures have been smoothed graphically and the smoothed values as well as the experimental data are presented as a function of composition, density, or temperature in both graphical and tabular forms. Those experi-

mental data originally reported in the research document as a function of pressure have been converted to functions of density. The experimental data for binary mixtures with composition dependence have been fitted with equations of the Sutherland type, and the Sutherland coefficients have been calculated and are presented in this volume.

2. PRESENTATION OF DATA

The viscosity data and information for each pure fluid are presented separately for three physical states: saturated liquid, saturated vapor, and gaseous. For each physical state, the material presented consists of a discussion, a tabulation of the recommended viscosity values, and a departure plot.

In the discussion, the available experimental data and information are reviewed and assessed, the considerations involved in arriving at the recommendation of the viscosity values are discussed, the theoretical or empirical equation used in curve fitting is given, and the estimated accuracy of the recommended values is stated. Recommended values are presented in tabular form, accompanied by indications of phase transition temperatures where these fall within the range of the tabulation. A departure plot, or plots, showing the concordance between the various experimental and/or theoretical values and the recommended values is given if sufficient experimental data are available.

In preparing the departure plots the following definition is used:

Percent departure

Experimental data-Recommended value

Recommended value × 100

By the above definition, departures are positive if the experimental data are greater than the recommended values and vice versa. Extrapolation of the values

beyond the limits of the table is not recommended. If, however, this must be done, the departure plota should be examined to obtain an indication of the probable trend in the values in regions not yet experimentally studied.

The viscosity data and information for each system of fluid mixtures are presented separately for three different dependences: composition, density, and temperature. Those data originally reported as a function of pressure have been converted to be as a function of density. A consistent numbering system for tables and figures is adopted. Thus, a table numbered as 60-G(C)E, for example, lists the experimental (E) viscosity data as a function of composition (C) for gaseous (G) argon-helium (60) mixtures. The viscosity variation is shown in terms of the mole fraction of the heavier component in the mixture. A table numbered as 60-G(D)E deals with the experimental data as a function of the density (D) of the gaseous argon-helium mixtures. Similarly a table numbered as 60-G(T)E reports experimental data as a function of temperature (T). In each case the remaining variables are specified while reporting a given set of data. Also the data of different workers on a given system for the same dependence are grouped together in the same table and listed in the order of increasing temperatures. If all the experimental viscosity data on a given system for the same dependence are not easily accommodated in one figure, these are distributed in a set of figures identically numbered.

The graphically smoothed viscosity values at equally spaced twenty-one entries of the mole fraction of the heavier component in the gaseous binary system and at the temperature of measurement are reported in a table numbered as G(C)S. These tables giving the composition (C) dependence of viscosity are also included for each system along with the above-mentioned 3 sets of tables. Similarly the smoothed values for round density and temperature are reported in tables numbered as G(D)S and G(T)S, respectively. In these different categories of data, whenever a liquid system is involved instead of a gaseous system the first letter G is replaced by L. In an analogous manner the letter V is used to signify the vapor state.

The experimental data for ternary, quaternary, and multicomponent systems are also grouped together in the light of their molecular structure, but are not further processed like those for binary systems except in a few cases which are either pure air or mixtures of air and other fluids. Treating air as a pure component the data on systems air—carbon dioxide,

air-methane, air-ammonia, air-hydrogen chloride, and air-hydrogen sulfide have also been smoothed.

It is hoped that a better understanding of the viscosity of binary systems will help in predicting the viscosity of systems containing more than two components, for it is impossible in practice to measure the viscosity of mixtures with all the possible combinations of components. The data reported here for complex systems will serve to check the various predictive schemes either already developed or to be developed.

3. SYMBOLS AND ABBREVIATIONS USED IN THE FIGURES AND TABLES

Most abbreviations and symbols used are those generally accepted in engineering and scientific practice and convention.

In this volume the word "data" is reserved for an experimentally determined quantity, while quantities determined by calculation or estimation are referred to as values.

The notations "n.m.p.," "n.b.p.," and "c.p." refer to normal melting point, normal boiling point, and critical point, respectively. Numbers in square brackets in the discussion and those signified by the notation "Reference" on the departure plot correspond to the References to Data Sources listed at the end of this Numerical Data section.

In the departure plots, curve numbers are surrounded either by circles or squares, the latter being used to indicate a single data point. Solid lines are used in the plot to connect experimental data points and dotted lines indicate calculated or correlated values. When the percent departure for any of the data points falls outside the range of the departure plot, the numerical value of the departure is correctly given at the data point with a vertical arrow pointing up or down from the data point to the given value to indicate the fact that the value is beyond the range of the plot.

In the tables and figures for systems of mixtures, the term "mole fraction" is used to denote the ratio of the number of molecules of one kind present in a given mixture to the total number of molecules. Thus, in an argon-helium mixture when the stated mole fraction of argon is 0.20, it implies that in the mixture argon is 20% by the number of molecules, and hence that 1/5 of the total volume is argon. The mole fraction of a given component will often vary between the extreme limits 0 and 1 referring to its complete absence and presence, respectively.

4. CONVENTION FOR BIBLIOGRAPHIC CITATION

For the following types of documents the bibliographic information is cited in the sequences given below.

Journal Article

- a. Author(s)—The names and initials of all authors are given. The last name is written first, followed by initials.
- b. Title of the article—The title of a journal article is enclosed in quotation marks.
- c. Name of the Journal—The abbreviated name of the journal is given as used in *Chemical Abstracts*.
- d. Series, volume, and issue number—If the series is designated by a letter, no comma is used between the letter for series and the numeral for volume, and they are both in bold-face type. In case series is also designated by a numeral, a comma is used between the numeral for series and the numeral for volume, and only the numeral denoting volume is boldfaced. No comma is used between the numerals denoting volume and issue number. The numeral for issue number is enclosed in parentheses.
- e. Pages—The inclusive page numbers of the article.
- f. Year—The year of publication.

Report

- a. Author(s).
- b. Title of report—The title of a report is enclosed in quotation marks.
- Name of the sponsoring agency and report number.
- d. Part.
- e. Pages.
- f. Year.
- g. ASTIA's AD number—This is enclosed in square brackets whenever available.

Book

- a. Author(s).
- b. Title—The title of a book is underlined.
- c. Volume.
- d. Edition
- e. Publisher.
- f. Location of the publisher.
- g. Pages.
- h. Year.

5. NAME, FORMULA, MOLECULAR WEIGHT, TRANSITION TEMPERATURES, AND PHYSICAL CONSTANTS OF ELEMENTS AND COMPOUNDS

The table given here contains information on the molecular weight, transition temperatures, and physical constants of the elements and compounds included in this volume and of a few selected compounds in addition. This information is very useful in data correlation and synthesis. The molecular weights are based on the values given in the article entitled "Atomic Weights of the Elements 1971," published in *Pure and Applied Chemistry*, Vol. 30, Nos. 3-4, 639-49, 1972, by the International Union of Pure and Applied Chemistry. The electric dipole moments are quoted from the compilation of Nelson, Like, and Maryott, National Standard Reference Data Series—National Bureau of Standards, NSRDS-NBS 10, 49 pp., 1967.

6. CONVERSION FACTORS FOR UNITS OF VISCOSITY

The conversion factors for units of viscosity given in the table are based upon the following defined values and conversion factors given in NBS Special Publication 330, 1972:

Standard acceleration of free fall = $980.665 \text{ cm s}^{-2}$

1 in = 2.54 cm

1 lb = 453.59237 g

Name, Formula, Molecular Weight, Transition Temperatures, and Physical Constants of Elements and Compounds

Name	Formula	Molecular Weight	Density (25 C),	Melting (or No Triple) Point.	rmal Boiling Point,	Critical Temp.,	(25℃),	C (25 ^V C),	Dipole Momen
			g cm -	K	К	K	cal g ⁻¹ K ⁻¹	cal g ⁻¹ K ⁻¹	Debye
Acetone	C ₃ H ₄ O	58.080	0.933 (L)†	178	29	508	0. 528 (£)		2. 88
Acetylene	C ₂ H ₂	26,038	1.077 -3	179	189	309	0.407	0.329	0
Mir *		28.966	1. 184 -3	60	79b,82d	133	0.240	0.172	
Ammonia	NH ₃	17, 030	0.601 -3	195	240	405	0.515	0.387	1. 47
Argon	Ar	39. 94 8	1.634 -3	84	88	151	0.125	0.075	0
Benzene	$C_{\mathbf{g}}H_{\mathbf{g}}$	78. 113	0.876 (L)	279	353	563	0. 41 5 (<i>l</i>)		0
Boron Trifluoride	BF ₃	67.805		146	172	261	~-		0
Bromine	Br ₂	159, 808		266	332	584	0. 113		0 0, 13
-Butane	i-C ₄ H ₂₈	58. 123		114	262	408	0.404	0.050	0. 13 ≤0. 05
n-Butane	n-C ₄ H ₂₀	58. 123	2.491 -3	137	273	426	0.409	0.358	90.00
Carbon Dioxide	CO	44, 010	1.811 -3	216(5 atm)	196	304	0. 2 03	0.158	0.13
Carbon Monoxide	co	28.010	1.145 -3	68	81	134	0.249	0. 177	0.11
Carbon Tetrachloride		153, 823	1.589 (4)	250	350	556	0. 204 (4)		-
Chlorine	Cl	70.906	2.944 -3	172	239	417 536	0. 114*	0.084	0 1.01
Chloroform	CHC1*	119.378	1. 469 (L)	210	334	619	0. 228 (4)		1.01
-Decane	C _{MH22}	142. 284	0.728 (L)	243	447		0.527 (L)	1.241	0
Deuterium	D ₂	4. 028	0.165 -?	19(.16 atm		38 496	1.731* 0.516 (l)		1.11
Diethylamine	C ₄ H ₁₁ N	73.138	0.711(4)	233 90	329	496 305	0. 516 (4) 0. 422	0.335	0
Ethane	C ₂ H ₆	30.069	1. 243 -3		185 351	305 516	0. 422 0. 580 (4)		1.6
Ethyl Alcohol	C'HO	46.069	0.789 (L)	159±3		467	り、550 (む) り、559 (む)		1. 1
Ethyl Ether	C ₄ H ₂₀ O	74. 123	0.716 (L)	157(a), 150(p) 308 170	283	0, 374	0.297	0
Ethylene	C ₂ H ₄	28.054	1.155 -3	104 258	471	400	0.575 (¿)		2, 28
Ethylene Glycol	C ² H ₆ O ₂	62.068	1. 100 (८)	408 54	85	144	0. 197*	0, 152	0
Fluorine	F ₂	37. 997	1,553 -3 5,840 -3	162	297	471	0. 136*	0.125	0.4
Freen 11	CCl ₈ F	137, 368 120, 914	5.045 -3	116	243	385	0. 146	0. 128	0. 5
Freon 12	CCl ₂ F ₂	104, 459	4, 388 -3	91	191	302	0. 153*	0. 138	0. 5
Freon 13	CCIF,	102, 923	4. 284 -3	138	282	451	0. 141*	0.119	1.2
Freon 21	CHCl ₂ F CHClF ₂	86. 469	3,588 -3	113	233	369	0. 151	0. 133	1. 4
Freon 22		187.376	1.564(4)	238	321	487	0. 225 (t)		
Freon 113	C ₂ Cl ₂ F ₃	170. 922	7.012 -3	179	276	419	0. 170	0. 157	0.5
Freon 114	C ₂ Cl ₂ F ₄	92.095	1, 263 (4)	291	563		0.567 (4)		
Glycerol Helium	С ₃ Н ₆ О ₃ Не	4, 003	0.164 -3		4	5, 4	1. 240*	0.748	0
		100. 203	0.681 (4)	183	371	540	0.536 (4)		
n-Heptane n-Hexane	C₁H₂s C₅H₂s	86.177	0.667 (L)	178	342	508	0.543 (4)		
Hvdrogen	H ₂	2.016	0.082 -3	14	20	33	3.420	2. 438	0
Hydrogen Chloride	HC1	36. 461	1, 502 -3	160±2	188	325	0. 191*	0.140	1.0
Hydrogen lodide	HI.	127, 912	2	223	238	423	0.054*		
Hydrogen Sulfide	H ₂ S	34,076	1.409 -3	190	213	374	0.240*	0.157	0.9
lodine	I ₂	253, 809	4. 93 (a)	387	458	785	0,052 (s))	0
Krypton	Кr	83. 80	3. 429 -3	116	120	210	0.059*	0,035	0
Methane	CH	16.043	0.657 -3	90	112	190	0.533	0.409	0
Methyl Alcohol	CH'O	32,042	0. 789 (L)	175	338	513	0. 602 (4))	1. 7
Methyl Chloride	CH ₂ Cl	50, 488		175	249	416	0. 193		
Methyl Formate	C ₂ H ₄ O ₂	60.052	0.974 (L)	174	305	487	0, 516		
Neon	Ne Ne	20. 179	0.824 -3	25	27	44	0.246*	0.150	0
Nitric Oxide	NO	30,000	1,228 -3	111	121	180	0.238	0, 167	0. 1
Nitrogen	N ₂	28,013	1.146 -3	63	78	126	0. 249	0.178	0
Nitrogen Per oxide	NO ₂	46.006	1.44 (4)	263	295	431	0.369 (4)		0.3
Nitrous Oxide	N ₂ O	44.013		176±7	184	310	0.209	0. 170	0. 1
n-Nonane	CaHan	128.257	0.714 (L)	220	424	59 4	0. 529 (t		
n-Octane	CaH ₁₈	114. 230	0.701(4)	216	399	569	0. 530 (t		_
Oxviren	. 0,	31.999	1,310 -3	55	90	155	0.220	0. 157	0
n-Pentane M.W	CgH ₁₂	72.150	0.621 (L)		309	470	0.561 (₺)	
Cyclopropene 42.00		Hz-44-004	0.700 O.	61(X) 146	240				
Propene	C _e H _e	~ 44, U96	1.854 -3	86	231	369	0.400	0.350	0.0
Propylene	C ₂ H ₄	42.080	0.514 (4)	88	226	365	0.370	0. 320	_
Radon	Rn	222	• • •	202	211	377			0
Sulfur Dioxide	802	64.059	2.679 -3	198	263	430	0.149*	0.081	1.6
Toluene	C _t H _e	92.140	1.028 (4)	178	384	594	0. 41 0 (Ł)	0.3
Tritlum	T ₂	6.032		21	26	44			0
Water	Н₃О	18,015	-2,000 (L)	2.9972 73	373	647	0. 998 (Ł) 	1.8
Xenon	Xe	131, 30	5. 397 -3	163	165	290	0.0378*	0.0227*	0

For ideal gas state.

The notation -3 signifies 10^{-6} , so that 1.077 -3 means 1.077 x 10^{-6} , etc.

^{†(}t) and (s) designate liquid and solid state, respectively.

Conversion Factors for Units of Viscosity

	٠,								
MULTIPLY by appropriate factor to OBTAIN—	N s m ⁻² (kg s ⁻¹ m ⁻⁵)	Pa s (kg s ⁻¹ m ⁻¹)	Poise (dyne s cm ⁻²) (g s ⁻¹ cm ⁻¹)	centipoise	micropoise	եր 8 ft -≇	poundal s ft ⁻² (b _m s ⁻¹ ft ⁻¹)	1bm hr =1 ft =1	slug hr -1 ft -1
N s m ⁻¹ (kg s ⁻¹ m ⁻¹)	1	1	10	1 × 10³	1 × 10†	2.08854 x 10-2 0.671969	0.671969	2.41909 x 10³	75. 1876
'Pa s (kg s ⁻¹ m ⁻¹)	1	1	10	1 x 108	1 x 10 ⁷	2.08854 x 10-2	0.671969	2.41909 x 10 ⁸	75, 1876
Poise (dyne s cm ⁻¹)	0.1	0.1	ı	1 x 103	1 x 10 ⁶	2. 08854 x 10 ⁻⁴	6. 71969 x 10-4	2.41909 x 10³	7. 51876
· centipoise	1 x 10-4	3 x 10-3	1 x 10-2	1	1 x 104	2.08854 x 10-4	6. 71969 x 10 ⁴	2.41909	7. 51876 x 10 -2
micropoise	1 x 10-f	1 x 10-1	1 x 10-4	1 × 10 4	1	2. 08854 × 10 ⁴	2. 08854 x 10 - 6. 71969 x 10 - 6	2.41909 x 10-4	7. 51876 × 10-4
Pr s u d	47. 8803	47.8803	4. 78803 x 10 ²	4. 78803 x 10 ² 4. 78803 x 10 ⁴	4. 78803 x 10 ⁸	1	32.1740	1.15827 x 10 ⁶	3.60000 x 103
/poundal a ft ** (fb m s - 1 ft - 1)	1. 48816	1.48816	14.8816	1.48816 x 103	1, 48816 x 10 ⁷	3.10810 × 10-2	1	3. 60000 x 103	1, 11891 x 10³
'B, hr -! ft -!	4. 13379 x 10 ⁻⁴	4. 13379 x 10 ⁻⁴	4. 13379 x 10 ⁻³ 0. 413379	0.413379	4, 13379 × 10³	8. 63360 x 10-4	8. 63360 x 10-4 2. 77778 x 10-4	1	:: 10810 x 10 ⁻²
Volug hr -1 ft -1	1.33001 × 10-2	1.33001 x 10" ²	0.133001	13.3001	1,33001 x 10 ⁸	2.77778 x 10 →	1,33001 x 10 ⁶ 2.77778 x 10 ⁻⁴ 8.83724 x 10 ⁻⁴ 32.1740	32.1740	1

Andrew design

Numerical Data on Viscosity

1. ELEMENTS

TABLE 1-L(T). VISCOSITY OF LIQUID ARGON

2	7
2	7
Ĺ	J
ľ	2
5	и
ū	P
•	3
ï	٦,
٠	٠
ŝ	ø
ā	ď

DISCUSSION	RECOMMENDED VALUES	ED VALUES
SATURATED LIQUE	[Temperature, T, K; Vis	[Temperature, T, K; Viscosity, μ, 10 ⁻³ N s m ⁻²]
A search of the literature has revealed seven sets of experimental data	SATURATED LIQUID	D LIQUID
[19, 20, 43, 44, 189, 246, 268], covering a temperature range from the mediting point to the critical point. The various sets are not mutually consistent. The data of Zhdanova [268] covers the wider range of temperature but are lower than the other data.	f -	3.
	85	0.2813
The correlation was made by adjusting an equation	06	0.2396
	95	0.2075
$\log \mu = A + B/T$	100	0.1823
to the data from 125 K down to the moliting point. Above that rends the miss was	105	0.1622
emonthed graphically. Values commuted by the method of loss of all 1001 for	110	0.1458
the saturated limit near the critical noist are not in grown as constructed limit near the critical noist the critical noist the critical near the critical noist than the contract of the contract with the	115	0.1323
recommended values, but served to estimate the critical viscosity.	120	0.1210
	125	0.1115
The accuracy is of about 2% between the melting point and around the boil-	130	0.1010
ing point, but above, to the critical point, there is a need for more accurate data,	135	0.0890
the accuracy being not better than ±10%.	140	0.0750
	145	0.0603
	150	0.0447
	151*	0.0279

FIGURE 1-L(T). DEPARTURE PLOT FOR VISCOSITY OF LIQUID ARGON

TABLE 1-V(T). VISCOSITY OF A 1GON VAPOR

DISCUSSION

,
(
d
4
-
£
į
ē
2
è

Recommended values for the viscosity of the saturated vapor were computed by means of the correlation technique devised by Jossi et al. [100] using the recommended value of the 1 atm gas, and the density values given by Din [48].

Their accuracy is of about ±5%.

RECOMMENDED VALUES ure, T. K; Viscosity, μ , 10^{-3} N s m ⁻²] SATURATED VAPOR	a	0.00720 0.00765 0.00810	0.00855 0.00855 0.00855 0.01010 0.01070	0.0114 0.0122 0.0132 0.0145 0.0163	0.0166 0.0172 0.0180 0.0193 0.0279
RECOMMENDE: [Temperature, T, K; Visc SATURATED	H	88 98 88 88 88	100 105 110 115 120	125 130 135 140 145	146 147 148 149 151*

* Crit. Temp.

[Temperature, T, K; Viscosity, μ , 10^4 N s m⁻²] RECOMMENDED VALUES

GAS

GAS

Argon, covering an overall range of temperature from 58 to 1868 K. Experimental and the boltom and Cally 1969	E
Schmitt [183], who Paemel [248, 253] Rictveld [180, 181]. Filippove [62] and Flux. [64]	Ħ
Figure 1991 Control of the Control o	09
Assistant Cher ornerimental results are in immediate temperature	20
TABLESCO. CHEST STORY ST	86
range above of atomic nothing composerate.	8
To analyze the data, use was made of the theoretical expression for vis-	100
cosity:	110
<u> </u>	120
µ = 266.93 mi - 1	130
92Q(T*)	140
The group of 10.14 /f was commuted from the experimental data and	150
indicates a function of 1/7. A smooth curve was drawn through the values of	160
tained and a table generated. Recommended values were calculated from the	170
have formula nation the value of value internal and from the table.	180
3783	190
Recommended values are thought to be accurate to within two percent.	200
Kesths and Whitelaw [117] and Di Pippo [52] values, on one side, and Vasilesco	210
values, on the other, are diverging from the recommended curve. This dis-	220
crepancy has been already pointed out by Hanley and Childs [85].	230
	240
By assuming that $(MT^*)/I_{\mu}$ is unity at the Boyle temperature* one ob-	Og c
tains the value of $\sigma = 3.431$, for the collision diameter, which is quite in agree-	87
ment with values found for typical interaction potentials.	260
	270

48.3 48.6 49.0 49.4

31.16 31.67 32.17 32.67 33.16

50.1 50.4 50.8 51.1 51.5

33.65 34.1 34.6 35.1

8.34 9.11 9.91 10.70 11.49

51.8 52.25 52.25 53.25 53.25 56.8 56.8 56.9

36.0 36.5 36.9 37.4

12.27 13.04 13.80 14.55 15.29

61.3 62.8 64.2 65.6 67.0

40.4 40.9 41.3 42.1

19.49 20.16 20.81

38.3 38.7 39.1 39.6

16.01 16.73 17.44 18.13

68.4 69.7 71.0 72.3

42.5 43.3 43.7

74.8 77.2 77.2 77.2 79.6 79.6 80.7 82.9

Curves 31 and 32 are correlations given by other authors [3, 121].

089	069	700	710	720	730	740	750	160	770	780	190	800	810	820	830	840
•	22.09	22.72	23.33	23.94	24.54	25.13	25.72	26.29	26.86	27.42	27.97	28.52	29.06	29.59	30.12	30.64
280	290	300	310	320	330	340	350	360	370	380	390	400	410	420	430	440
									٥							

GAS	[Temperature,	T, K; Vis	cosity, µ	[Temperature, T, K; Viscosity, μ , N s m ⁻² ·10 ⁻⁶]
Two sets of experimental data were retrieved from the literature the		3	GAS	
results of Rankine [173] and from Braune et al. [21] which are in good	T.	r	۲	٦
agreement.			200	25.1
With the aid of the theoretical relation $u = K/T/(\sigma^2\Omega)$, $\sigma^2\Omega$ was computed			510	25.6 26.0
from the experimental data, and adjusted to a quadratic equation which was used	280	14.6	230	26.5
to generate the recommended values of viscosity. The accuracy is about $\pm z$ defined:	290	15.1	540	27.0
	300	15.5	220	27.5
	310	16.0	560 570	28.0
	330	16.9	580	28.9
	340	17.4	290	29.4
	350	17.9	900	29.9
	360	18.3	610	30.3
	370	8.8	620	30.8
	986	19.8	640	31.8
	400	20.3	650	32.2
	410	20.7	099	32.7
	420	21.2	670	33.2
	430	21.7	089	33.6 34.1
	450	22.7	200	34.6
	460	22.1	710	35.0
	470	23.6	720	35.5
	490	24.6	740	36.4
			750	36.9
			760	37.4 37.8
			780	38.3
			96	38.7
			800	39.2

TABLE 3-G(T). VISCOSITY OF GASEOUS CHLORINE

RECOMMENDED VALUES

DISCUSSION

一一一一一一一一一一大多人

GAS	[Temperature, T, K: Viscosity, u. N s m ⁻² ·10 ⁻⁶]	s m ⁻² · 10 ⁻⁶]
Fight sets of experimental data were found in the literature [305-986-987-	GAS	
22 226, 226, 226, 226, and some computed values were given by Andrussow (3).	T 14 T	3
They cover a range going from 280 K to 772 K. Andrussow gives values to	550 24.0	0.
1273 A.	560 24.3	6

Use was made of the theoretical relation $\mu = K\sqrt{T}/(p^2\Omega)$ to get $\sigma^2\Omega$. The latter was plotted as a function of 1/T and a quadratic equation was found to represent the data. From the adjusted curve of $\sigma^2\Omega$, the recommended values of viscosity were computed. The accuracy is thought to be ± 2 percent.

1	24.0	4	25,1	25.4	25.8			26.9	27.2	27.6	27.9	28.3	•	29.0	29.3	29.6				-	;	31.6	ä	ď	32.6				
H	550	570	580	290	900	610	620	630	640	650	99	670	680	069	100	710	720	730	740	750	160	770	780	190	800				
a		2.3	ö	Ć.	3.7	4	9	5.0	Š.	5.9	6.3	6.7	17.20	7.6	8	œ,	œ	e.	19.68	٥.	ö	ö	÷.		22.06	ď	22.8	ë	Š
F		7	280	290	300	310	320	330	340	350	360	370	380	390	400	410	420	430	440	450	460	410	480	490	200	510	520	530	540

TABLE 4-G(T). VISCOSITY OF GASEOUS DEUTERIUM

RECOMMENDED VALUES

No	
Š	
SC	
DIS	

つるとの という 本ののない

	Tomoromo	Tomorough of the William is a little of the second		ore N 200 m-21	
CAS	l emperatu	re, 1, n; visco	sity, µ,	f_ m pag w _ n1	
Twelve sets of experimental data were found in the literature.		GAS			
[6,11,39,100,111,155,245,247,253,279,308,299]. They cover a range	۲	3	H	3	
from 12 n vizat. Some more area were the compared of the 223 K to 1273 K. Only experimental values were taken into con-			200	9.55	
sideration in generation of the recommended values.	12	0.774	210	9.88	
	13	0.849	220	10.22	
The correlation was made by using the theoretical relation $\mu = K/T/(\sigma^2\Omega)$.	14	0.922	230	10, 54	
The group o'a was obtained from the experimental data and plotted as a function	16	0.995	240	10,87	
of 1/T and a smooth curve drawn through the points. The accuracy is estimated	16	1.068	250	11.20	
to be 1 percent around room temperature, out is only 15 percent at the lowest	17	1.141	260	11.51	
vemper arur e.	18	1.213	270	11.82	
	19	1.285	280	12.14	
	20	1.357	290	12.43	
	25	1.715	300	12,74	
	30	2.054	310	13.03	
	35	2,382	320	13, 32	
	40	2. 70	330	13, 60	
	45	3.01	340	13.88	
	20	3.30	350	14.16	
	09	3.86	360	14.45	
	70	4.39	370	14. 73	
	80	4.88	380	15.01	
	6	5,35	390	15.27	
	100	5, 79	400	15.54	
	110	6.21	410	15.80	
	130	20.02	420	16.06 16.33	
	140	7.39	440	16.58	
	150	77.77	450	16.84	
	160	8.14	460	17.09	
	170	8.49	470	17.34	
	180 190	8.85 9.20	480 490	17.58 17.82	
			200	18.05	

FIGURE 4-G(T). DEPARTURE PLOT FOR VISCOSITY OF GASEOUS DEUTERIUM

TABLE 6-G(T). VISCOSITY OF GASEOUS FLUORINE

DISCUSSION

GAS

RECOMMENDED VALUES

[Temperature, T, K; Viscosity, μ , 10^{-6} N sec m⁻²]

SAC	at T at T		310 24.3			90 7.66 340 26.1	100 8.56 350 26.7	9.45 360	10, 33 370	11.19 380	12.03	400	13.7 410	420	15.3 430	190 16.0 440 31.7	450	17.5 460	18.2 470	19.7 490	260 21.0	280 22.4	
GAS	Two sets of data were found in the literature, the results of Franck and	Stober [304] and those of Kanda 1-101]. The temperature range covered by the	lirst author is larger man the temperature range covered by the second, our	the disagreement in consideration.	The Oscillating disk method, I taken mines are in been an or for the control of t	The recommended values are based on Franck's data which were used	to obtain $\sigma^2\Omega$ from the theoretical relation $\mu = K/T/(\sigma^2\Omega_{p_2})$. The values of	o'D were plotted versus 1/T and fitted to a quadratic equation. From the ad-	insted equation, the recommended values of the viscosity were computed.														

FIGURE 5-G(T). DEPARTURE PLOT FOR VISCOSITY OF GASEOUS FLUORINE

TABLE 6-G(T). VISCOSITY OF GASEOUS HELIUM

	ı
7	4
ς	3
ħ	ı
ğ	į
÷	ä
C	١
9	2

889

RECOMMENDED VALUES

[Temperature, T, K; Viscosity, μ , N s m⁻² · 10⁻⁶]

15.48 16.00 16.51 17.00 12.34 13.40 13.93 14.45 0.422 0.545 0.675 0.804 0.927 4 Intry-nine sets of experimental data were found in the literature covering an overall temperature range from 1.25 K to 2344 K. At temperatures higher than normal, the results of Trants (221, 224, 232, 233), Kestin [1977-106, 106, 106, 110, 112, 114, 115, 117, Matericalas [448], Glovarra; [449] and di Pippo [451] are in good agreement (within about 2%). At temperatures lower than normal, the results of Johnston (49ff), Van literbeek [476, 194, 244] and van Peanel (469) were in fair agreement. Below 4 K the results of Van literbeek [454] and those of Becker [444] disagree by about 20%.

40.44 40.77 41.08 41.39 41.70 42.01 42.32 42.63 42.94 43.24

To make the correlation the expression: " = JOH TE

was computed and plotted as a function of 1/T. A curve was drawn through the points and emoothed. From this smoothed curve recommended values of the viscoutty were generated. The accuracy is thought to be about $\pm 1\%$ at temperatures higher than norabout $\pm 3\%$ down to 20 K, but can be about $\pm 10\%$ below 20 K. ij

58.6 59.8 61.0 62.2 63.4 64.5 65.7 66.8 67.9 69.0 1500 1550 1600 1700 1750 1800 1850 1900 1950 30.16 30.53 30.90 31.27 31.99 32.35 32.71 33.07 33.77 34.11 34.46 34.81 35.15 35.49 35.84 36.88 37.19 37.52 37.85 38.19 38.51 17.50 17.99 18.48 18.95 19.42 19.89 20.35 20.81 21.26 21.70 22.14 22.58 23.01 23.44 23.86 1.848 2.020 2.183 2.896 3.502 1.045 1.159 1.268 1.474 1.666 4.046 4.553 5.030 5.479 5.902 6.304 7.057 7.758 8.414 9.038 9.631 10.20 10.75 11.29 11.81 2.22 2.22 3.25 3.35 5.00 6.00 7.00 7.00

2000 2200 2200 2400 2500

FIGURE 6-G(T). DEPARTURE PLOT FOR VISCOSITY OF GASEOUS HELLUM

FIGURE 6-G(T). DEPARTURE PLOT FOR VISCOSITY OF GASEOUS HELIUM (continued)

TABLE 7-L(T). VISCOSITY OF LIQUID HYDROGEN

DISCUSSION

SATURATED LIQUID

Seven sets of experimental data were found in the literature [48-96., 197, 239, 269, 265, 283]. They cover the range from 14 to 32 K, although only Diller [48-323] gives values above the normal boiling point to about the critical temperature.

The regults below the normal boiling point were least square fitted to an equation

 $\log \mu = A + B/T$

while the results above the normal boiling point were smoothed graphically.

The accuracy is thought to be about $\pm 5\%$.

JES N s m ⁻² · 10-3]																							
RECOMMENDED VALUES re, T, K: Viscosity, u, N	TED LIQUID	3	0.0259	0.0225	0.0200	0.0179	0.0163	0.0149	0.0139	0.0129	0.0120	0.0112	0.0103	0.00955	0.00881	0.00822	0.00759	0.00699	0.00640	0.00585	0.00485	0.00380	0.00364
RECOMMI [Temperature, T, K;	SATURATED	H	14	15	16	11	18	61	20	21	22	23	24	25	56	27	28	29	30	31	32	33	33*

* crit. temp.

FIGURE 7-L(T). DEPARTURE PLOT FOR VISCOSITY OF LIQUID HYDROGEN

TABLE 7-V(T). VISCOSITY OF HYDROGEN VAPOR

RECOMMENDED VALUES
[Temperature, T, K, Viscosity, μ, 10⁻³ N s m⁻²]
SATURATED VAPOR

2	ï
	i
ă	
	1
	ï
	ī
-	
w	į
ú	

SATURATED VAPOR
Recommended values for the viscosity of the saturated vapor have been generated using the excess viscosity concept as outlined by Jossi, Stiel and Thodos [100]. From a reduced excess viscosity curve versus reduced temperature, the excess viscosity was obtained and added to the recommended values
for the 1 atm gras.

±5%.
about
2
3
thought
9
accuracy
8

3.	0.00109	0.00116	0.00121	0.00128	0.00134	0.00140	0.00146	0.00152	0.00161	0.00174	0.00183	0.00201	0.00227	0.00279	0.00364
T	20	21	22	23	24	25	5 6	22	28	53	30	31	35	33	33*

TABLE 7-G(T). VISCOSITY OF GASEOUS HYDROGEN

1

DIECUSSION			RE	RECOMMENDED VALUES	DVAL	UES		
		LTemp	erature,	[Temperature, T, K; Viscosity, µ, N s m ⁻² · 10 ⁻⁴]	sity, u	Nsm-2 ·	9	
Differ tons and a manufactured data were found in the literature. Trautz				GAS				
school have produced 13 sets of data covering a temperature range from	H	31.	۲	31.	۲	3 .	F	3
o 1100 K (7, 206, 220, 221, 222, 226, 227, 228, 229, 339, 231, 233,			250	7.90	550	13.6	820	18.5
range there are regults of Johnston (down to	10	0.50	260	8.11	260	13.8	980	18.6
m). In the low temperature range more are resume or commence (now to be I the the temperature of the commence	15	0.80	270	8.32	570	14.0	870	8.8
and 19th demotives a section (error area) area, and a section of the control of t	20	1.09	280	8.53	280	14.1	989	38.0
mas tool nown to so as	25	1.36	290	8.73	280	14.3	880	19.1
To correlate the data. use was made of the theoretical expression	30	1.61	300	8.94	900	14.5	900	19.2
	32	1.86	310	9.14	610	14.7	910	19.4
E	40	2.09	320	9.35	620	14.8	920	19.5
	45	2.31	330	9.54	630	15.0	930	19.7
016(11)	20	2.52	340	9.74	640	15.2	940	19.8
unte or? I which was plotted as a function of 1/T and smoothed. Recom-	25	2.71	350	9.94	650	15.3	950	20.0
i values were committed from the smoothed curve which was forced to be	9	2.91	360	10.14	99	15.5	960	20.1
the accurate values at normal temperature from Kestin 198, 111, 114.	20	3.27	370	10.33	670	15.6	920	20.3
an and Majumdar (146).	80	3.60	380	10.52	980	15.8	980	20.4
	06	3.92	390	10.72	069	16.0	990	20.5
The accuracy is thought to be ±2% in the range 90 K to 1100 K and about	100	4 91	400	10 01	700	16.1	1000	20.7
tside this range.	35	40.40	100	11.10	102	16.3	1050	21 4
,	130	. 4	420	11 20	750	16.5	1100	22.2
	200		000	11.60	- 6	9 91	1150	0 66
	140	5.31	440	11.66	740	16.8	1200	23.6
	150	5.00	450	11 84	750	16.9	1250	24.3
	160	8	460	12 02	760	17.1	1300	25.0
	170	0.09	470	12.21	770	17.3	1350	25.6
	180	6.31	480	12.39	780	17.4	1400	26.3
	190	6.55	490	12.57	790	17.6	1450	27.0
	200	6.78	200	12.74	800	17.7	1500	27.6
	210	7.01	510	12.9	810	17.8	1550	28.2
	220	7.24	220	13.1	820	18.0	1600	28.9
	230	7.46	530	13.3	830	18.2	1650	29.2
	240	7.68	540	13.5	840	18.3	1700	30.1
							1750	30.7
							1800	31.3
							1850	31.9
							1950	33.1
							2000	33.6
							;	;

FIGURE 7-G(T). DEPARTURE PLOT FOR VISCOSITY OF GASEOUS HYDROGEN

FIGURE 7-G(T). DEPARTURE PLOT FOR VISCOSITY OF GASEOUS HYDROGEN (continued)

FIGURE 7-6(T). DEPARTURE PLOT FOR VISCOSITY OF GASEOUS HYDROGEN (continued)

FIGURE 7-G(T). DEPARTURE PLOT FOR VISCOSITY OF GASEOUS HYDROGEN (continued)

TABLE 8-G(T). VISCOSITY OF GASEOUS IODINE

RECOMMENDED VALUES [Temperature, T, K; Viscosity, \$\mu\$, 10^6 N s m^2]

DISCUSSION

GAS

Two sets of experimental data were found in the literature. Those of
Rashine 1244 covering a range from 396 K to 520 K and those of Branne and
Links [424] covering a range from 379 K to 795 K. They are in good agreement.

The data were fitted to the equation $\mu=K\sqrt{T}/(\sigma^2\Omega_{t2})$. The group $\sigma^2\Omega$ was calculated from the data and fitted to a quadratic equation in 1/T, from which adjusted $\sigma^2\Omega$ were derived to generate recommended values of viscosity. The accuracy is thought to be better than ± 1 percent.

	a			26.0			27.2	27.6	28.1	28.5	28.9	29.3	29.7	30.1	30.5		31.3				
	۲	550	260	570	280	290	900	610	620	630	640	650	99	670	989	069	100				
GAS	3					18.16	18.60	19.04	19.48	19.92	20, 55	20. 79	21, 23	21.66	22.09	22, 53	22.96	23.4	23.8	24.3	24.7
	۲			370	380	380	400	410	420	430	4	450	460	470	480	490	200	210	520	530	540

DISCUSSION

GAS

RECOMMENDED VALUES

[Temperature, T, K; Viscosity, μ , N.m⁻¹, sec⁻¹, 10⁻⁶]

Experimental data for viscosity of krypton reported in the literature are those of Clifton [318]. Trautz [338], Kestin [449], Rankine [446], Nasini [459], Coliyama [436], Trappeniers [513], and Rigby and Smith [462]. Data given by Carvalho [46] seems to come from other authors, while values given by Andrussow [43] are computed values.

Among the data covering a wide range of temperature, those of Clitton were very scattered, but those of Rigby and Smith were found reliable.

To analyze the data, use was made of the theoretical expression for viscosity:

_a
920(T*)
83
. 99

The group [0²0,(T[±])/i] was computed from the experimental data, and blocked as a function of 1/T. ^µ and a smooth curve drawn. The curve obtained has been compared with the similar curve obtained for argon, assuming that reduced viscosity values are the same at the Boyle temperature. A table was then generated, from which recommended values were computed. These should be accurate to well within 2.5 percent below 1150 K and five percent for all higher temperatures tabulated.

	a	60.1	60.5	61.0	61.4	61.9	62.3	62.8	63.2	63.6	64.1	64.5	64.9	65.4	65.8	66.2	9.99	67.0	67.5	67.8	68.3	68.7	69.1	69.5	69.9	70.3	70.7	71.1	71.5	71.9	72.3	72.7	73.0	73.4	73.8	74.2		75.0	75.3	75.7	76.1
	T	900	910	920	930	940	920	096	970	980	066	1000	1010	1020	1030	1040	1050	1060	1070	1080	1090	1100	1110	1120	1130	1140	1150	1160	1170	1180	1190	1200	1210	1220	1230	1240	1250	1260	1270	1280	1290
GAS	31	39.14	39.8		•	41.6	42.1	42.7	43.3	43.9	44.4	45.0	45.6	46.1	46.7	47.2	47.7	48.3	48.8		49.9	50.4	50.9	51.4	51.9	52.4	52.9	53.4	53.9	54.4	54.9	55.4	55.9	56.4	56.8	57.3	57.8	58.2	58.7	59.2	59.6
3	T	200	510	520	230	540	550	260	570	580	230	009	610	620	630	640	650	099	670	989	069	790	710	720	730	740	750	160	770	780	790	800	810	820	830	840	850	860	870	880	890
	31	9.29	10.08	10.87	•	12.51	13.35	14.19	15.03	15.87	16.72	17.55	18.39	19.21	20.03	20.84	21.64	22.44	23.22		24.77	25.53	26.28	27.93	27.76	28.49	29.21	29.92	30.62	31,32	32.01	32,69	33.37		34.70	35.35	36.00	36,64			38.53
	T	100	110	120	130	140	150	160	170	180	190	200	210	220	230	240	250	260	270	280	290	300	310	320	330	340	350	360	370	380	330	400	410	420	430	440	450	460	470	480	490

Conducted

TABLE 9-G(T). VISCOSITY OF GASEOUS KRYPTON (continued)

	VALUES	
Cu Circus Co Co	RECOMMENDED	
•	-	

[Temperature, T. K; Viscosity, µ, N.m., sec-1,10-6]

Viscosity, µ, N.m ⁻¹ , s	GAS	3	76.5	77.2	77.9	78.3	78.7 79.0	79.4	80.1	80.5	81.5	81.9	82.6	82.9 83.3	83.6
ərabure, T. K;Vis	•	T	1300	1320	1340	1350	1360 1370	1380 1390	1400	1420	1440	1450	1470	1480 1490	1500

FIGURE 9-G(T). DEPARTURE PLOT FOR VISCOSITY OF GASEOUS KRYPTON

FIGURE 9-G(T). DEPARTURE PLOT FOR VISCOSITY OF GASEOUS KRYPTON (continued)

TABLE 10-L(T). VISCOSITY OF LIQUID NEON

DISCUSSION

SATURATED LIQUE

Two sets of experimental data were found in the literature, by Forster [46] and by Buth [520]. They were discussed by Bewilogua [15] who states that the accuracy expected is about ±10%.

Below 29 K, the Forster data were fitted to an equation:

 $\log \mu = \Lambda + B/T$

Above 29 K, the recommended curve was obtained from a graphical extrapolation of the equation fit to join the estimated value at the critical point.

RECOMMENDED VALUES

[Temperature, T, K; Viscosity, u. N s m⁻² · 10³]

TED LIQUID	3	0.151	0.139	0.127	0.116	0.105	0.098	0.091	0.084	0.078	0.072	0.0668	0.0619	0.0562	0.0517	0.0473	0.0427	0.0387	0.0343	0.0309	0.0269	0.0167
SATURATED	H	25	92	27	28	53	30	31	35	æ	3 5	32	98	37	88	38	9	41	42	.	‡	**

* Crit, Temp.

FIGURE 10-L(T). DEPARTURE PLOT FOR VISCOSITY OF LIQUID NEON

TABLE 10-V(T). VISCOSTIY OF NEON VAPOR

DESCUSSION

п	
1	

Recommended values for the viscosity of the mature sed vapor have been generated using the excess viscosity concept as outlined by Josei, thiel and Thome 1909.

From a curve of the reduced excess viscosity versus reduced temperature, the excess viscosity was obtained and added to the recommended values of the 1

The accuracy is thought to be about ±5%.

RECOMMENDED VALUES ure, T, K, Viscosity, μ , 10^{-3} N s m ⁻²]	Saturated vapor	a.	0.00463 0.00485 0.00504	0.00524	0,00543	0.00583	0,00622	0.00644	0,00703 0,00739	0,00781	0,00913	0.0102	0,0121	0.0167
RECOMME! [Temperature, T, K,	SATUR	T	22 23	30 8	31	8 8	38	38	38 39	\$ 7	4	3	\$	44*

*Crit. Temp.

RECOMMENDED VALUES $[\mbox{Temperature, T, K; Viscosity, } \omega \mbox{ N s } \mbox{m}^{-1} \cdot 10^{-6}]$

DESCUSSION

	*
	Twenty-two sets of experimental data were found in the literature [28, 39, 24, 25, 182, 182, 117, 146, 170, 170, 180, 213, 215, 225, 226, 239, 266, 275, 226, 266, 276, 275, 275, 275, 275, 276, 286, 286, 276, 276, 276, 276, 276, 276, 276, 27
GA8	Tready-two sets of or El. 26, 186, 117, 146 686, 267, 285, 186, 117, 146 Above normal temperature, Treats (889, 884, 256, 255), which are in good agreement, Vm Resteek schoolide 894, are in fair agreement.

To correlate the data, use was made of the theoretical expression

from which the group $\sigma^2\Omega$ was computed, plotted as a function of 1/T and smoothed. Recommended values were generated from the smoothed curve.

The accuracy is thought to be $\pm 2\%$, although a higher figure is expected at low temperature.

	4	55.2	•	•	56.7	57.2	57.6	58.1	58.6	59.1	59.6	60.0	60.5	61.0	61.4	61.9	62.3	62.8	63.2	63.7	64.1	64.6	65.0	65.5	62.9	86.3	8.99	67.2	67.6	68.0	68.5	68.8	71.0	73.0	75.0	76.9					
	F	78	710	720	730	140	750	760	770	780	790	800	810	820	830	840	820	860	870	880	26	906	910	920	930	940	950	960	970	980	066	1000	1050	1100	1150	63					
GAS	3	35.19		36.52	37.16		38.45		٠.			41.53		• -,			44.48	45.1	45.6	•	46.8	47.3	47.9	48.4	48.9	49.5	20.0	50.6	51.1	51.6	52.1	52.7	53.2	53.7	54.2	54.7					
3	۲	350	360	370	380	380	400	410	420	430	440	450	460	470	480	490	200	510	520	530	240	220	260	570	580	280	909	610	620	630	640	650	0 9 9	670	680	690					
	3.					3.38	4.28			6.75	•	8.24			12.11	13.27	14.36	15.42	16.45	₹.	18.46	19.43	20.36	21.28	22.18	23.04	23.91	24.76	25.58	26.40	27.19	27.97	28.74		30.25		31.71	2	33.14	33.84	68 76
	H					20	22	30	35	\$	45	20	9	2	8	8	100	110	120	130	140	150	160	170	180	190	200	210	220	230	240	250	260	270	280	290	300	310	320	330	240

FIGURE 10-G(T). DEPARTURE PLOT FOR VISCOSITY OF GASEOUS NEON

_ /..

TABLE 11-L(T). VISCOSITY OF LEQUID NITROGEN

7	3
C	7
23	ı
9	2
•	2
	3
-	:
L	ı
а	9
-	
~	۹

SATURATED LIQUID

un en
Six sets of experimental data were found in the literature. The data of Rudenko [406] and of Forster [46] covers the temperature range from the boiling point to the vicinity of the critical point. Other data by Rudenko [406] and Van Rudenko [406]—404] and Boon [406] are below or about the boiling point. The various sets are not makenally consistent, and it is difficult to assess their reliability. They were adjusted by least squares to an equation
Six sets of expe Rudenko (400) and of Fr point to the vicinity of (Inches (400, 400) and ions sets are not making They were adjusted by

 $\log \mu = A + B/T$

-	0.360	0.274	0.217	0.1768	0.1480	0.1266	0.1101	0.0972	0.0869	0.0785	0.0708	0.0599	0.0484	0.0316	0.0191
	9	65	10	75	8	85	8	9 8	100	105	110	115	120	125	126*

FIGURE 11-L(T). DEPARTURE PLOT FOR VISCOSITY OF LIQUID NITROGEN

TABLE 11-V(T). VISCOSITY OF NITROGEN VAPOR

ā
×
7
5
ū
Q,
-

[Temperature, T, K; Viscosity, µ, 10"6N s m-2]

RECOMMENDED VALUES

ø	4
C)
ř	á
ř	X
Ē	3
7	7
п	п
ĕ	2
2	Š
2	3

GAS

CAN						
There are 34 sets of experimental data available for the viscosity of nitro-			S. S.			
From 15, 19, 50, 50, 64, 67, 91, 96, 98, 99, 110, 112, 116, 117.	H	3	ı		H	3
138 146 140 150 15 15 123 201 220 222 227 233 296 349 254 255						. ;
of 944 946 394. The overall temperature rance covered, is from 78 to		- T			850	36. 55
SEAR Y and any seasons the seasons had not continued in the seasons and the seasons the se		4		_	960	36.82
		4	470 24	24.82	870	37.08
minute the mile femore results from the type and results		5.59	480 25	25.18	880	37.34
and whitelaw 1114 on one hand, and those of vasuesco 1451-155, and boning	86				068	37.60
118 on the other lie on opposite sides of the curve, indicating some systematic						
					006	37.86
cal evaluation was made by Andrussow [3], and is in good agreement.		7.52 5	510 26	26.25	910	38.12
	120	8.15 5	520 26		920	38.37
To correlate the data. use was made of the theoretical expression:	130				930	38.63
					940	38.88
1 = 280. 583 0.70 mm 1 mm						
					950	39. 12
The groun of MT4/fwas committed from the experimental data and					096	39.38
in the property of the common					970	39.63
Fundamental as a succession of 1 a succession of the communication with the communication of					980	39.87
Mark Curve of a signal as a guarte, to make the comparison required used	190	12.31 5	590 28	28.95	066	40.12
water use terminated in order to commute recommended values.	200	12.86	600 29	29.27	1000	40.36
				•	010	40.6
The accouract is thought to be should at the result.					1020	40.8
				•	080	7
						41.3
	•				2	77.
	•				1050	41.6
			660 31		0901	418
				.,	020	42.0
					1080	42.3
		17.40 6		32.06	1090	42.5
		17.86 7	700 32	•	1100	42.7
	310	18.32 7		•	1110	43.0
		18.77			1120	43.2
					1130	43.4
	340 13	19.65 7		33.52	1140	43.6
				.,	1150	43.9
					1160	44.1
			770 34	34.37	1170	44.3
					1180	44.5
	390 2	21.74 7	790 34	34.93	1190	4 .8
			800 35	35.20	1200	45.0
			810 35	35.48	1210	45.2
			820 35	35.75	1220	45.4
		23.32 . 8		36.02	1230	45.6
	440 2:				240	45.8

RECOMMENDED VALUES
[Temperature, T. K; Viscosity, μ , 10-4 N s m-3
Gas

2	į	1	١	
	į	ì	i	
١		•		

=	46.1	4 6.5	46.7	46.9	47.1	47.3		48.0	48.2	48.4	48.6	8.8	49.0	49.2	49.4	49.6	8.8	20.0	50.2	50.4	50.6 0	51.0		52.1	53.1	54.0	54.9	55.8	56.7	57.6 58.5	59.3	60.1	61.8	63.4
٢	1250	1270	1280	1290	1300	1310	1350	1340	1350	1360	1370	1380	1390	1400	1410	1420	1430	3	1450	1460	1470	1490	9	25.0	1600	1650	1700	1750	1800	1806	1950	2000	2100	2200

5

__ 5

FIGURE 11-G(T). DEPARTURE PLOT FOR VISCOSITY OF GASEOUS NITROGEN (cominued)

TABLE 12-L(T). VISCOSITY OF LIQUID OXYGEN

DISCUSSION

RECOMMENDED VALUES
[Temperature, T, K; Viscosity, µ, 10⁻³ N s m⁻²]

SATURATED LIQUED	[Temperature, T, K; Viscosity, μ, 10 ⁻³ N s m	osity, µ, 10-8 N s m
There are eight sets of experimental data in the literature +19, -69,	SATURATED LIQUID	LIQUID
188, 189, 244, 244, 259). All data, except those of Rudenko [438] are below the boiling point, and are in good agreement, although the results of Galkov [69] seem less accurate and higher.	Ħ	31.
196	55	0.804
4	90 65	0.459
$\log \mu = A + B/T$	70	0.368
The recommended waitee below 195 K were injury to the value of	75	0.304
the viscosity at the critical point, by a hand drawn curve. They are in disarree-	80	0.257
ment with the experimental values of Rudenko Fight.	892	0.222
	6	0.195
The securacy is estimated as about $\pm 3\%$ below 125 K and drops to $\pm 15\%$	36	0.173
from 125 K to the critical temperature.	100	0.1560
	105	0.1418
	110	0.1300
	115	0.1201
	120	0.1117
	125	0.1040
	130	0.0960
	135	0.0875
	140	0.0780
	145	0.0665
	150	0.0510
	- #CT	0.0259

TABLE 12-V(T). VISCOSITY OF OXYGEN VAPOR

DISCUSSION

SATURATED VAPOR

Recommended values of the viscosity of the saturated vapor were computed by the technique of Jossi et al. [4607] using the recommended value of the viscosity of the dilute gas and a generalized correlation of the excess viscosity versus the reduced temperature which was established with the values of several gases using also the correlation of Jossi et al. In the complete absence of any experimental data, no accuracy estimation is made.

RECOMMENDED VALUES

[Temperature, T, K; Viscosity, μ , 10^{-8} N s m⁻²]

SATURATED VAPOR

H

. 00627	. 00772	. 00949	. 0161 . 0259
08 06	100 110	130	150 154*

* Crit. Temp.

TABLE 12-G(T). VISCOSITY OF GASEOUS OXYGEN

RECOMMENDED VALUES [Temperature, T, K; Viscosity, µ, 10⁻⁶ N s m⁻²]

DESCUSSION

Ι,

GAS		[Temperature, T, K; Viscosity, μ , 10^4 N s m ⁻²]	, T, K; Visc	osity, µ, 10~	[2-us N	
There are 20 sets of experimental data available for the viscosity of			GAS	SI		
those reported by Trantz and al 1989, 987, 332, 303, Johnston [98], Van	H	3.	Ŀ	3	H	3
interpost (1949-1949), Kestin Provincy Markin Provincy Conyama Provincy Volker			450	28.28	820	43.8
1900) MELECOWOLD TOWN THE PETOT NAMED HAND THE TAKE THE T			460	28.74	960	4.1
TESS! VOCAL TANK IN WINDER MAIN MAINTER THAT DOLLING TO BE TO BE TOURS OF THE TANK IN THE			410	29.20	870	47.4
Tollard Handron to Act and Act	8	6.27	480	29.65	880	44.7
+ note are in good agreement with the present collegation.	8	6.98	490	30.10	880	45.1
At low temperature, the data of Johnston appears smoother than those of	100	7.68	200	30.54	006	45.4
Van literbeek while Volker's data diverge greatly (about 20%). At room temper-	110	8.39	510	31.0	910	45.7
ature, there is good agreement between Kestin, Rigden, Majumdar and Yen.	120	9.12	520	31.4	920	46.0
At high temperature, there are discrepancies between the data of Trautz,	130	9.82	230	31.8	980	46.3
Boailla and of Raw and Ellis. The Johnston data were given more weight at low	140	10.56	540	32.3	9	46.7
temperatures.	150	11.27	550	32.7	950	47.0
O			660	,	000	

To correlate the data, use was made of the expression: $\mu = 266.86 \frac{\sqrt{M_T}}{\sigma^2 L_0 T^3} f_{\mu}$ The group $\sigma^2 L_0 T^3 / f_{\mu}$ was computed from the experimental data, and plotted as a function of 1/T. To help smoothing, the curve obtained has been compared with the similar curve obtained for Argon, the resulting curve was chosen so as to match the results of Majundar, Rigden and Kestin, at room temperature, and a table was generated which was used for computing recommended values.

The accuracy is of the order of ± 2 percent but is better than one percent around room temperature.

45.7	46.0	46.3	46.7	47.0	47.3	47.6	47.9	48.2	48.5	50.0	51.4	52.9	54.2	55.6	56.9	58.2	59. 5	60.7	61.9	63.1	64.3	65.5	9.99	67.7	68.8	69.3	71.0	72.1	73.1				
910	920	930	940	950	096	970	980	066	1000	1050	1100	1150	1200	1250	1300	1320	1400	1450	1500	1550	1600	1650	1700	1750	1 800	1820	1900	1950	2000				
31.0	31.4	31.8	32.3	32.7	33.1	33.5	33.9	34.3	34.7	35.2	35.5	35.9	36.3	36.7	37.1	37.4	37.8	38.2	38.5	38.9	39.3	39.6	40.0	40.3	40.7	41.1	41.4	41.7	42.1	45.4	42.8	43.1	43.4
510	520	530	540	550	260	570	580	290	900	610	620	630	640	650	999	670	680	069	. 002	710	720	730	740	750	760	770	780	790	900	810	820	830	840
8.39	9.12	9.85	10.56	11.27	11.96	12.65	13.33	13.99	14.65	15.29	15.93	16.55	17.17	17.77	18.37	18.96	19.54	20.11	20.67	21.23	21.77	22.31	22.84	23.37	23.89	24.40	24.91	25.41	25.89	26.39	26.87	27.35	27.82
110	120	130	140	150	160	170	180	190	200	210	220	230	240	250	260	270	280	290	300	310	320	330	340	350	360	370	380	390	400	410	420	430	440

TEMPERATURE, K TEMPERATURE, F FIGURE 12-G(T). DEPARTURE PLOT FOR VISCOSITY OF GASEOUS OXYGEN (continued) (8) 176 18 121 3 P. I ATTA

DISCUSSION

RECOMMENDED VALUES [Temperature, T, K; Viscosity, μ , N, m⁻¹.sec⁻¹.10⁻⁶]

Experimental data for the viscosity of xenon reported in the literature were those of Tranta[259,373], Rankine[170], Nasini[1569, Kestin[1407], Uchiyama [386], and Righy and Smith [183]. The latter, and those of Trantz, covers the widest range of temperature, and are in good agreement.

The analysis was made with the help of the theoretical expression for viscosity:

 $\mu = 266.93 \frac{\sqrt{MT}}{\sigma^2 \Omega(T^*)} f_{\mu}$

The group [$\sigma^2\Omega(\Gamma^4)/f$] was computed from the experimental data and plotted as a function of $1/\Gamma$. $^{\mu}$ The curve obtained has been compared with the similar curve obtained for argon, the scaling being made using the ratio of Boyle temperature, and the ratio of the collision diameter estimated from the data. Good agreement was found, and a table was then generated, from which recommended values were computed. The recommended values should be accurate to within one percent below 1000 K and to less than five percent for all higher temperatures tabulated.

	3	58.6	59.0	59.5	60.0	60.4	60.9			62.3	62.7	63.2		64.1	64.5	65.0	65,4	65.8	-	66.7	67.1	67.6	68.0	68.4	-	69.3	69.7	70.1	70.5	•	71.3	711.7	•		73.0	73.4	e,		74.6	į,	
	Ħ	006	910	920	930	940	950	096	026	980	066	1000	1010	1020	1030	1040	1050	1060	1070	1080	1090	1100	1110	1120	1130	1140	1150	1160	1170	1180	1190	1200	1210	1220	1230	1240	1250	1260	1270	1280	1290
GAS	3.	36.85	37.5	38.1	38.7		39.9		41.1	41.7	42.3	42.9	43.4	44.0	44.6	45.1	45.7	46.3	46.8	47.4	47.9	48.4	49.0	49.5	50.0	50.6	51.1	51.6	52.1		53.2		•	54.7	55.2	55.6	56.1	56.6	57.1	57.6	58.1
5	Ħ	200	510	520	530	540	550	260	570	280	290	909	610	620	630	640	650	099	670	089	069	200	710	720	730	740	750	160	770	180	190	800	810	820	830	840	850	860	870	880	890
	3			10.09		11.52			13.65	14.37	15.10	15.85		•	18.10	18.84	19.60		•	21.83		23.31	24.03	24.75	25.48	26.19	26.90	27.60	28.29	•	29.67	30,35	•	31.69	32.36	33.02	33.67	34.31			
	Ħ			120	130	140	150		170	180	190	200	210	220	230	240	250	260	270	280	290	300	310	320	330	340	350	360	370	380	390	400	410	420	430	440	450	460	470	480	490

L'ontwiller

TABLE 13-G(T). VISCOSITY OF GASEOUS XENON (continued)

RECOMMENDED VALUES [Temperature, T, K; Viscosity, μ , N.m⁻¹, sec⁻¹, 10⁻⁶]

S	31	75.7	76.1	76.5	76.9	77.3		œ	78.4	78.8	79.2	79.6		80.3	80.7	81.1	81.4	81.8			82.9	83.3
GAS	۲	1300	1310	1320	1330	1340	1350	1360	1370	1380	1390	1400	1410	1420	1430	1440	1450	1460	1470	1480	1490	1500

FIGURE 13-G(T). DEPARTURE PLOT FOR VISCOSITY OF GASEOUS XENON (continued)

200

Curve Reference

2. INORGANIC COMPOUNDS

TABLE 14-L(T). VISCOSITY OF LIQUID AMMONIA

DISCUSSION

SATURATED LIQUID

RECOMMENDED VALUES

[Temperature, T, K; Viscosity, μ , 10^{-3} N s m⁻²]

SATURATED LIQUID

s y y ta,				9
Five sets of experimental data were found in the literature. These are the values given by Stakelbeck [202], Pleskov [168], Pinevich [167] and Carmichael [29,31]. The more recent set of the latter disagree with the older. Generally the sets are not mutually consistent, and there is a need for more accurate data, in the whole range of temperature.	An equation of the type:	$\log \mu = A + B/T + \delta$	was used. The residual 6 was smoothed graphically, and a table generated.	There is no means to evaluate the accuracy of this correlation due to the big discrepancies in observed values.

0.285	0.246	0.215	0.190	0.169	0.152	0.1370	0.1247				0.0885	0.0795	0.0702	0.0607	0.0507		0.0249
240	250	260	270	280	290	300	310	320	330	340	350	360	370	380	390	400	402 *

* Crit. Temp.

FIGURE 14-L(T). DEPARTURE PLOT FOR VISCOSITY OF LIQUID AMMONIA

Curve Reference
1 168
2 31
3 202
4 167
5 29

TABLE 14-V(T). VISCOSITY OF AMMONIA VAPOR

RECOMMENDED VALUES

DISCUSSION

SATURATED VAPOR	[Temperature, T, K; Viscosity, μ , 10^{-3} N s m ⁻²]
Recommended values for the viscosity of the saturated vapor of ammonia were computed with the correlation equation given by Jossi. Stiel and Thodos [100]. This equation gives excess viscosity as a function of the reduced density. The values for the density of the saturated vapor used, were those given by Din	SATURATED VAPOR T

The recommended values for the 1 atm gas together with the excess viscosity gave the recommended values.

The accuracy is thought to be ±3%.

0.00925			0.01030	0.01105		0.01186			0.01322	0.01375	0.01435	0.01506	0.01594	0.01715	0.0195	470
240	250	260	280	290	300	310	320	330	340	350	360	370	380	390	400) F

* Crit. Temp.

TABLE 14-G(T). VISCOSITY OF GASEOUS AMMONIA

	RECOMMENDED VALUES
•	

DISCUSSION

GAB

[Temperature, T,K; Viscosity, μ , 10^{-6} N s m⁻²]

<u> </u>		GAS			
The literature revealed 16 sets of data covering a wide temperature range	Ŀ	3	H	3	
ITOM 198 h to about 1,000 k, almodan between 150 h and roin comperative there is a lack of date. The hist termerature values are not very consistent excent	200	68	909	21.4	
	210	7.21	610	21.7	
	220	7.53	620	22.1	
The correlation was made by using the theoretical relation:	230	7.86	630	22.5	
l e	240	8.19	640	22.9	
$\mathbf{r} = \mathbf{q} \mathbf{q} \mathbf{q} \tag{1}$	250	8.53	650	23.2	
	260	8.87	099	23.6	
The group of was optained from the experimental data and plotted as a unction of	270	9.21	670	24.0	
	280	9.56	680	24.3	
ITON THIS POTOTOMINE WETE USED IN OF STATE THE PECONOMICS AGAINST. FIEVI-	290	9.91	9	24.7	
gence at high and low temperature.	300	10.27	100	25.1	
	310	10.62	710	25.5	
The accuracy is about ± 2% below 500 K but may reach ± 5% at higher	320	10.98	720	25.8	
temperature.	330	11.34	730	26.2	
	340	11.70	740	26.6	
	350	12.06	750	26.9	
	360	12.43	160	27.3	
	370	12.80	770	27.7	
	380	13.16	780	28.0	
	390	13.53	290	28.4	
	400	13.90	800	28.8	
	410	14.27	810	29.1	
	420	14.64	820	29.5	
	430	15.01	830	29.8	
	440	15.38	840	30.2	
	420	15.76	820	30.6	
	460	16.13	860	30.9	
	410	16.50	870	31.3	
	480	16.88	880	31.6	
	490	17.25	88	32.0	
	200	17.63	906	32.4	
	510	18.0	910	32.7	
	520	18.4	920	33.1	
	530	18.8	930	33.4	
	240	19.1	940	33.8	
	550	19.5	920	34.1	
	260	19.9	960	34.5	
	570	20.3	970	84.8	
	580 590	20.6 21.0	9 06 6 6	35.2 35.5	
			501	9	
			1000	35.9	

FIGURE 14-G(T). DEPARTURE PLOT FOR VINCOSITY OF GASEOUS AMMONIA

FIGURE 14-G(T). DEPARTURE PLOT FOR VISCOSITY OF GASEOUS AMMONIA (continued)

TABLE 15-G(T). VISCOSITY OF GASEOUS BORON TRIFLUORIDE

DISCUSSION		RECOMME	RECOMMENDED VALUES		
GAS	[Temp	[Temperature, T, K; Viscosity, IL, N s m ⁻² · 10 ⁻⁶]	Viscosity, 11. N	s m ⁻² · 10-6]	
Six sets of experimental data were found in the literature [59, 288, 289,			GAS		
145, 230, 231. They cover a range of temperature from -190 K to 973 K, however, the gas decomposes above 700 K. Good agreement exist among the	H	e	H	ı	
authors.			450	23.96	
To conrelate the data, use was made of the theoretical relation			460 470	24.39 24.82	
$\mu = K_{\phi}T/(\sigma^{-1}d)$. The group of 0 was computed from the data, plotted as a function of 1/T, and it was found that a quadratic constitution and if the data. From	691	11 66	480	25.25	
the computed o'Q, recommended values of the viscosity were calculated. The	. 902	12 15	8	26.10	
accuracy is on the order of a 1 percent or better.	210	12.64	210	26.5	
	220	13.14	520	26.9	
	230	13.63	530	27.4	
	240	14.13	540	27.8	
	250	14.62	220	28.2	
	260	15.11	260	28.6	
	270	15.60	570	29.0	
	280	16.09	580	29.4	
	290	16.57	290	29.8	
	300	17.06	909	30.2	
	310	17.54	610	30.6	
	320	18.02	620	31.0	
	330	18.49	630	31.4	
	340	18.96	640	31.8	
	350	19.43	650	32.1	
	360	19.90	099	32.5	
	370	20.36	670	32.9	
	380	20.82	089	33.3	
	380	21.28	069	33.6	
	400	21.73	700	34.0	
	410	22.18			
	420	22.63			
	430	23.07			
	•				

FIGURE 15-G(T). DEPARTURE PLOT FOR VISCOSITY OF GASEOUS BORON TRIFLUORIDE

TABLE 16-G(T). VISCOSITY OF GASEOUS HYDROGEN CHLORIDE

DISCUSSION

RECOMMENDED VALUES [Temperature, T, K; Viscosity, μ , 10^6 N s m⁻²]

CAS	•			
ĕ		CAS		
They are in good agreement. They cover a temperature range from 273 K to 524 K	H	3	H	3
	250	12.08	450	21.99
Use was made of the theoretical relation $u = K \int T/[\sigma^2 \Omega_p, (T^*)]$ to obtain the	260	12.60	460	22.45
values of o'll from the experimental data. These were plotted as a function of	270	13, 12	470	22.91
1/T and adjusted to a quadratic equation. From this equation, recommended	280	13,64	480	23, 37
values of the viscosity were computed. The accuracy is of the order of ±1 per-	290	14.16	490	23.82
Cent.	300	14.67	200	24.27
	310	15, 18	510	24.7
	320	15.69	520	25.2
	330	16.19	230	25.6
	340	16.69	540	26.0
	350	17.19	550	26.5
	360	17.68	260	26.9
	370	18.17	570	27.4
	380	18.66	280	27.8
	390	19.15	230	28.5
	400	19,63	009	28.8
	410	20.11	610	29.0
	420	20.58	620	29. 5
	430	21.05	630	29.9
	440	21.52	640	20.3
			650	30.6

FIGURE 16-G(T). DEPARTURE PLOT FOR VISCOSITY OF GASEOUS HYDROGEN CHLORIDE

TABLE 17-G(T). VISCOSITY OF GASEOUS HYDROGEN IODIDE

[Temperature, T, K; Viscosity, μ , 10^6 N s m⁻²]

RECOMMENDED VALUES

DISCUSSION

GAS	[Temperature, T, K; Visc	, T, K; Visc
Three sets of experimental data were found in the literature. Two are		GAS
from Trautz's group [225, 296] and the other from Harle [309]. One point of the latter author is not in enod screement with the two other sets. The tempera-	T	3
ture range goes from 293 K to 525 K. Use was made of the theoretical relation	250	
$u = K_1^{-1} V(\theta^2 \Omega)$ to obtain the values of $\sigma^2 \Omega$ from the experimental data. These	260	
were plotted as a function of 1/T and adjusted to a quadratic equation. From	270	
this equation, recommended values of the viscosity were computed. The	280	17.75
	300	
	310	19.61
	320	
	330	
	340	
	350	
	360	
	370	
	380	23.90
	004	
	410	
	420	
	440	27.50

TABLE 18-G(T). VISCOSITY OF GASEOUS HYDROGEN SULFIDE

_
z
0
SS
₽
U
2

DISCUSSION	RECO	RECOMMENDED VALUES	VALUES	i i	
GAS	lemperature, I, N; Viscosity, L, IO NS III -	1, N; V18CO	ity.	E se su o o o	
Four sets of data were found in the literature [80, 174, 236, 310]. Their		CAS			
agreement is not outstanding.	E	3	T	3	
To correlate the data the theoretical relation $u=K/T/(\pi^2\Omega_n)$ was used.			400	16.89	
From the date of was committed and niotted as a function of 1/T. A linear			410	17.30	
ensition we found to fit the data, and from this emution and the above relation.	270	11.32	420	17.70	
recommended values were contracted. The accuracy is about +2.5 percent.	280	11, 76	430	18, 18	
	290	12.21	440	18.50	
	300	12.65	450	18.90	
	310	13.09	460	19.29	
	320	13.52	470	19.68	
	330	13,95	480	20.07	
	340	14.38	490	20.46	
	350	14.81	200	20.85	
	360	15.23			
	370	15.65			
	380	16.06			
	390	16.48			

FIGURE 18-G(T). DEPARTURE PLOT FOR VISCOSITY OF GASEOUS HYDROGEN SULFIDE

TABLE 19-G(T). VISCOSITY OF GASEOUS NITRIC OXIDE

DESCUSSION

3

The section of the second section of the second sec

RECOMMENDED VALUES

[Temperature, T, K; Viscosity, µ, N.m-1.sec-1.10-6]

Ten sets of experimental data on the viscosity of nitric oxide were found in the literature [59, 80, 98, 121, 126, 236, 257, 264, 315, 316]. They fall in a small temperature range, except those of Ellis and Raw [59] which go up to 1356 K.

To analyze the data, use was made of the theoretical expression for viscosity:

The group $[g^2Q(T^2)/f_g] = y_{obs}$ was computed from the experimental data and plotted as a function of 1/T. The curve obtained was smoothed and a table generated. Recommended values were calculated by introducing, into the above formula, the value of y_{calc} interpolated from the table. The recommended values are thought to the accurate to two percent below 1250 K and five percent for all higher temperatures tabulated.

		3	GAS		
H	3	H	3	H	4
		450	26.33	800	39.
110	7.81	460	26.76	810	39.
120	8.49	410	27.18	820	39.
130	9.16	480	27.59	830	40.
140	9.83	490	28.00	840	40.
150	10.49	200	28.41	850	40.
160	11.14	510	28.8	860	\$
170	11.78	520	29.2	870	#
28	12.42	530	29.6	988	#
190	13.04	240	30.0	890	4 1.
200	13.65	550	30.4	906	42.
210		260	30.8	910	42.
220	14.85	570	31.1	920	42
230	15.44	280	31.5	930	42.
240	16.02	230	31.9	940	43.
250	16.58	909	32.3	920	43.
260	17.14	610	32.6	096	₹.
270	17.69	620	33.0	970	7
280	18.23	630	33.3	0 86	‡
290	18.76	640	33.7	0 86	‡
300	19.29	650	34.1	1000	#
310	19.80	099	34.4	1050	46.
320	20.31	670	34.7	1100	47.
330	20.81	989	35.1	1150	48.
340	21.31	690	35.4	1200	20.
350	21.80	700	35.8	1250	51.
360	22.28	710	36.1	1300	25.
370	22.75	720	36.4	1350	53.
380	23.22	730	36.8	1400	55.
390	23.68	740	37.1	1450	26.
90	24.14	750	37.4	1500	57.
410	24.59	760	37.8		
420	25.03	170	38.1		
4 30	25.47	180	38.4		
440	25.90	790	38.7		

FIGURE 19-G(T). DEPARTURE PLOT FOR VISCOSITY OF GASEOUS NITRIC OXIDE (continued)

4

DISCUSSION

[Ten Three sets of experimental data were found in the literature; the results equilibrium wixture N₁O₂ \Rightarrow 2 NO₂. Although the 11. (318). They relate to the well founded, use was made of the relation $\mu = \chi / \Gamma / (\nu^2 \Omega_{22})$ which allowed an poor consistency, while the data of Petker and of Timrot were in agreed of particularly at high temperature.

The recommended values are thought to be accurate to ±3 percent at low temperature.

31.	13.01	13.87	14.76			17.69	18, 75	19,65	20.20	20.76	21.31	21.86	22, 40	22.95	23, 49	24.02
Ţ	300	310	320	330	340	350	360	370	380	390	400	410	420	430	440	450
		, E1	13,	. E. E. 41	13.	13. 13. 14. 15.	13. 13. 14. 15. 16.	13. 13. 14. 15. 16. 18.	13. 13. 14. 15. 16. 19.	13. 113. 114. 117. 117. 119. 119.	13. 13. 14. 15. 16. 17. 18. 19. 20. 20. 20.	13. 14. 13. 14. 15. 16. 18. 18. 18. 19. 20. 21. 3	13. 13. 13. 13. 13. 13. 13. 13. 13. 13.	13. 13. 13. 13. 13. 13. 13. 13. 13. 13.	13. 14. 13. 14. 15. 15. 15. 15. 15. 15. 15. 15. 15. 15	13. 14. 13. 13. 14. 13. 14. 15. 15. 15. 15. 15. 15. 15. 15. 15. 15

FIGURE 20-G(T). DEPARTURE PLOT FOR VISCOSITY OF GASEOUS NITROGEN PEROXIDE

TABLE 21-G(T). VISCOSITY OF GASEOUS NITROUS OXIDE

z	
0	
8	
Š	
₽	
×	
=	
ш	

GAS

RECOMMENDED VALUES
[Temperature, T, K; Viscosity, µ, N, m⁻¹, sec⁻¹, 10⁻⁶]

Bight agts of extractmental data for the viscosity of nitrous exide were		•		.		
found in the literature [35, 63, 98, 176, 201, 225, 236, 257], the range of tem-			Ü	GAS		
persoure covered is from 185 up to 1296 K, although above 800 K, the Raw and Ellis [176] data must pertain to a mixture of nitrous oxide and its dissociation	₽	3.	H	31.	H	3
products.			200	23.56	850	35.6
To complete the date one was made of the following the content of			510	23.9	860	35.9
I o correlate the data, use was made of the following theoretical extremation:	8	9.01	920 530	24.3	880	36.5
	190	9.52	540	25.1	890	36.8
$\mu = 266.93 \frac{\sqrt{MT}}{2} f$	200	10.03	550	25.5	96	37.1
	210	10.54	260	25.9	910	37.4
	220	11.05	570	26.2	920	37.7
The group [C'45(T')/I] was computed from the experimental data,	230	11.56	580	26.6	930	38.0
nea	240	12.06	290	27.0	0 \$	38.3
with the values of [930,T*1/f] interpolated from the table.	250	12.55	009	27.3	920	38.6
	560	13.04	610	27.7	096	38.9
Good agreement is found with Keves [121] correlation, and a fair agree-	270	13.53	620	28.0	970	39.1
	280	14.02	630	28.4	980	39.4
theirs were both extrapolated in the dissociation temperature range. Below	290	14.49	640	28.7	066	39.7
850 K, the recommended values are thought to be accurate to within two per-	300	14.97	650	29.1	1000	40.0
cent. The accuracy at higher temperatures is more difficult to assess, as it	310	15,44	099	29.4	1050	41.4
depends on the degree of dissociation.	320	15.90	670	29.8	1100	42.7
	330	16.36	089	30.1	1150	44.0
	340	16.82	069	30.5	1200	45.3
	350	17.27	.700	30.8	1250	46.6
	360	17.72	710	31.1	1300	47.8
	370	18.16	720	31.5	1350	49.0
	380	18.60	730	5	1400	50.2
	390	19.03	740	32.1	1450	51.4
	400	19.46	750	32.5	1500	52.5
	410	19.89	160	32.8		
	420	20.31	770	33.1		
	430	20.73	780	33.4		
	440	21.14	790	33.7		
	450	21.56	800	34.1		
	460	21.96	810	34.4		
	410	22.37	820	34.7		
	480	22.77	830	35.0		
•	3	23.10	2	35.0		

TEMPERATURE, K 2000 TEMPERATURE, F 78 FIGURE 21-G(T). DEPARTURE PLOT FOR VISCOSITY OF GASEOUS NITROUS OXIDE (continued) 48 8 **(2**) 6 2 Curve Reference
2 176
9 121
10 3 DEPARTURE, PERCENT

7

TABLE 22-G(T). VISCOSITY OF GASEOUS SULFUR DIOXIDE

,	,	•
ζ		
ě		Ì
÷		
ò	į	Ś

DISCUSSION		REC	OMMEND	RECOMMENDED VALUES	10		
GAS .	Te	[Temperature, T, K; Viscosity, μ , 10^{-6} N s m ⁻²]	T, K; Vis	cosity, µ.	10 ⁻⁶ N s m	1 1	
Twelve sets of experimental data were found in the literature [35,202,			CAS				
206,231,233,236,257,264,296,310,321,322]. They show large discrepancies, evan at ambient temperature, and at low temperature.	T	3.	H	3.	T	3.	
	200	8, 62	200	21.3	800	32.1	
The correlation was made by using the theoretical relation	210	90.6	510	21.7	810	32.4	
$\mu = K/T/(\sigma^2\Omega_{23}(T^*))$. From the data $\sigma^2\Omega$ was computed and plotted as a function	220	9, 51	520	22.1	820	32.7	
of 1/T. A smooth curve was drawn through the experimental points, and litted	230	9. 6	230	22.5	830	33.1	
to a quadratic equation, from which recommended values were generated, values	240	10.40	240	22.8	840	33.4	
computed by Andrussow 5 with the air of a semi-shorest.eds. relation are in fair servement except at low terms-rather. The accuracy must be of the order	250	10.84	550	23.2	850	33.7	
of 43 percent	260	11.28	260	23.6	860	34.0	
	270	11.72	570	24.0	870	34.4	
	280	12.16	280	24.4	880	34.7	
	290	12.60	290	24.7	890	35.0	
	300	13.04	900	25.1	900	35, 3	
	310	13.47	610	25.5	910	35.6	
	320	13.90	620	25.8	920	35.9	
	330	14, 33	630	26.2	930	36.3	
	340	14.76	640	26.6	940	36.6	
	350	15.18	650	26.6	950	36.9	
	360	15.61	099	27.3	960	37.2	
	370	16.03	670	27.6	970	37.5	
	380	16.45	680	28.0	980	37.8	
	390	16.86	069	28.3	990	38.1	
	400	17.28	200	28.7	1000	38.4	
	410	17.69	710	29.1	1050	39.9	
	420	18.10	720	29.4	1100	41.3	
	430	18.51	130	29.7	1150	2. 2. 2. 2. 2. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3.	
	2	10.01	-		7500	7	
	450 460	19.32 19.72	750 760	30.4 30.7	1250	45.4	
	470	20,12	022	31.1			
	480 490	20.91 20.91	790	31.4 31.8			

FIGURE 22-G(T). DEPARTURE PLOT FOR VISCOSITY OF GASEOUS SULFUR DIOXIDE (continued)

RECOMMENDED VALUES

DISCUSSION

[Temperature, T, K; Viscosity, μ, 10-3 N s m-2]	e work of the Sixth	H H
SATURATED LIQUID	A recommended equation was released following the work of the Sixth	International Conference on Steam (1964 Skeleton Tables):

AMPLICATION CONTROLLING ON DECEMBER (1904 SMCIECON L'ADIED):	-	3.	-
$\mu(Nsm^{-2}) = 2.414 \times 10^{-2} \times 10^{-2} \times 10^{-140}$			
			450
An excellent review of the subject was done by Kestin [112] The vience.			460
An excellent series of the subject was doing of the state of	273, 15	1, 753	470
ity of water at atmospheric pressure and at a temperature of 20 C was measured	0.00		
accurately by Swindella [284] and by Roscoe [285] so that accordingly a reason-	280	1.422	480
able value is	290	1.08:3	490
	300	0.823	200
$\mu_{233, 15} = (1.002 \pm 0.001) 10^{-3} \text{ N sec m}^{-2}$	310	0.672	510
	320	0.560	520
The first equation above covers the range 273.15 K to 573.15 K and was	330	0.476	530
adopted to generate the present recommended values.	340	0.411	540
At the 7th International Conference on States contern necessary more necessary	350	0.360	550
emeted beard on a limiting emergeness to represent the whole or 1 is domein [156]	360	0.319	260
185 210 The correlated values fell within the tolerances of the 1954 Skyloton	370	0.285	570
Tables and an do a correlation by Resease [97] which is extended to the critical	380	0.258	580
point	390	0.234	290
	400	0.2149	9
Tanishita's (210) values were used to generate recommended values be-	410	0.1983	610
tween 573.15 K and the critical point.	420	0.1840	620
	430	0.1716	630
The accuracy stated in the 1964 Skeleton Table is ±2.5%.	440	0.1608	640
			647*

0.1514 0.1430 0.1355 0.1288

0, 1125 0, 1081 0, 1041 0, 1003

0.1174

0.0969 0.0937 0.0902 0.0865 0.0827

0.0788 0.0750 0.0711 0.0663 0.0587

Crit, Temp.

TABLE 23-V(T). VISCOSITY OF WATER VAPOR

[Temperature, T, K; Viscosity, μ , 10-6 N s m-2] RECOMMENDED VALUES

DISCUSSION

いとなるないと

SATURATED VAPOR			[Temperature, T, K; Viscosity, μ , 10-6 N s m-2]	K; Viscosity, µ,	, 10-6 N s m-2]
The 6th International Confere	The 6th International Conference on Steam agreed on an equation repre-	opte-	SATU	SATURATED VAPOR	
senting the excess viscosity from 1 l	senting the excess viscosity from 1 bar pressure to saturation pressure in the	the	T	3	
range 373.15 K to 573.15 K. The su	abject has been discussed at length by		373.15	15 12.03	
NOTE IN THE PLANE PRESENTATION OF the 1904 INCLUDING SACICION 13016.	e 1304 international Sacreton 1 aute.		380	12.29	
The equation is			390	12.68	
			400	13.05	
(44 - 14) = (5.90 t - 1858)	(t in deg)	()	410	13.43	
			420	13.79	
where			430	14.15	
	î	4	440	14.50	
14 = (80.4 + 0.407 t) IO ' N S	N sec m_,	(Z)	420	14.86	
Percetion (1) is lawred who and	Fastetion (1) is largedly boood on determination of Decam University (119	(113	460	15.20	
116 se primery references Fenetic	116 on pariment references. Equation (9) is the same as that used to construct	Lato,	470	15.54	
the 1 thm are managemented values. The telements elected in +19,	The telements stated is 4.1%		480	15.89	
me t min. Bas tevolimenard varies.	. The total and branch is + 1/4.		490	16.23	
At the 7th International Confe	Conference on Steam, two papers were presented	sented	200	16.59	
[156, 210] based on a unique equation	[156, 210] based on a unique equation for representing the whole p. T. μ domain.	omain,	510	16.95	
and a paper by Bruges [27] which ta	akes also into account new results by R	lay	520	17.34	
[286]. Their correlated values fall of	[286]. Their correlated values fall close to the tolerance of the International	nal	530	17.73	
Sheleton Table (1964). The recomm	Stateton Table (1964). The recommended values of this work was interpolated	ated	240	18.14	
from the values of the latter, in the	from the values of the latter, in the range 373, 15 K to 575, 15 K, but, above	9.7	550	18.61	
walnes	were used to generate the recommende		260	19.10	
			570	19.63	
			280	20.32	
			290	21.23	
			009	22.23	
			. 610	23.52	
			620	25.23	
			630	31, 17	
			. / 49	41.6	

* Crit. Temp.

TABLE 23-G(T). VISCOSITY OF GASEOUS WATER

DISCUSSION

SAS	(Tempo)	rature, T. K;	Viscosity, μ ,	(Temperature, T. K; Viscosity, μ, 10 ⁻⁶ N s m ⁻²)
			GAS	
and with the task of producing new tables on transport properties. The result	€→	3	L	31
was the recommendation of the equation:			650	23.38
			099	23.78
$\mu = (80.4 + 0.407 \text{ t}) 10^{-6} \text{ N sec m}^{-2}$ (t in C)			670	24.19
• • • • • • • • • • • • • • • • • • • •	280	8.32	680	24.60
which served for the representation of the viscosity of superheated steam in the	290	8.73	069	25.01
range IVO-/UO C. In the International Specieton (aute (1004)).	300	9,13	100	25.41
makes and a transfer of the many and the many and the many that are a manifestor and the many and the many and	310	2	91.0	95 x9

This equation is based on Shifrin's [197] results as a primary reference. An excellent discussion on the subject, can be found in a paper by Kestin [118].

The tolerances are ±1% in the range 373-573 K and ±3% in the range 573-973 K.

Several papers presented at the 7th International Conference (Tokyo, 1968) were dealing with the subject. Three of these are based on a unique equation for the representation in the whole p, T, µ domain, instead of 4 equations representing four separate domains (Tanishita [210], Miyabe [156] Rivkin [185]). Another paper, by Burges [27] which its an extension of a previous work [26] uses sevenal equations characteristic of different domains, and includes the experimental results of Latto [135].

Based on the same primary sources of references the values obtained in the different correlation fall well within the tolerances given by the International Skeleton table (1964). Therefore the recommended values were generated from the above equation (1).

in view of the wide acceptance of our basic equation and the numerous detailed discussion in the technical literature coupled with pressing requirements of time, no departure plot appears.

	31.	23.38	۲.	24.19	9	٠.	25.41	25,82	26.23	26.63	27.04				28.67		29.48			30.70						33, 15	-		•	٠.	35.18	35,59	35.99	₹.	8.3	37.22	37.62				
GAS	Ţ	650	099	670	089	069	7 00			7:30	740	7.50	760	770	780	190	800	810	820	830	840	850	860	870	880	890	900	910	920	930	940	950	960	970	980	086	1000				
	3				8.32		9.13	9.54			10.76	11.17	11.57	11.98	•	12.80	13.20	13.61	14.02	14.42	14.83	S.	5	9	•	16.87	•	17.68	ж ж	ò	18.90	19.31	۲.	3	r.	20.94	Ξ.	-	8	22.56	ć
	Ļ				280	290	300	310	320	330	340	350	360	370	380	390	400	410	420	430	440	450	460	470	480	490	500	510	520	230	540	550	260	570	580	290	009	610	620	630	640

3. ORGANIC COMPOUNDS

TABLE 24-G(T). VISCOSITY OF GASEOUS ACETONE

DISCUSSION	RECOMME	RECOMMENDED VALUES	
GAS	[Temperature, Τ, K: Viscosity, μ. N s m ² ·1σ ^ε]	cosity, u. N s m ² ·10 ⁶]	
	•	GAS	
175, 257]. They are in good agreement, except for the results of Uchiyama [236].	Ŀ	F	
off minths at (054) PM = manifest (manual of the second of	250	6.78	
use was made of the theoretical relation $\mu = m \cdot 1/\psi \cdot \omega$) to obtain the transfer of of thom the experimental data. These were plotted as a function of	260	6.96	
1/T and adjusted to a quadratic equation. From this equation recommended	280	7.35	
Values of the Viscosity were compared. The accumacy is of the order of 11.0	290	7.56	
· ·	300	7.77	
	310	7.99	
	330	17.0	
	340	8.67	
	350	8.90	
	360	9.14	
	370	9.38	
	380 390	. 80 80 80 80 80	
	400	10.13	
,	410	10.38	
	420	10.64	
	430 440	10.89 11.15	
	450	11.42	
	460	11.68	
	470	11.95	
	480	12.21 12.48	
	200	12.75	
	510	13.0	
	520	13.3	
	530 540	13.6 13.9	
	944	14.1	
	099	14.4	
	570	14.7	
	280	15.0	

15.3 15.8 16.1 16.4 16.7

590 600 610 620 630 640

TABLE 25-G(T). VISCOSITY OF GASEOUS ACETYLENE

DISCUSSION	RECOMMENDED VALUES	
CAS	[Temperature, T, K; Viscosity, \mu, N. m-1. sec-1.10-8]	
	GAS	
Experimental data for the viscosity of acetylene found in the literature are those of Kivama et al. 11941. Thehicama 1936. Wokean as al. 1964. Viscosi	T	
[257], Adzumi [1], and Titani [373]. The temperature range covered by the		
investigators is very narrow: from 273 to 523 K.		
	290 10.00	
I he analysis was performed using the theoretical relation:		
Ļ	310 10.66	
M = 266, 93 VMT f		
	340 11.61	
from which the group $\frac{\sigma^2\Omega(T^*)}{f}$ = $\frac{1}{2}$ was computed. The values obtained were		
photted as a function of 1/T, and the curve compared with a similar curve for		
menane, using appropriate reduction factors. From the smooth curve drawn, a table was generated and recommended values commuted	380 12.87	
a water map benefit and i confilled and a supported and i confilled and a supported and a supp		
The fit of the data is within 2 percent except for one value of	400 13,48	
Uchiyama (2:36) .		
	430 14.03	
	450 14.98	
	490 16.12	
	530 11.24	
	560 18,06	
	580 18.59	
	600 19.12	

Y OF GASEOUS BENZENE

>-
_
=
~
$\overline{}$
Ξ.
_
20
2
>
•
_
_
_
(3
26-G
ų.
Ñ
•
_
_
—
٧,
TABLE

DISCUSSION	8	RECOMMENDED VALUES	D VAL	JES
	Temperatur	e, T, K; Vis	cosity, 1	Temperature, T, K; Viscosity, 10 ⁻⁶ N sec m ⁻²
CAS		GAS		
Seven sets of experimental data were found in the literature. Most of	H	3	H	31
them are reliable [41,215, 154, 236, 257, 287, 175]. High temperature data			450	11.43
of Uchiyama [236] were not taken into account.			460	11.68
	270	6.90	470	11.93
The correlation was made by using the theoretical relation	280	7.15	480	12.18
## KVT(043). From the data, the group 0.14 was computed and pincted us	290	7.40	490	12, 42
** Improve the second of the s	300	7.65	200	12.67
is thought to be shout + 1 percent over the whole range.	310	7.90	510	12.9
	320	8.16	520	13.2
	330	8.41	230	13.4
	340	8.66	540	13,7
	350	8.92	550	13,9
	360	9.17	260	14.1
	370	9.42	920	14.4
	380	9.61	280	14.6
	390	9.93	290	14.9
	400	10.18	009	15,1
	410	10.43	610	15.3
	420	10.68	620	15.6
	430	10.93	630	15.8
	440	11.18	640	16.0
			650	16.3

FIGURE 26-G(T). DEPARTURE PLOT FOR VISCOSITY OF GASEOUS BENZENE

TABLE 27-L(T). VISCOSITY OF LIQUID BROMOTRIFLUOROMETHANE

z
ō
8
⋍
ğ

DISCUSSION	RECOMMENDED VALUES	VALUES
SATURATED LAQUID	[Temperature, T. K. Viscosity, μ 10 ⁻⁸ N s m ⁻²]	sity, \$\mu 10^8 N s m^2]
Two sets of experimental data were found in the literature, those of	SATURATED LIQUID	IQUID
[275]. The latter is not reliable, but the two sets show good consistency. They were least square fitted to an equation:	Į	3 1
log u= A + B/T		
	170	0.936
from which the recommended values were generated.	180	0.746
:	190	0.609
The accuracy is thought to be $\pm 3\%$.	200	0.507
	210	0.430
	220	0.370
	230	0.322
	240	0.284

0.253 0.228 0.206 0.188 0.173 0.1594 0.1445 0.0985 0.0985

250 260 270 280 280 390 310 320 330 340*

TABLE 27-V(T). VISCOSITY OF BROMOTRIFLUOROMETHANE VAPOR

DISCUSSION

SATURATED VAPOR

2	•
٠	-
ċ	
-	۹
٠	?
2	
į	2
i	Ž
1	ž
3	Š
ç	Ş
Č	í
ò	ì

[Temperature, T, K, Viscosity, µ, 10-3 N s m-2]

H.
APC
V C
ATED
TUR
SAT

SATURATED VAPOR	Ţ		220 0,01171				290 0,01635	310 0,0183		
Recommended values for the viscosity of the saturated vapor were estimated with the method outlined by Stiel and Thodoston; using the second mission in account.	concept. The density values were taken from a manufacturer's technical note,	The accuracy is thought to be $\pm 5\%$.								

0.0346

340

7

TABLE 27-G(T). VISCOSITY OF GASEOUS BROMOTRIFLUOROMETHANE

RECOMMENDED VALUES	[Temperature, T, K; Viscosity, μ , 10-6 N s m-7	GAS	3		240 12.72				280 14.71 290 15.20	310 16.15			360 18.46	380 19.35	400 20.22		430 21.30 440 21.92	460 22.74	480 23.55	
DISCUSSION	SAS		Three sets of experimental data were found in the literature [177, 235, 262] They gives the temperature range from 230 K to 423 K with no coorden	from one set to another. They were least square fitted to a quadratic cquation:		$(L)_1 = (L)_2 = (L)_2$	ı	from which recommended values were generated.	The accuracy is of the order of $\pm 2\%$.											

FIGURE 27-G(T). DEPARTURE PLOT FOR VISCOSITY OF GASEOUS BROMOTRIFLUOROMETHANE

TABLE 28-L(T). VISCOSITY OF LIQUID i-BUTANE

•		,	
;			١
١			
Ì	ì	į	
ļ	į	į	
i			
Į			
ŧ	2	į	į

RECOMMENDED VALUES	CACHIPCAGUIC, I. N. VIOVOLIJ, P. IV N B. I. J. SATVIDATEN I MITTE	מוס און מון נונים	-1
DISCUSSION	SATURATED LIQUED	There are two sets of experimental data for the viscosity of liquid iso-	311 K, while there are two points of Gonzalez [78] at 311 and 344 K. They are quite diverging. The data of Lipkin were fitted to an equation

	rature there is a ically to the value od of Jossi, Stiel
$\log \mu = A + B/T$	from 210 to 320 K. Above this temperature to the critical temperature there is a lack of data. The recommended value at 320 K was joined graphically to the value of the viscosity at the critical temperature computed by the method of Jossi, Stiel and Thodos [100].

	s and ±10% or even	
and Thodos [100].	The accuracy is considered to be about $\pm 3\%$ below 320 K and $\pm 10\%$ or even	a leasure mesostatists at higher temperatures

0.748	909.0	0.500	0.421	0.359	•	0.272			0.193		0.1593			0.1250	∹	0.1055	٩.			0.0640	0.0510	0.0233
190	200	210	220	230	240	250	260	270	280	290	300	310	320	330	340	350	360	370	380	380	400	408*

TABLE 28-V(T). VISCOSITY OF i-BUTANE VAPOR

DISCUSSION

DISCUSSION	RECOMMENDED VALUES	ED VALUES
SATURATED VAPOR	[Temperature, T, K; Viscosity, μ. 10-8 N s m-2]	osity, μ. 10-8 N s m ⁻²]
Recommended values of the viscosity of the saturated vapor were computed	SATURATED VAPOR	VAPOR
by the correlation technique of Jossi, Stiel and Thodos [100] using the recommended values of viscosity of the dilute gas and a generalized correlation of the excess viscosity versus reduced temperature from other gases using also the corrected with the corrected that the corrected with the corrected that the corrected with the correc	F	a .
relation of Jobbi, Strel and Inches [100].	270	66900 .
The accuracy is of about 2% except where approaching the critical temper-	280	. 00727
ature, where it may reach about ±5%.	290	. 00757
	300	. 00786
	310	.00816
	320	. 00845
	330	. 00876
	340	. 00917
	350	99600 .
	360	.01025
	370	. 01092
	380	. 01190
	390	. 01326
	400	. 0154
	408*	. 0233

TABLE 28-G(T). VISCOSITY OF GASEOUS I-BUTANE

DISCUSSION	RECOMMEN	RECOMMENDED VALUES
GAS	[Temperature, T, K;	[Temperature, T, K; Viscosity, μ , 10-f N s m-2]
There are four sets [133, 191, 216, 236] and a single value [89] of		GAS
experimental data for the viacosity of gaseous 1-dutane. The temperature range covered is very narrow, going only from 283 to 407 K. There are large discrepancies between the values reported.	F	a .
The analysis was made by computing the group $\sigma^2\Omega(T^4)/f\mu$ = y_{obs} from the theoretical relation:	270	30 c
H = 266, 93 = 70,775 f.	290	7.36
	300	7.84
and profiting the values obtained as a function of 1/T. From the curve obtained, a table was generated after graphical smoothing. Recommended values were infarmalated from the table. The accuracy is about + 50.	320	8.32
money control and state about 1.074.	340	8.57
	350	8.81 9.05
	370	9.29
	390	9.76
	400	10.00
	410	10.24
	430	10.71
	440	10.94
	450	11.17
	470	11.63
	480	11.86 12.09
	500	12.31
	520	12.75

FIGURE 28-G(T). DEPARTURE PLOT FOR VISCOSITY OF GASEOUS I-BUTANE

}

TABLE 29-L(T). VISCOSITY OF LIQUID n-BUTANE

Z
7
×
Ø
×
۳,
¥
9

RECOMMENDED VALUES	[Temperature, T, K; Viscosity, μ , 10-3 N s m-2]	e results of	age [32]. The Tail temperature. The parement tails between these the agreement the a	180 0.688 190 0.571		6 being smoothed 220 0.361	leans 240		3% throughout. 270 0.21	290 0.177	300 0.1613		340 0.1092	360 0.0881	390 0,0632	(V)	2400 0048	
DISCUSSION	SATURATED LIQUD	The literature revealed four sets of experimental data, the results of	Liptin 11421. Swiff (209), Krueger [129], and of Carmichael and Sage [32]. The latter are at two temperatures, one of which is close to the critical temperature. One of the values of Swift is at 373 K. There is thus a lack of data between these two temperatures, the other data between 183 and 373 K. The agreement between the sets is good.	The correlation was made by using an equation	$\log \mu = A + B/T + \delta$	which was least square fitted below 280 K with 6 = 0, the residual 6 being smoothed from 250 K to 400 K. About this formation a long than 1 and	join the recommended value to the viscosity at the critical point of the technique of facilities and many at the critical points of the technique of facilities and many and provided the technique of facilities and many and are considered to the technique of facilities and many are considered to the technique of facilities and the technique of t	OF THE POCHEMENT OF SOBEL, SUBSTREET AND LINGUIS [200].	The accuracy of the recommended value is estimated as $\pm 3\%$ throughout.									

* Crit. Temp.

į

FIGURE 29-L(T). DEPARTURE PLOT FOR VISCOS.TY OF LIQUID 1-BUTANE

TABLE 29-V(T). VISCOSITY OF n-BUTANE VAPOR

DISCUSSION

SATURATED VAPOR

Recommended values for the viscosity of the saturated vapor were genbais for the excess viscosity of several gases were plotted as a function). Mode demperature. From the curve obtained, the excess viscosity for n-butane was determined and used together with the recommended values of the 1 atm gas, to generate the recommended curve.

The accuracy is estimated as ±3%.

RECOMMENDED VALUES ire, T, K; Viscosity, μ , 10^{-3} N s m ⁻²]	SATURATED VAPOR	E	. 00692 . 00719 . 00747	. 00776 . 00805 . 00836 . 00854	. 00830 . 00875 . 01029 . 01092	. 0128 . 0143 . 0168 . 0239
RECOMMEN (Temperature, T, K; V	SATURAT	£	270 280 290	300 310 320 330 340	350 360 370 380 390	400 410 420 426*

* Crit. Temp.

TABLE 29-G(T). VISCOSITY OF GASEOUS n-BUTANE

[Temperature, T.K; Viscosity, µ, 10⁴ N s m-2] RECOMMENDED VALUES

~
Ħ
92
<u> </u>
5
25
8
_

GAS

さいまっています いまできます とこいを成分を変える

The correlation was made by computing the group $\sigma^2\Omega(T^*)/f_{\mu}$ = yobs from the theoretical expression $\mu\approx 266,93~\frac{\sqrt{M-T}}{\sigma^2\Omega(T^*)}~\mu$

and plotting the values obtained as a function of 1/T. From the curve obtained, a table was generated after graphical smoothing. Recommended values, interpolated from the table, are thought to be accurate to within three percent.

S	3 .	98.9	7.09	7.33	7.57	7.81	8.05	8.29	8.53	8.77	9.01	9.25	9.49	9.72	9.6	10.20	10.43	10.67	10.90	11.13		11.59		12.05	12.27	12.50	12.72
GAS	T	270	280	290	300	310	320	330	340	350	360	370	380	390	400	410	420	430	440	450	460	470	480	490	200	510	520

•• · ••

BON DIOXIDE

DISCUSSION	RECOMMENDED VALUES	UES
SATURATED LIQUID	[Temperature, T, K; Viscosity, μ 10 ⁻³ N s m ⁻²]	u 10-3 N s m-2]
Three sets of experimental data were found in the literature, from	SATURATED LIQUID	Q
Novikov [161], Stakelbeck [202], and Warburg [260]. They cover a narrow range from 255 K to the critical point and were assumed to be of equal reliability in deriving the recommended values from them.	I .	
	255 0.12	222
Values computed by the correlation technique of Jossi, Stiel and Thodos	260 0,1146	146
[100] for the saturated liquid near the critical point are in fair agreement with	265 0.10	770
the recommended values. The accuracy of this correlation is thought to be		.016
about ±3%.		096
	280 0.0908	806
		1861
		1790
		704
		969
	304* 0.0316	316

FIGURE 30-L(T). DEPARTURE PLOT FOR VISCOSITY OF LIQUID CARBON DIOXIDE

TABLE 30-V(T). VISCOSITY OF CARBON DIOXIDE VAPOR

2	į
и	о
Ľ	1
0	7
•	i

SATURATED VAPOR

RECOMMENDED VALUES

[Temperature, T, K; Viscosity, μ , 10⁻³ N s m⁻²]

_
μ
\sim
χ
μ
4
-
۳
_
۰
Ŀ
7
٠
4
~
:-
Ξ
ε
5
•
U

Values for the viscosity of the saturated vapor were computed by the	SATURATED VAPOR	D VAPOR
method of Jossi, Stiel and Thodos [100] using the recommended values for the 1 stm gas, and the density values of Din [49]. They are thought to be reliable	H	3.
it $\pm 5\%$, but may be in large error ($\pm 10\%$) in the vicinity of the critical	216.56	0.01103
	220	0.01129
	230	0.01201
	240	0.01273
	250	0.01347
	260	0.01428
	270	0.01523
	280	0.01649
	290	0.01874
	300	0.02282
	304*	0.03160

* Crit. Temp.

DISCUSSION

DISCUSSION		RECOMMENDED VALUES (Temperature, T. K; Viscosity, 4, 10°8 N	RECOMMENDED VALUES, T. K; Viscosity, μ, 10*	DED VALUES sity, μ, 10°¢ Γ	[sm-2]	
Experimental data for the viscosity of carbon dioxide reported in the literature are twenty eight in number. They cover a temperature range from 175 to 1886 K.	H	z	GAS	Si II	H	3
To correlate the data, use was made of the theoretical expression $\mu = 266.93 \frac{\sqrt{M-T}}{\sigma^2 \Omega (T^*)} \frac{f}{\mu}$	170 180	8.79 9.26 9.74	550 560 570 580	25.4 26.1 26.5 8.5	950 970 980	38.88 38.68 39.99 4.19
The group $\sigma^2\Omega(T^2)/f_\mu$ was computed from the experimental data and plotted as a function of 1/T. A table was generated from the smooth curve obtained. Recommended values were computed from the theoretical formula, with the values of $\sigma^2\Omega(T^2)/f_\mu$ interpolated from the table. Previous correlations made by Keyes [121] and a semi-theoretical evaluation made by Andrussow [3] were in good agreement with the present work.	200 200 210 220 230 240 250	10.22 10.71 11.19 11.68 12.16	600 610 620 630 640	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1000 1050 1100 1150 1200	2 8 4 4 4 4 4 7 7 1 1 1 1 1 1 1 1 1 1 1 1 1
At high temperature, the results of Di Pippo [51] are generally higher than the recommended curve, while experimental values of Vasilesco [254-255], Kompaneetz [127] and Trautz [219, 225, 233] are lower, indicating systematic divergence. The accuracy is about ±2%, but may reach ±5% at high temperature.	2 60 2 2 20 2 2 20 3 3 20 3 4 4 4 5 5 4 4 6 6 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	13.12 13.59 14.53 14.50 15.45 15.91 16.81 16.81 17.26 17.70 19.00 19.00 19.42 19.85 20.68 21.90 22.30 22.50 23.48 23.48 23.50	660 670 680 690 700 710 720 730 740 740 740 740 880 880 880 880 880 890 890 890 890	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1300 1350 1400 1400 1500 1550 1600 1650 1700 1700 1850 1950 2000	6. 14 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
	540	25.0	940	38.0		

TABLE 31-G(T). VISCOSITY OF GASEOUS CARBON MONOXIDE

SCUSSION
ä

GAS

RECOMMENDED VALUES

[Temperature, T, K; Viscosity, μ , N. m⁻¹. sec⁻¹. 10⁻⁶]

There are eight sets of experimental data available for the viscosity of carbon monoxide. They are those reported by [6, 97, 139, 201, 227, 257, 264,			3	GAS		
270], covering the temperature range from 80 to 550 K. In general a good agreement was found between the data of the various investigators.	F	31.	H	3.	H	3
			450	24.10	820	36.8
In the analysis use was made of the theoretical expression:			460	24.48	860	37.0
5	8	5.40	480	25.22	088	37.6
4 (*10°0) 20°1 21°1 11°1 11°1 11°1 11°1 11°1 11°1	8	90.9	490	25.59	890	37.8
	100	6.70	200	25.95	006	38.1
The group $[\sigma^2\Omega(T^*)/t] \approx y$ obs was computed from the experimental	110	7.34	510	26.3	910	38.3
data and plotted as a function of 1/T. A curve was drawn through the points.	120	7.98	520	26.7	920	38.6
using for guidance similar curves for argon and nitrogen, which were re-	130	8.61	530	27.0	930	38.9
duced to the same units making use of the ratios of the collision diameters	140	9.23	540	27.4	940	39.1
evaluated from the data, and the ratios of the Boyle temperatures. From the	150	9.84	550	27.7	950	39.4
resulting curve, a table was generated which was used to compute recom-	160	10.44	260	28.0	096	39.6
incended values .	170	11.03	570	28.4	970	39.9
A Association appearable from many my Kerron [191] and a commi-	180	11.61	280	28.7	980	40.1
theoretical evaluation made by Andriasary [3]. both are in conditional	190	12.18	590	29.0	066	40.4
ment with the present work. The recommended values are thought to be	200	12.74	909	29.4	1000	40.6
accurate to about one percent below 500 K. two percent from 500 to 1000 K.	210	13.29	610	29.7	1010	40.8
and within five percent for all higher temperatures tabulated.	220	13.82	620	30.0	1020	41.1
	230	14.35	630	30.3	1030	41.3
	240	14.87	640	30.7	1040	41.6
	250	15.38	650	31.0	1050	41.8
	260	15.88	099	31.3	1060	42,1
	270	16.38	670	31.6	1070	42.3
	280	16.87	680	31.9	1080	42.5
	290	17.34	069	32.2	1090	42.8
	300	17.81	700	32.5	1100	43.0
	310	18.27	710	32.8	1110	43.2
	320	18.73	720	33.1	1120	43.5
	330	19.18	730	33.4	1130	43.7
	340	19.62	740	33.7	1140	43.9
	350	20.05	750	34.0	1150	44.2
	360	20.48	160	34.3	1160	44.4
	370	20.91	770	34.5	1170	44.6
	380	21.32	780	34.8	1180	44.9
	390	21.74	190	35.1	1190	45.1
	400	22.14	800	35.4	1200	45.3
	410	22.54	810	35.7	1210	45.5
	420	22.94	820	35.9	1220	45.7
	430	23.33	830	36.2	1230	46.0
	440	23.72	840	36.5	1240	46.2

TABLE 31-G(T). VISCOSITY OF GASEOUS CARBON MONOXIDE (continued)

3
<
6
E
Z
Z
8
Ö
Z

[Temperature, T, K; Viscosity, μ , N.m⁻¹, sec⁻¹, 10⁻⁶]

GAS	3		46.6	46.8	47.3	47.5	47.7	47.9	48.1	48.3	48.5		49.0	49.2	49.4	49.6	49.8	50.0	50.2	50.4	50.6	50.8	51.0	51.2	51.4	51.6	
75	H	1250	1260	1270	1290	1300	1310	1320	1330	1340	1350	1360	1370	1380	1390	1400	1410	1420	1430	1440	1450	1460	1470	1480	1490	1500	

FIGURE 31-G(T). DEPARTURE PLOT FOR VISCOSITY OF GASEOUS CARBON MONOXIDE

FIGURE 31-G(T). DEPARTURE PLOT FOR VISCOSITY OF GASEOUS CARBON MONOXIDE (continued)

TABLE 32-G(T). VISCOSITY OF GASEOUS CARBON TETRACHLORIDE

2	
Č	5
7	ž
1	3
Ċ	ز
Ç	2
c	4

LABOCUSALON		RECOMMENDED VALUES	VALUES		
GAS	[Temper	[Temperature, T, K; Viscosity, µ, N s m ⁻² · 10 ⁻⁶]	osity, 11, N 8 1	m ⁻² · 10 ⁻⁶]	
Five sets of erner/ments data were found in the literature [22, 215, 292.		GAS			
213, 254 . They are in reasonable agreement,	T	3	T	3	
The semestic season date means transfer as leading to the male from			550	17.5	
14 = K. I/M-2D). The values of rid were then nicked on a grant as a function of			260	17.7	
1 T. It was found that these values could be represented by a matricial			210	18.0	
1/4	280	9.30	280	18.3	
entact is of the order of ±3 percent.	290	9.64	290	18.5	
	300	9.97	009	18.8	
	310	10.30	610	19.1	
	320	10.63	620	19.3	
	330	10.96	630	19.6	
	340	11.28	640	19.8	
	350	11.60	650	20.1	
	360	11.92	099	20.3	
	370	12.23	670	20.6	
	380	12.54	089	20.8	
	390	12.85	069	21.1	
	400	13.16	200	21.3	
	410	13.46	710	21.6	
	420	13.76	720	21.8	
	430	14.06	730	22.1	
	440	14.36	740	22.3	
	450	14.65	750	22.5	
	460	14.94	760	22.8	
	410	15.23	770	23.0	
	480	15.52	280	23.2	
	490	15.81	190	23.5	
	200	16.09	800	23.7	
	520	16.4			
	230	16.9			
	540	17.2			

FIGURE 32-G(T). DEPARTURE PLOT FOR VISCOSITY OF GASEOUS CARBON TETRACHLORIDE

* T_j,

TABLE 33-G(T). VISCOSITY OF GASEOUS CARBON TETRAFLUORIDE

DISCUSSION

DISCUSSION	RECOMMENDED VALUES [Temperaturé, T, K: Viscosity, µ, N s m ⁻² · 10 ⁻⁶]
Five sets of experimental data were found in the literature [144, 145, 235, 262, 265]. They cover a temperature range from 230 K to 460 K. From the data, the values of: $\sigma^2 \Omega = \frac{K}{\mu} \sqrt{T}$	T 44
were computed and fitted to a quadratic equation in 1/T. Recommended values in the range 230 to 500 K were generated from this adju-ted equation.	
The agreement of the data of the various authors is generally good, and the accuracy is thought to be $\pm 2\%$ in the whole temperature range.	
	300 17.50 310 17.99 320 18.48 330 18.96 340 19.43
	350 19.89 360 20.35 370 20.80 380 21.25 390 21.69
	400 22.13 410 22.56 420 22.99 430 23.41 440 23.83
	450 24.24 460 24.65 470 25.05 480 25.45 490 25.85 500 26.24

TEMPERATURE, K FIGURE 33-G(T). DEPARTURE PLOT FOR VISCOSITY OF GASEOUS CARBON TETRAFLUORIDE 8 (P) **(4)** 8 (N) 8 **Q** 83 82 8

DEPARTURE, PERCENT

TABLE 34-L(T). VISCOSITY OF LIQUID CHLORODIFLUOROMETHANE

RECOMMENDED VALUES

Š	
Ž	
ä	
Š	

SATURATED LIQUID	[Temperature, T, K, V	[Temperature, T, K, Viscosity, μ 10-3 N s m-2]
Six sets of experimental data were found in the literature [14, 58, 79, 123,	SATURATED LIGUID	n liquid
166, 371, 184, and two sets of values given mamfacturer's technical notes [275, 276].	₽	3.
They were fitted to an equation		
	021	0.770
log $\mu = \mathbf{A} + \mathbf{B}/\mathbf{T}$	180	0.647
	190	0.554
in the range of temperature going from 168 K to 320 K. Above this temperature,	200	0.481
tenmerature. The emorphism of date shows increasing districtions	210	0.424
	220	0.378
	230	0.340
The accuracy is of about $\pm 15\%$.	240	0.309
	250	0.2824
	260	0.2602
	270	0.2412
	280	0.2248
	290	0.2105
	300	0.1980
	310	0.1870
	320	0.1772
	330	0.1670
	340	0.1500
	350	0.1320
	360	0.1050
	369*	0.0305

* Crit. Temp.

...*T* ...

TABLE 34-V(T). VISCOSITY OF CHLORODIFILUOROMETHANE VAPOR

DISCUSSION

SATURATED VAPOR

RECOMMENDED VALUES

[2-m s

SATURATED VAPOR

00
Z
10-2 N
2
3
>
ž
Viscosity
Š
>
Α.
*
Ė
.:
emperature
큟
2
ă.
٤
Ţ
بٽ

Recommended values for the viscosity of the saturated vapor were estimated by the method of Stiel and Thodos [207] using the recommended values for the 1 atm gas and the density values given in a manufacturer s technical note. The accuracy is thought to be $\pm\,5\%$ although this figure may rise to about $\pm\,10\%$ around the critical temperature.

0.01000	0.01043	0.01087	0.01132	0.01180	0.01233	0.01290	0.01350	0.01415	0.01485	0.01560	0.01640	0.0177	0.0199	0.0305
230	240	250	260	270	280	290	300	310	320	330	340	350	360	369*

TABLE 34-G(T). VISCOSITY OF GASEOUS CHLORODIFLUOROMETHANE

7	z
C	כ
'n	ó
ō	Ď
:	2
Ē	1
ě	ň
ř	ų

RECOMMENDED VALUES	[Temperature, T, K; Viscosity, µ, 10-6 N s m-2]	CAS	1 L	250 10,86		280 12.14 290 12.57	310 13.41		340 14.65	360 15.47				430 18.26	450 19,04	480 20.18	500 20,93
NSCUSSION	GAS		Eight sets of experimental data were found in the literature 114, 40, 136-7, 140, 150, 235, 262, 263, 264, 264, 264, 264, 264, 264, 264, 264		020 - M. I.	which were fitted to a quadratic equation in 1/T, from which recommended val-	The data of Coughlin [40] and Latto[136-7] which became available later	were found to the well with the calculated villes.	The accuracy is of about $\pm 2\%$.								

FIGURE 34-G(T). DEPARTURE PLOT FOR VISCOSITY OF GASEOUS CHLORODIFLUOROMETHANE

TABLE 35-G(T). VISCOSITY OF GASEOUS CHLOROFORM

DISCUSSION	RECOMMENDED VALUES
GAS	[Temperature, T, K; Viscosity, u. N s m ^{-t} · Le ^{-t}]
	CAS
257]. They are in reasonable agreement.	
Use was made of the theoretical relation $\mu = Kr'T/(\sigma^2\Omega)$ to obtain values	250 8.60 260 8 05
of of 0 from the experimental data. These were plotted as a function of 1/T and	
the viscosity were computed. The accuracy is of the order of ± 2.5 percent.	280 9.63
	320 11.00
	350 12.02
	380 13.0 2 390 13.36
	420 14.35
	450 15.33
	480 16.30 490 16.62
	510 17.3 520 17.6
	530 17.9 540 18.2
	560 18.8
	620 20.6 630 20.9
	650 21.6

TABLE 36-L(T). VISCOSI IY OF LIQUID CHLOROPENTAF LUOROETHANE

DISCUSSION

SATURATED LIQUID

[Temperature, T, K, Viscosity, μ , 10-3 N s m-2] RECOMMENDED VALUES

SATURATED LIQUID

0.9610

0.7738 0.6361 0.5323 0.4524 0.3897

Three sets of experimental data were found in the literature, those of Lilice[146]. Gordon [79] and Phillips [371]. They were least square fitted to an equation:

from which the recommended values were generated, in the range 190 K to 310 K.
Above the latter temperature to the critical, recommended values were read from a curve joining the estimated value at the critical temperature.

 $\log \mu = \Lambda + B/T$

The accuracy is thought to be ±5%.

0.3398 0.2994 0.2663 0.2388 0.2158

190 200 210 220 220 220 220 250 250 250 280 280 300 310 320 320 330 340 350

0.1930 0.1710 0.1485 0.1235 0.0945

0.053

TABLE 36-V(T). VISCOSITY OF CHLOROPENTAFLUOROETHANE VAPOR

DISCUSSION

RECOMMENDED VALUES [Temperature, T, K, Viscosity, μ , 10-3 K s m-7]

		CHANGE CHANGE
SATURATED VAPOR		[Temperature, T, K, Viscosity, μ, 1
Recommended values for the saturated vapor was computed by the method of Suisi and Thodos [207] which makes use of the excess viscosity, commendations and the contract of the excess viscosity of the contract of the contrac		SATURATED VAIVOR
Reduced excess viscosity versus reduced temperature were obtained for several refrigerants. Values read from that move were used from that there is not become with the	•	T
mended values for the 1 atm gas to get the present values		

it. but may reach	
ling point. b	
= ±5% near the boiling point	ical point
t to be ±5%	
cy is though	ben approaching t
The accura	than ± 10% w

0.01006 0.01044	0.01092 0.01141 0.01189		0.0136	0.0151 0.0167	0.0211 0.0287
240	250 260 270	290	310	330 ·	350 353*

TABLE 36-G(T). VISCOSTY OF GASEOUS CHLOROPENTAFLUOROETHANE

DISCUSSION	RECOMMENDED VALUES
CAS	[Temperature, T, K; Viscosity, 4, 10-6 N s m-2]
}	CAS
Five sets of experimental data were found in the literature, covering a sense of termometries from about 250 K to 473 K 140 143 235 262 2651	31 H
	250 10.83
From the data, the values of	
(F	
**************************************	280 12.00 290 12.38
were commuted, and adjusted to a quadratic equation in 1/T. from which in turn.	
recommended values were generated. The agreement from set to set is gener-	
ally good, and the accuracy is thought to be $\pm 2\%$.	
	340 14.28
	350 14.66
	380 15.77 390 16.14
	430 17.58
	480 19.34 490 19.68
	500 20.02

FIGURE 36-G(T). DEPARTURE PLOT FOR VISCORITY OF GASEOUS CHLOROPENTAFLUOROETHANE

TABLE 37-L(T). VISCOSITY OF LIQUID CHLOROTRIFLUOROMETHANE

DISCUSSION

RECOMMENDED VATIFIE	[Temperature, T, K, Viscosity, µ, 10 ⁻³ N s m-2]		recommended T		180	he critical tem- 190 0.326	210 0.248	220	230 0.197	240 0.179	250 0.1629	270 0.1335		300 0 000	
NORMON	Saturated liquid	Two sets of data were found in the literature, [79, 371] and one point value was found in a commercial technical note [276]. The two sets of data are	in disagreement, one being lower and the other higher than the recommended curve which was generated by a least square adjustment of:	log µ = A + B/T	and water covers the temperature range of 200 K to 270 K. Above the latter tem-	permittee, a curve was grawn to joint the estimated viscosity at the critical tem-	The accuracy of the recommended values and then the	range 200 to 270 K but may reach +15% a higher are investigle to be # 1/%, in the	Salnieradinal ranger as non-						

FIGURE 37-L(T). DEPARTURE PLOT FOR VISCOSITY OF LIQUID CHLOROTRIFLUOROMETHANE

TABLE 37-V(T). VISCOSITY OF CHLOROTRIFLUOROMETHANE VAPOR

DISCUSSION

SATURATED VAPOR

RECOMMENDED VALUES [Temperature, T, K, Viscosity, μ , 10^{-3} N s m⁻²]

SATURATED VAPOR

	:	
	E	

esti- ith	of.
ated vapor were of note [276] and w	rrelating equation
osity of the saturi cturer's technica	as, using the cor
lues for the viscalues of a manufa	for the 1 atm g
Recommended values for the viscosity of the saturated vapor were estimated with the density values of a manufacturer's technical note [276] and with	the recommended values for the 1 atm gas, using the correlating equation of Stiel and Thodos [207].

cent.
e ±5 per
ought to l
, is th
accuraci
The

0.00974	0.01027	0,01080	0.01133	0.01188	0.01247	0,01315	0.01380	0.01475	0.01580	0.01740	0.0224	0.0289
190	200	210	220	230	240	250	260	270	280	290	300	302*

TABLE 37-G(T). VISCOSITY OF GASEOUS CHLOROTRIFLUOROMETHANE

Z
0
荔
õ
ŝ
Ü
S
2
_

	Six sets of experimental data were found in the literature [137, 177, 2.35, asi, 261, 262, 263]. They cover the range 220 K to 423 K. The correlation was made by computing $e^2 f_0 = \frac{k \sqrt{T}}{k}$ $e^2 f_0 = \frac{k \sqrt{T}}{k}$ $e^2 f_0 = \frac{k \sqrt{T}}{k}$ which was least square fifted to a quadratic equation in 1/T, with all the data, except toole of Latto [137] which became evaluable later, and were found to fit the accuracy is thought to be $\pm 2\%$ in the whole range. The accuracy is thought to be $\pm 2\%$ in the whole range. The accuracy is thought to be $\pm 2\%$ in the whole range. The accuracy is thought to be $\pm 2\%$ in the whole range. 10 10 11.57 11.57 12.79 12.79 13.60 14.49 16.68 16.68 16.68 16.69 17.57 18.00 18.46 19.81 400 410 410 410 410 420 410 420 410 420 42	DISCUSSION	RECOMMENDED VALUES [Temperature, T, K; Viscosity, µ, 10 ⁻⁷ N s m ⁻²	ALUES , M, 10 ⁻⁴ N s m ⁻²
T 230 240 240 250 260 260 270 280 380 380 380 380 380 380 380 380 380 3	T 230 240 240 250 260 260 270 280 310 310 310 310 310 310 310 310 310 31	ental data were found in the literature $[137,\ 177,\ 255.$	GAS	
230 250 260 270 280 280 310 310 310 310 310 310 310 310 310 31	230 250 260 270 280 280 310 310 310 310 310 310 310 310 310 31	the range 220 K to 423 K. The correlation was		3
240 250 260 270 280 280 280 380 380 380 380 380 380 380 480 480 480	240 250 260 270 280 280 280 380 380 380 380 380 380 380 380 380 3			.57
250 270 270 280 390 310 310 310 310 310 310 310 310 310 31	250 270 270 280 390 310 310 310 310 310 310 310 310 310 31			.97
260 270 280 290 310 310 310 310 310 310 310 310 310 31	260 270 280 290 310 310 310 310 310 310 310 310 310 31			.37
270 280 290 300 310 310 320 330 340 350 370 370 380 410 410 420 440 440 450 450	270 280 290 310 320 330 340 350 370 370 380 390 410 410 420 440 450 450 450			.79
290 310 320 330 340 350 350 370 370 380 390 410 410 420 440 440 450 450	290 310 320 330 340 350 350 370 370 380 390 410 410 420 430 440 440 450 450	a quadratic equation in 1/T, with all the data,		.21
310 320 320 330 340 350 360 370 370 370 380 410 410 420 420 430 440 450 450 450	310 320 320 330 340 350 360 370 370 370 370 410 410 410 420 420 430 440 450 450 450	h became available later, and were found to fit		90.
310 320 330 340 350 360 370 370 380 390 410 410 410 420 430 440 450 450 450	310 320 330 340 350 360 370 370 380 390 410 410 410 420 430 440 450 450 450			.49
		to be $\pm 2\%$ in the whole range.		.92
				.36
				.80
				. 24
				89.
				.13
				.57
				. 02
				.46
				.91
				.36
				.81
				.26
				.71
				.15
				.60
				.05
				.50
				3

FIGURE 37-G(T). DEPARTURE PLOT FOR VISCOSITY OF GASEOUS CHLOROTRIFLUOROMETHANE

TABLE 38-L(T). VISCOSITY OF LIQUID DICHLORODIFLUOROMETHANE

DISCUSSION	RECOMMEN	RECOMMENDED VALUES
SATURATED LIQUID	[Temperature, T, K, N	[Temperature, T, K, Viscosity, μ , 10-3 N s m ⁻²]
Nine sets of data were found in the literature [14, 58, 79, 123, 140,	SATURATED LIQUID	ed laquid
275, 276, 277, 371]. They cover a temperature range going from about 200 K to 340 K. The results of Benning [14] covers about this whole range but are much higher, particularly at high temperature. The more recent results of phillips [371] in the range 300 to 310 K seems more consistent and also those of	F	3
Risele [58] in the same range. They were adjusted by least square to an equation:	. 170 180	1.210 0.969
$\log \mu = \Lambda + B/T$	190	0.794
Above 340 K, a curve was drawn to join the recommended value to the estimated value at the critical temperature. Recommended values were read from this curve and smoothed.	210 220 230 230 240	0.565 0.488 0.426 0.377
The accuracy of the recommended values are thought to be about $\pm 5\%$, although around the critical point the figure may reach $\pm 10\%$.	250 260 270 270 280 290	0.337 0.303 0.275 0.252 0.231
	300 310 320 330 330	0.2139 0.1989 0.1857 0.1141 0.1600
	350 360 370 380 380	0, 1445 0, 1275 0, 1055 0, 0750 0, 03:0

DISCUSSION

	RECOMMENT	RECOMMENDED VALUE
Saturated vapor	[Temperature, T, K, V]	[Temperature, T, K, Viscosity, µ, 10-8 N s m-2]
Recommended values for the viscosity of the saturated vapor were estimated with the correlating equation of Stiel and Thodas [2002] mish the January	SATURATE	SATURATED VAPOR
values of a manufacturer's technical note [277] and our recommended values for the 1 atm gas.	E+	
The accuracy is thought to be $\pm 5\%$ although a higher discrepancy may occur around the critical point.	240 250	0,01016 0,01058
	260 270	0,01102 0,01148
	280	0.01196
	300	0.01300
	310 320	0.01356 0.01415
	330	0.01480
	350	0.01640
		0.01746 0.01900
	380 385*	0.02220 0.03102

TABLE 38-G(T). VISCOSITY OF GASEOUS DICHLORODIFLUOROMETHANE

RECOMMENDED VALUES

DISCUSSION

GAS	[Temperature, T, K: V	[Temperature, T, K: Viscosity, u, N s m ⁻² · 10 ⁻⁶]
Ten sets of excerimental data were found in the literature [14.98.137.		CAS
49 , 150, 235, 261, 262, 265, 267]. They cover a temperature range from 250 K	T	3
to 473 K. The smoothed values of Maxical 149, 150 at temperatures higher than	250	10.57
5/3 N. WVETEV INTERESTRY WITH REINPERGUE. THEY WERE HOL TAKEN HILL SECTION.	260	10.98
increase an in manner an in	270	11.40
$\kappa^2 \Omega = \frac{K \sqrt{T}}{r} + f(1/T)$	280	11.80
7777 - 31	290	12.21
which wes less smare fitted and from which recommended values were other-	300	12.60
ating was leader ordered to the state of the	310	13.00
	320	13.39
Date by Salandik (267) and Latto (137) were only available later and were	330	13.78
found to fit very well with the recommended values. Likewise for values from a	340	14.17
DuPont report [277].	350	14.54
200	360	14.92
The accuracy of this correlation is thought to be $\pm 3\%$.	370	15.29
	380	15.66
	390	16.03
	400	16.39
	410	16.74
	420	17.10
	430	17.45
	440	17.80
	450	18.14
	460	18.49
	410	18.83
	480	19.16
	490	19.49
	200	19.83

TABLE 39-L(T). VISCOSITY OF LIQUID DICHLOROFLUOROMETHANE

[Temperature, T, K, Viscosity, μ , 10⁻³ N s m⁻²]

RECOMMENDED VALUES

DISCLESION		
	DESCL SSION	

The second of th

SATURATED LIQUID	[Temperature, T, K, V	[Temperature, T, K, Viscosity, μ , 10 ⁻³ N s m ⁻²]
Three sets of experimental data were found in the literature. These are	SATURATED LIQUID	ed liquid
the results of Besning [14], Phillips [166] and Kinser [123]. A single value was also found in a manufacturers technical note [275]. The results of Phillips cover the whole range of 200 K to 350 K and were given more weight in the advance.	F	z
to manufact	170	2.019
log 11 = A + B/T	180	1.590
	190	1.283
This adjustment curve was used to generate recommended values in the range	200	1.059
170 to 380 K. Above the latter temperature, to the critical a curve was drawn	210	0.889
graphically to join smoothly the estimated viscosity value at the critical point.	220	0.759
	230	0.657
I be recommended where the chought to be related to 1-or before 30 m. Before 90 K and the oritical temperature they should be considered tentative.	240	0.575
	250	0.509
	260	0.455
	270	0.410
	280	0.372
	290	0.340
	300	0.313
	310	0.289
	320	0.269
	330	0.251
	340	0.235
	350	0.2207
	360	0.2082
	370	0.1971
	380	0.1871
	390	0.1770
	400	0.1655
	410	0.1525
	420	0.1370
	430 440	0.1190 0.0970
	657	9000
	451	0.032

* Crit. Temp.

TABLE 39-V(T). VISCOSITY OF DICHLOROFLUOROMETHANE VAPOR

RECOMMENDED VALUES

٠,	•
7	
ì	
ă	į
Ě	
t	
Ģ	Į
2	ı

SATURATED VAPOR	[Temperature, T, K, Viscosity, μ , 10 ⁻³ N s m ⁻²]
Recommended values for the viscosity of the saturated vapor were gen-	SATURATED VAPOR
erated by means of the method of Stiel and Thodos (207) which made use of the excess viscosity content. Rethroad process viscosities as a function of reduced temper-	T = 1
sture were gotten from a curve generated from data on other refrigerants.	•

TABLE 39-G(T). VISCOSITY OF GASEOUS DICHLOROFLUOROMETHANE

_
z
O
ĕ
92
22
\mathbf{z}
O
Ø

RECOMMENDED VALUES	[Temperature, T, K; Viscosity, µ, 10-8 N s m-3]	GAS	T µ	280 10.89	590	300		320 12.34	340 13.09	350 13.45		370 14.18	390 14.90	400 15.26		430 16.33 440 16.68		480 18,08	500 18.77
DISCUSSION	SV3		Seven sets of experimental data were found in the literature [14, 143, 143, 150, 235, 261, 285]. The results of Makita [149, 150] shows an incressing	divergence from other results as the temperature increase, while the res	of Benning [14] are systematically lower. They were not used in the generation	of the recommended values, which was done by fitting a quadratic equation	יייייייייייייייייייייייייייייייייייייי	920 = KV_T	derived from the experimental vienceities	The state of the s	The accuracy is thought to be $\pm 2\%$.								

TABLE 40-L(T). VISCOSITY OF LIQUID DICHLOROTETRAFILUOROETHANE

[Temperature, T. K, Viscosity, 4, 10⁻³ N s m⁻²] RECOMMENDED VALUES

DISCUSSION

SATURATED LIQUID

	SATURATED LIQUID FOR found in the literature, and two sets	contical notes [275, 276]. The experi- and those of Kinser [123] covering tem- 0 K respectively. They were least square	170	3.177		n the temperature range 170-	ed 210	220		240 0.779	250 0.658	. 270 0.488		335	000	1000	
SATURATED LIQUID	Two sets of experimental data were found	l in manufacturer's te hose of Phillips (371, 200-330 K and 200-27	fitted to an equation	E/ G · • · · · · · · ·	108 m = V + D/1	from which recommended values were generated in the temperature range 170-	360 K. Above this temperature a curve was drawn to join smoothly the estimated	viscosity value at the critical temperature.	1	The accuracy is thought to be about ±5%.							

FIGURE 40-L(T). DEPARTURE PLOT FOR VISCOSITY OF LIQUID DICHLOROTETRAFLUOROETHANE

TABLE 40-V(T). VISCOSITY OF DICHLOROTETRAFLUOROETHANE VAPOR

RECOMMENDED VALUES

NOM	
SCOSE	

CONTRACTOR OF THE PROPERTY OF	The second second	
SALURAIED VAPOR	Lemperature, 1, n, viscosity, μ , 10 ° N s m -4	scosity, 4. 10 ° N 8 m -2
Recommended values for the viscosity of the saturated vapor we obtained	SATURATED VAPOR	O VAPOR
with the method of Sulei and Thodos [207] which makes use of the excess viscosity concept as a function of density. Saturated vapor density were taken from a manufacturer's technical note [279].	T	a.
The accuracy is thought to be ±5% although the figure may rise to ±10%		0.01063
ween approximate the critical temperature.	280 0. 290 0.	0.01096 0.01133
		0.01172
	310 0.	0.01213
		0.01256
		0.01293
		0.01342
		0.01396
	360 0.	0.01455
		0.01520
		0.01590
		0.01685
	400 0.	0.0182
		0.0203
	419* 0.	9.0311

TABLE 40-G(T). VISCOSITY OF GASEOUS DICHLOROTETRAFLUOROETHANE

The state of the s

Five sets of experimental data were found in the literature [12, 143, 235, 261, 265], covering an overall temperature range, from 233 to 473 K. The agreement between the sets is generally good. From the experimental values of viscosity we computed of $\int_{\mathbb{R}^2} \frac{1}{ \mathcal{A} } \int_{\mathbb{R}^2} \frac{1}{ $	Temperature, T, K; Viscosity, μ, GAS	RECOMMENDED VALUES (Temperature, T, K; Viscosity, μ, 10 ⁻⁶ N s m ⁻²] GAS T 230 9.44 240 10.02 250 10.02 250 10.02 250 10.05 250 10.63 250 11.59 310 11.59 310 11.59 320 12.55 330 12.55 330 12.55 340 14.28 350 14.28 350 14.28 360 14.28 360 14.28 360 14.28 360 14.28 360 14.28 360 14.28 360 14.62 400 14.97 410 15.31 420 460 16.09 460 16.09
	470 480 490 500	17.38 17.73 18.07 18.42

TEMPERATURE, K 8 (e) FIGURE 40-G(T). DEPARTURE PLOT FOR VISCOSITY OF GASEOUS DICHLOROTETRAFLUOROETHANE **4** 8 (N) 8 (P) P = I ATM 8

TEMPERATURE, F • 8 8 261 265 12 235 143 DEPARTURE, PERCENT

TABLE 41-L(T). VISCOSITY OF LIQUID 1, 1-DIFLUOROETHANE

RECOMMENDED VALUES

NO.
S S

SATURATED LIQUID	[Te	mperature, T. K: Viso	[Temperature, T, K: Viscosity, u, N s m ⁻² · 10 ⁻³]	
Only one set of experimental data by Phillips was found in the literature [371].		SATURATED LIQUID	C LIQUID	
An equation of the type:	_	H	1	
		200	0.593	
1/8 + + p/ 1		205	0.541	
was least smiss of fitted to the data and recommended values were generated		210	0.497	
from the constitution of t		215	0.457	
it officers equation:		220	0.423	
There is no means to assess the accuracy.		225	0.392	
		230	0.365	
		235	0.341	
		240	0.319	
		245	0.300	
		250	0.282	
		255	0.266	
		260	0.251	
		-265	0.238	
		270	0.226	
		275	0.2145	
		280	0.2041	
		285	0.1946	
		290	0.1857	
		295	0.1774	
		300	0.1698	
		305	0.1626	
		310	0.1559	
		315	0.1496	
		320	0.1436	

FIGURE 41-L(T). DEPARTURE PLOT FOR VISCOSITY OF LIQUID 1, 1-DIFLUOROETHANE

Curve Roferonc

TABLE 42-L(T). VISCOSITY OF LIQUID ETHANE

DISCUSSION

SATURATED LIQUID

Four sets of experimental data were found in the literature. The experimental data of Swift [209] cover the higher temperature range from 193 K to the critical point. The data from Galkov and Gerf [69] and those of Gerf and Galkov [70] cover the low temperature range from 100 K to 170 K, while the data of Di Geronimo [46] are in an intermediate range.

A least square fit of an equation of the type

log μ = A + B/T

was computed with all the data below 250 K, while the data from 250 K to the critical point were smoothed graphically. All data seems to be of equal reliation of Joses, Stiel and Thodos liquid were computed with the correlation equalism of Joses, Stiel and Thodos [100] used with orthobaric density data of Dinwith decreasing temperature. The overall accuracy of this correlation is estimated to 23%.

RECOMMENDED VALUES ure. T, K; Viscosity, μ 10-3 N s m-2]	D LIQUID	31	0.882	0.635	0.482	0.383	0.314	0.2639	0.2270	0, 1987	0.1766	0.1567	0.1392	0.1242	0.1107	0.0994	0.0888	0.0794	0.0708	0.0616	0.0540	0.0460	0.0361	0.0217
RECOMMENI [Temperature, T, K; V	SATURATED LIQUID	T	100	110	120	130	140	150	160	170	180	190	200	210	220	230	240	250	260	270	280	290	300	305*

TABLE 42-V(T). VISCOSITY OF ETHANE VAPOR

DISCUSSION

SATURATED VAPOR

The recommended values for the viscosity of ethane in the saturated vapor state were computed by the correlation technique of Jossi, Siel and Thodos [100] using the recommended value for the 1 atm gas, and the density data given by Din [48]. They are reliable to about $\pm 5\%$.

RECOMMENDED VALUES

[Temperature, T, K; Viscosity, µ 10-8 N s m-2]

SATURATED VAPOR

_

0.00619	0.00653	0.00689	0.00725	0.00766	0.00808	0.00856	0.00808	0.00970	0.01046	0.01174	0.01433	0.02166
190	200	210	220	230	240	250	260	270	280	290	300	305*

TABLE 42-G(T). VISCOSITY OF GASEOUS ETHANE

DISCUSSION			RECOMMEN	RECOMMENDED VALUES			
GAS	_	Temperature,	T. K; Visco	[Temperature, T.K; Viscosity, µ, 104 N s m-2]	N s m-2]		
Eleven sets of experimental data on ethane were found in the literature.			5	GAS			
covering a temperature range from 194 to 523 K, [1, 30, 41, 47, 53, 133, 146,	Ţ	3.	۲	3.	T	3	
200, 229, 257, 269] . The agreement is generally good.			450	13.57	750	20.4	
The analysis of data was made with the help of the theoretical expres-			460	13.82	760	20.6	
sion for viscosity:			470	14.33	2,72	21.0	
, LW)	190	6.13	490	14.58	190	21.2	
$\mathbf{u} = 266.93 = \mathbf{u}$	200	6.43	200	14.82	800	21.4	
	210	6.74	510	15.1	810	21.6	
From the experimental data, the group $\sigma^2\Omega(T^*)/\xi = y$, was computed	220	7.04	520	15.3	820	21.8	
SIGO. The state of	230	7.35	530	15.6	830	22.0	
and process as a nucleon of 1/1. The curve was smoothed and a table was gen-	240	7.65	540	15.8	840	22.2	
or more, at our where the commentation will be compared to the	250	7.96	550	16.0	850	22.4	
Most of the results lie within ± 2 percent of the calculated values.	260	8.26	260	16.3	860	22.6	
	270	8.56	570	16.5	870	22.8	
	280	8.86	280	16.7	880	23.0	
	290	9.15	280	17.0	890	23.1	
	300	9.45	009	17.2	900	23.3	
	310	9.74	919	17.4	910	23.5	
	320	10.03	620	17.6	920	23.7	
	330	10.32	630	17.9	930	23.9	
	340	10.60	640	18.1	940	24.1	
	350	10,88	650	18.3	920	24.2	
	360	11.16	099	18.5	096	24.4	
	370	11.44	670	18.7	970	24.6	
	380	11.71	089	18.9	980	24.8	
	390	11.98	069	19.2	066	25.0	
	400	12.25	200	19.4	1000	25.1	
	410	12.52	710	19.6			
	420	12.78	720	19.8			
	430	13.05	730	20.0			
	7	15.51	140	20.2			

TABLE 43-G(T). VISCOSITY OF GASEOUS ETHYL ALCOHOL

[Temperature, T, K; Viscosity, µ, 10⁻⁶ N sec m⁻²]

RECOMMENDED VALUES

DISCUSSION

GAS		GAS		
Six sets of experimental data were found in the literature [175, 215, 236,	£	=	Ŀ	=
257, 300, 301]. They are in the range from 373 K to account our except of a	-	1.	1 22	L ::
single value of 1218 n. trum voget (2017). An property of the same control of the			460	13,37
American Company and Marca Color of the Company of	270	8.14	470	13.63
	280	8, 43	480	13.89
The adjustment was made by using the relation $\mu = N, T/(q^2)$ (0) get	290	8.71	490	14,15
0.0 which was plotted as a function of 1/1. A quantum construct equation was mind	300	9.00	200	14.41
these data, and was used to generate the recommendation	310	9.28	210	14.67
is thought to De ±2 percent.	320	9.56	520	14.93
	330	9.84	530	15, 18
	340	10.11	240	15.43
	350	10.39	220	15.69
	360	10.67	260	15, 93
	370	10.95	570	16.18
	380	11.22	280	16.44
	390	11.49	290	16,68
	400	11.77	009	16, 93
	410	12.04		
	420	12.30		
	430	12.57		
	440	12.84		

FIGURE 43-G(T). DEPARTURE PLOT FOR VISCOSITY OF GASEOUS ETHYL ALCOHOL

TABLE 44-L(T). VISCOSITY OF LIQUID ETHYLENE

RECOMMENDED VALUES

DISCUSSION

[Temperature, T, K; V	[Temperature, T. K; Viscosity, μ , 10 ⁻³ N s m ⁻²]
SATURAI	SATURATED LIQUID
T	31
100	0.801
110	0.563
130	0.420 0.328
140	0.265
150	0.220
160	0.187
180	0, 162 0, 143
190	0.128
200	0.1153
210	0.1052
220 230	0.0967
240	0.0805
250	0.0710
260	0.0600
270	0.0465
283*	0.0295 0.0219
	Temperature, T, K; Y T T 100 110 110 110 110 110 1

* Crit. Temp.

-

TABLE 44-V(T). VISCOSITY OF ETHYLENE VAPOR

DISCUSSION

SATURATED VAPOR

Recommended values of the viscosity of the saturated vapor were computed by the correlation technique of Jossi, Stiel and Thodos [100] using the recommended values of viscosity of the dilute gas and a generalized correlation of the excess viscosity versus the reduced temperature from other gases using also the correlation technique of Jossi, Stiel and Thodos. No accuracy estimate is possible due to the complete absence of any experimental data.

RECOMMENDED VALUES

[Temperature, T, K; Viscosity, μ . 10⁻⁵ N s m⁻²]

SATURATED VAPOR

Ţ

0.00685	0.00725	0.00766	0.00807	0.00857	0.00912	0.0099	0.0109	0.0126	0.0160	0.0219
190	200	210	220	230	240	250	260	270	280	283*

* Crit. Temp.

Ù,

VISCOSITY OF GASEOUS ETHYLENE TABLE 44-G(T).

-	
4	
_	
,	
Э.	
ŭ	
7	
Ĉ	
τ	
7	
_	
4	
2	
-	
-	
₹.	
0	
Э.	
5	
×	
3	
_	
Ľ	
⊋	
_	
7-44	
2	
ī	
è	
1	
j	
-	

DISCUSSION		×	ECOMMEND	RECOMMENDED VALUES	,		
5	L	[Temperature, T, K; Viscosity, \mu.	r, K; Viscos	ity, µ, 10 1	10 4 N 8 m-2}		
		•	GAS	ø			
There are twelve sets of experimental data available for the viscosity of	H	3	H	3.	Т	1	
٠.	190	6.74					
the data of the various authors is generally good, except at low temperature	200	7.08	550	17.6	006	25.5	
where beings divergence exist.	210	7.42	260	17.8	910	25.7	
To newform the analysis use was made of the theoretical relation	220	7.76	570	18,1	920	25.9	
	230	8.09	280	18.3	930	26.1	
$\mu \approx 286.93$ TMT f	240	8.43	290	18.6	3 40	26.3	
1 (+175-0	250	8.76	009	18.8	920	26.5	
from which the grown after the Vs. was committed. The values obtained were plotted	260	9.03	610	19.1	096	26.7	
as a function of 1/T and a smooth curve drawn using as a guide, the similar	270	9.42	620	19.3	970	26.9	
	9 66 23 87 80 80 80 80 8	9.75	630 640	19.6	08 G	27.1	
factors,							
	300	10.39	650	20.0	1000	27.5	
The recommended values are thought to be accurate within $\pm 2\%$ in the	310	17.01	660	20.3	1050	28.4	
range from 250 to about 600 K.	320	11.03	070	20.5	1100	29.3	
	330	Z. :	989	20.1	1150	30.2	
	340	11.65	069	21.0	1200	31.1	
	350	11.96	700	21.2	1250	31.9	
	360	12.27	710	21.4	1300	32.8	
	370	12.57	720	21.7	1350	33.6	
	380	12.87	730	21.9	1400	34. 4	
	390	13.16	740	22.1	1450	35.2	
	400	13.46	750	22.3	1500	36.0	
	410	13.75	760	22.6			
	420	14.04	770	22.8			
	430	14.32	780	23.0			
	440	14.61	730 0	23.2			
	450	14.89	800	23.4			
	460	15.17	810	23.6			
	410	15.45	820	23.8			
	480	15.72	830	24.1			
	490	15.99	840	24.3			
	200	16.26	820	24.5			
	510	16.5	860	24.7			
	026	20.0	078	24.9			
	540	17.3	000	25.1			
	; ;		•) 			

TABLE 45-G(T). VISCOSITY OF GASEOUS ETHYL ETHER

RECOMMENDED VALUES

	,	
c		
ē	į	
٥		2
ċ		
è	į	į

215,587,704,704,704 200 cerept for naring from 273 K to 25,08	Seven sets of experimental data were found in the literature [41, 175,	Ů	CAS	
thon, the thin the th	215, 236, 257, 302, 303], covering a temperature range going from 273 K to	I	31	
thor, the control of		250	6.28	
280 tho, the three transporters of the transpo	as of the theorem in a solution $M=M/M^2$) to	250	6.82	
thon, the thick that the thick that the thick that the thick the thick that the t	and the properties of the state of the second secon	280	7.08	
300 310 310 320 330 340 340 340 340 340 340 440 440 44	and adjusted to a quadratic equation. From this equation.	290	7.35	
310 320 330 330 330 340 340 340 440 440 440 44	s of the viscosity were computed. The accuracy is of the	300	7.61	
330 340 340 340 340 340 340 340 340 340		310	7.87	
330 340 340 350 380 380 380 440 410 440 440 140 440 140 140 140 14		320	8.13	
340 350 380 380 380 380 380 440 440 440 440 440 440 440 440 440 4		330	8.39	
350 360 370 380 380 380 390 410 410 410 410 410 440 440 440 440 44		340	8.65	
360 370 380 380 380 400 410 440 440 440 440 440 440 50 50 50 50 50 50 50 50 50 50 60 60 640		350	8.90	
370 380 380 440 410 420 440 440 460 460 500 500 500 500 500 500 600 640		360	9,15	
380 390 400 410 420 430 440 440 470 480 490 110 520 520 530 540 560 560 600 610 640		370	9.40	
390 400 410 410 410 410 410 410 410 410 41		380	9.65	
400 410 420 430 440 450 · 450 · 450 480 480 500 510 520 530 530 540 560 640 640		390	9.90	
410 420 430 440 440 440 470 480 480 510 520 530 530 540 560 680 640		9400	10.14	
420 430 440 450 450 480 480 480 480 520 530 530 550 550 560 600 640		410	10,39	
430 440 440 450 * 450 480 480 480 510 510 520 530 550 560 600 610 640		420	10, 63	
440 450 ' 460 460 490 500 530 530 540 550 560 660 640		430	10.87	
450		440	11.11	
		450	. 11.34	
		460	11.58	
		470	11.81	
		480	12.04	
		200	12.50	
		520	- C	
		530	13.2	
		540	13.4	
		220	13.6	
		260	13.8	
		570	14.1	
		590	14. 5. 4.	
		009	14.7	
		010	n	
		630	15.3	
		640	15.5	

TABLE 46-G(T), VISCOSITY OF GASEOUS n-HEPTANE

DISCUSSION

RECOMMENDED VALUES

GAS	(Temperature, T. K. Visco	Temperature, T, K: Viscosity, µ, N.m ⁻¹ , sec ⁻¹ , 10 ⁻⁶	
Those are six sate of experimental data available in the literature for the	9	GAS	
viscosity of n-heptane 1.33, 236, 300, 305, 307 . They cover a temperature	T	4	
range from normal temperature to 548 K.	270	5.54	
	280	5.72	
The data were analyzed by using the theoretical relation	290	5.90	
J. TM	300	6.08	
# = 286.93 - 1.	310	6.26	
	320	6.44	
from which the groun [n20,17")/f = v was computed. The values obtained	330	6.62	
	340	6.81	
Were plotted as a function of 1/1 and a single craw craw, using as a guine	350	6.99	
the SIRILAR CULY COLOR INC. INC. INC. INC. INC. INC. INC. INC.	360	7.18	
CONFERENCE AMERICA O.	370	7.37	
Considerable discrementate evists however verious investigators and	380	7.55	
more weight was given to the results of Agaev [306] and Carmichael [307]. The	390	7.74	
data of Khalilov are widely scattered and seem to be seriously in error. The	400	7.93	
	410	8.12	
and to within five percent for all other tabulated temperatures.	720	8.31	
	430	8.50	
	440	8.68	
	450	8.87	
	460	9.06	
	470	9.25	
	480	9.44	
	064	9.62	
	200	9.81	
	510	10.00	
	520	10.19	
	230	10.37	
	540	10.56	
	550	10.74	
	090	10.92	
	576	11,11	

FIGURE 46-G(T). DEPARTURE PLOT FOR VISCOSITY OF GASEOUS n-HEPTANE

TABLE 47-G(T). VISCOSITY OF GASEOUS n-HEXANE

DISCUSSION		RECOMMENDED VALUES	D VALUES	
GAS	[Temperat	[Temperature, T, K; Viscosity, μ, 10 ⁴ N	cosity, µ. 10	6 N s m ⁻²]
Seven sets of experimental data on the viscosity of n-hexane were found in the literature [41, 133, 215, 236, 300, 306, 308]. They cover a temperature range,	F	GAS	Ę-	3
going from 273 to 873 N.	-	1	• 00	1 .
The analysis of the data was performed using the theoretical relation:			610	13.00
$\eta = 266.95 \text{ M} \cdot 11/[0.341 \cdot 1] \cdot 1000 \text{ Multiply to $4(1 \cdot 1)} \cdot 1/2 = 90)8$ was negatively a function of $1/1$.	270	6.07	620	13.20
and a smooth curve drawn, using as a guide a similar curve obtained for methane,	280	6.27 6.46	630 640	13,38
brought to the same scale by appropriate reduction factors.	800	6-66	650	13.77
There are considerable discrepancies between various investigators, the	310	6.87	099	13,96
data of Khalikov (300) seeming particularly incorrect.	320	7.07	670	14.15
	330	7.27	999	14.34
	340	4.48	989	14, 53
	350	7.69	100	14.71
	360	7.90	710	14.90
	370	8.11	720	15.09
	380	8.31	730	15.27
	390	8.52	740	15.46
	400	8.73	750	15.64
	410	8,94	160	15.82
	420	9.15	770	16.00
	430	9.36	780	16.18
	440	9.56	190	16.36
	450	9.77	800	16.54
		9.98	810	16.72
		10.18	820	16.89
		10.39	830	17.07
	490	10.60	840	17.25
		10.80	850	17.42
		11.00	860	17.60
		11.21	870	17.71
	230	11.41	98	2.3
		10.11	060	10.11
	550	11.81	900	18.29
		12.21		
		12.41		
		12.60		

FIGURE 47-G(T). DEPARTURE PLOT FOR VISCOSITY OF GASEOUS n-HEXANE

TABLE 48-L(T). VISCOSITY OF LIQUID METHANE

DISCUSSION

SATURATED LIQUID

i

There are six sets of experimental data in the literature, covering an overall range of temperature from 88 K to about the critical temperature. They were adjusted by least squares to the equation

log µ = A + B/T

in the range of temperature from 88 K to 150 K and smoothed graphically from 150 to the critical temperature.

The experimental data of Boon and Thomacs [20] in the range 90 K to Di Geronimo [46]. The experimental data of Rudenko[188] and Swife ct al. [208] show big discrepancies. Computed values by the method of Jossi. Stiel and Thodos [100] for the asturated liquid near the critical point are in fair agreement with the recommended values.

The reliability is thought to be of the order of $\pm 10\%$ for temperatures above 150 K, of $\pm 5\%$ down to 120 K and $\pm 2\%$ in the lower temperature range.

RECOMMENDED VALUES
[Temperature, T. K, Viscosity, μ 10⁻³ N s m⁻²]
SATURATED LIQUID

T
μ

90 0.2048
110 0.1525
110 0.1526
120 0.0826
140 0.0714
150 0.0629
160 0.0545
170 0.0649
180 0.0314
190* 0.0165

* Crit. Temp.

TABLE 48-V(T). VISCOSITY OF METHANE VAPOR

DISCUSSION

SATURATED VAPOR

The recommended values for the viscosity of methane in the saturated vapor state were computed by the correlation technique of Jossi. Sitel and Thodos [100] using the recommended value for the 1 atm gas and the density values given by Din [49].

They are reliable to about ±5%.

RECOMMENDED VALUES

[Temperature, T. K. Viscosity, μ 10⁻³ N s m⁻²]

SATURATED VAPOR

Ŧ

. 00372	. 00407	. 00478	. 00511	. 00553	. 00678	. 00771	90600.	. 01008	. 01038	. 01124	. 01312	. 01645
06	100	120	130	140	160	170	180	185	186	188	190	190*

* Crit. Temp.

TABLE 48-G(T). VISCOSITY OF GASEOUS METHANE

DISCUSSION

GAS

GAS

There are 27 sets of experimental data available for the viscosity of methane, covering an overall temperature range from 78 to 772 K contained in			
28 references [1, 5, 6, 16, 33, 24, 35, 37, 47, 72, 88, 99, 94, 95, 110, 52, 13, 133, 136, 144, 190, 196, 229, 239, 235, 225, 251, 251, 251, Agreement management is managed by moderate and high temperatures.	Ħ	31.	T 400
between investigation is generally good at mood and in the but, Uchiyana [236] results at 873 and 1073 K seems to be in serious error	02	00 8	410
(above 30%). At low temperature, more weight was given to combon 1501 data.	2 €	3.36	430

To analyze the data, use was made of the theoretical expression for viscosity:

 $\mu = 266.93 \frac{iMT}{\sigma^2 \Omega(T^*)} f_{\mu}$

data and plotted as a function of 1/T. The curve obtained has been compared with the similar curve obtained for argon, using reduction factors which were the ratio of Boyle temperature and the ratio of collision diameter evaluated from the data at the Boyle temperature. The group $[\sigma^2\Omega(T^{+})/\ell_{\parallel}] = y_{obs}$, was computed from the experimental

Good agreement exists with the correlation given by Keyes [121] in the region where experimental data are available, but a divergence exists at high temperature, and at 73 K. The recommended values should be accurate to within two percent between 100 and 750 K and within five percent for all other temperatures tabulated.

The accuracy is about ±2% throughout.

3	22.8	23.0	23.5	23.4	23.6	23.8	24.0	24.2	24.4	24.6	24.8	25.0	25.2	25.4	25.6	25.7	25.9	26.1	26.3	26.5	26.7	26.9	27.0	27.2	27.4	27.6									
Ţ	750	760	770	780	290	800	810	820	830	840	850	860	870	880	890	900	910	920	930	940	950	096	970	086 6	066	1000									
31	14.24	14.53	14.81	15.09	15.37	15.64	15.91	16.18	16.44	16.70	16,96	17.2	17.5	17.7	18.0	18.2	18.5	18.7	19.0	19.2	19.4	19.7	19.9	20.1	20.4	20.6	8.02	21.0	21.3	21.5	21.7	21.9	22.1	22.3	22.5
Ļ	400	410	420	430	440	450	460	470	480	490	200	510	520	530	540	550	260	570	580	290	009	610	620	630	640	650	099	670	089	690	200	710	720	730	740
3			3.00	3.36	3.72	4.06	4.42	4.78	5.11	5.53	5.90	6.28	6.65	7.02	7.39	7.76	8.12	8.48	8.84	9.19	9,53	9.87	10.21	10.54	10.87	11.20	11.52	11.84	12,15	12.46	12.77	٠	•	13.66	13.95
۲			70	98	8	100	110	120	130	140	150	160	170	180	190	200	210	220	230	240	250	260	270	280	290	300	310	320	330	340	350	360	370	380	390

TABLE 49-G(T). VISCOSITY OF GASEOUS METHYL ALCOHOL

SCUSSION 1

	RECOMMENDED VALUES	
GAS	Temperature, T, K; Viscosity, µ, 10 ⁻⁵ N s m ⁻²	- -
Five sets of experimental data were found in the literature. These are the results of Craven [41], Titani [215], Reid [301], Irrhivana 1936, and	GAS	
Khalilov [300]. The last two sources listed do not seem very reliable.	1 1 1 1 E	
The experimental data of the first three authors were used to obtain ~! O		
in the relation $\mu = K/T/(\sigma^2\Omega)$. The values of $\sigma^2\Omega$ were then plotted on a grand	8.60 460	
as a function of 1/T. It was found that these values could be represented by	8.91	
quadratic equation, which was used to generate the recommended values of the	9.23 480	
viscosity. The accuracy is of the order of ±1 percent,	9, 55 490	

16.47 17.1 17.5 17.8 17.8 18.1 18.5 18.5 19.4 19.4 19.8 20.1 20.1 20.4 20.8

500 510 520 530 530 540 550 560 560 600 610 620 630 640

9, 87 10, 19 10, 51 10, 51 11, 17 11, 17 11, 82 12, 15 12, 18 12, 81 13, 18 13, 48 14, 14

300 320 330 330 350 350 370 370 370 400 410 420 440

FIGURE 49-G(T). DEPARTURE PLOT FOR VISCOSITY OF GASEOUS METHYL ALCOHOL

TABLE 50-L(T). VISCOSITY OF LIQUID METHYL CHLORIDE

RECOMMENDED VALUES [Temperature, T, K; Viscosity, u. N s m⁻² · 10⁻³]

SATURATED LIQUID

	2	z
į	C	į
į	į	į
1		9
1	į	á
•	2	ď

SATURATED LIQUID

erature [14, 202] and	il note [272] .
Two sets of experimental data were found in the	one set of data was also found in a manufacturer's techni
(4	one set o

The experimental data were least square fitted to an equation

µ = A + B/T	from which recommended values were generated.	The experimental data of Stakelbeck [202] are higher than the recommended values, while the data of Benning [14] are lower. The manufacturer's data seems an extrapolation above 320 K of the latter. A curve was drawn to join the recommended value at 320 K to the estimated value at the critical temperature.
$\log \mu = A + B/T$	from which recomme	The experime mended values, while data seems an extrage join the recommende perature.

Below 320 K the accuracy is thought to be about $\pm 7\%$, but may be about 15% above 320 K.

0.357	. 285 . 272 . 261	0.251 0.242 0.233 0.223 0.223), 205), 195), 184), 172), 158), 139), 107), 028
000	,0000	00000	00000	000
230 240 250	260 270 280 290	300 310 320 330 340	350 360 370 380 390	400 410 416*

TABLE 50-V(T). VISCOSITY OF METHYL CHLORIDE VAPOR

DISCUSSION

SATURATED VAPOR

Ĩ.

Recommended values for the viscosity of the saturated vapor was done by cosity concept.

Reduced excess viscosity as a function of reduced temperature from a cosity which was added to the recommended values for the 1 atm gas to generate the bresent recommended values.

The accuracy is about ±3 percent.

RECOMMENDED VALUES ure, T, K, Viscosity, μ , 10^{-3} N s m ⁻²]	SATURATED VAPOR	3.	0.00895	0.00929	0.00963	0.00998	0.01035	0.01071	0.01113	0.01153	0.01195	0.01240	0.01291	0.01341	0.01397	0.01462	0.01538	0.01625	0.0175	0.0196	0.0278
RECOMM [Temperature, T, K	SATOL	Т	240	250	260	270	280	290	300	310	320	330	340	350	360	370	380	390	400	410	416*

* Crit. Temp.

ORIDE

Õ
ĭ
Ξ
$\ddot{\mathbf{c}}$
. 1
Z
_
ř.,
=
~
S
7
Ä
3
6
_
Ŀ
0
>
ь
ŏ
2
×
==
>
_
<i>∹</i>
Н
÷
Ö
4
2
ω
ř

. 1.

Name sets of experimental data were found to the literature 114, 22, 23, Name sets of experimental data were found to the literature 114, 22, 23, Set 22, 225, 237, 237, 237, 237, 237, 237, 237, 237	NSCUSSION	RECOMMENDED VALUES [Temperature, T, K, Viscosity, µ, 10-€N s m-²]
250 250 270 280 280 310 310 310 310 310 310 310 310 310 31		GAS
260 270 270 280 280 330 330 330 330 330 330 330 330 330 3	sperimental data were found in the literature [14, 22, 23, 772, 273]. There is a good consistency among the different	
270 280 290 310 310 310 310 310 310 310 310 310 31	of Octayana (2.0). The range of temperature covered K. Computed values of	
290 310 310 320 330 330 340 340 350 350 360 440 440 440 440 440 440 440 440 440 4		_
300 310 320 330 340 340 340 350 350 360 440 440 440 440 440 440 440 440 440 4		
310 320 321 320 321 321 322 323 324 326 326 327 327 327 327 327 327 327 327 327 327	d to a quadratic equation in 1/T, from which recommended	
of about # 2%. 350 340 340 340 340 340 340 340 340 340 34		
340 350 350 360 370 380 380 380 380 410 410 440 440 480 480 480 480 480 580 580 580 580 680 680 680	f the correlation is of about $\pm 2\%$.	

FIGURE 50-G(T), DEPARTURE PLOT FOR VISCOSITY OF GASEOUS METHYL CHLORIDE

TABLE 51-L(T). VISCOSITY OF LIQUID OCTAFLUOROCYCLOBUTANE

DISCUSSION

dingr	
RATED L	
SATU	

Two sets of experimental data were found in the literature, those of Gordon [79] and Lilios [140]. They cover a range of temperature from 243 K to 300 K. The agreement is generally good. The data were least square fitted to an equation

log µ = A + B/T

from which recommended values were generated in the range 240 to 310 K.

Above this temperature, a curve was drawn to join smoothly the estimated viscosity value at the critical temperature.

The accuracy is thought to be $\pm\,5\%,\,$ although the figure may be higher when approaching the critical point.

RECOMMENDED VALUES

[Temperature, T. K: Viscosity, u. $N : m^{-2} \cdot 10^{-3}$]

SATURATED LIQUID

0 0 0 112 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0										
240 240 250 250 250 260 270 270 270 270 300 300 300 300 300 300 300 300 300 3	.95	7. 7. 8	.56		39.45				8.7.7.7.	21.12
	44	ശശ	9 2	275 280	285 290 295	300 305 310	315 320	325 330 335 340 345	350 355 360 365 370	375 380 385 388*

* Crit. Temp.

. _

TABLE 51-V(T). VISCOSITY OF OCTAFLUOROCYCLOBUTANE VAPOR

RECOMMENDED VALUES

DISCUSSION

SATURATED VAPOR	[Temperature, T, K	[Temperature, T, K, Viscosity, μ , 10^{-3} N s m ⁻²]
Recommended values for the viscosity of the saturated vapor were esti-	SATUR	SATURATED VAPOR
mated using the correlation equation of Stiel and Thodos [100], with the density values isken from a manufacturer's technical note [280], and with our recommended values for the 1 atm gas.	T	3
	260	0.01046
The accuracy is thought to be ±5% although this figure may rise to ±10%	270	0.01083
around the critical temperature.	280	0.01121
•	290	0.01164
	300	0.01209
	310	0.01257
	320	0.01310
	330	0.01370
	340	0.01435
	350	0.0151
	360	0.0160
	370	0.0172
	380	0.0195
	388*	0.0302

Crit. Temp.

TABLE \$1-G(T). VISCOSITY OF GASEOUS OCTAFLUOROCYCLOBUTANE

RECOMMENDED VALUES $[Temperature,\ T,\ K:\ Viscosity,\ u,\ N\ s\ m^{-2}\cdot 10^{-6}]$	GAS	II.		270 10.83	280 11.20		300 11.93			350 13.67			410 15.64		
DASCUSSION	GAS	Three sets of experimental data were found in the literature [235, 262, 265]. They cover a range from 290 K to 423 K.	The correlation was made on computed values of	920 = K 1	a ; ;	which were least square fitted to a linear equation in 1/T. From this equation.	recommended values were computed.	The accuracy is thought to be $\pm 2\%$.							

FIGURE 51-G(T). DEPARTURE PLOT FOR VISCOSITY OF GASEOUS OCTAFLUOROCYCLOBUTANE

TABLE 52-G(T). VISCOSITY OF GASEOUS n-OCTANE

DISCUSSION	REC	RECOMMENDED VALUES	D VALUE	100	
GAS	[Temperature, Τ, K; Viscosity, μ, 10 ⁻⁵ N s m ⁻²]	, T, K; Visc	osity, µ.	10" N s m ⁻²]	
Five sets of experimental data were found in the literature, those of		GAS			
Lambert [1:5], McCoubrey [:309, Uchiyama [2:36], Agaev [:306], and Carmichael [307]. The data of Lambert are systematically higher and only one	₽	31.	H	31.	
point of Uchiyama fits, with the results of the three other authors. The points	300	5.64	200	9.5	
from Agaev and those from McCoubrey overlaps in a small region, but the	310	5, 82	510	9.4	
curve drawn through the data of these two authors do not indicate the same trend	320	5.99	520	9.5	
as the results of Carmichael at lower temperature.	330	6.17	530	9.7	
	340	6.34	540	6.6	
The sets of Agaev, McCouhrey and Carmichael were used to generate	350	6.52	550	10.1	
evolute for a variety of the form the data and adjusted it of a formation of a formation of the formation from the data and adjusted for a consideration of a formation of the f	360	69.9	260	10.2	
reacte of 0 g oring Compared 100 in our and advance to a quarter equation.	370	6.87	570	10.4	
is 15, miner and could well be a 5 normal and in accounting	380	7.05	280	10.6	
	390	7.22	230	10.7	
,	400	7.40	009	10.9	
	410	7.58	610	11.1	
	420	7.76	620	11.3	
	430	7.93	630	11.4	
	440	8.11	640	11.6	
	450	8.29	650	11.8	
	460	8.47			
	470	8.64			
	480	8. o			
	> F	20.00			

FIGURE 52-G(T). DEPARTURE PLOT FOR VISCOSITY OF GASEOUS n-OCTANE

TABLE 53-G(T). VISCOSITY OF GASEOUS n-PENTANE

Ž,
2
8
23
ົວ
2
Α

GAS

RECOMMENDED VALUES

[Temperature, T. K; Viscosity, \mu, N. m-1. sec-1, 10-6]

a available for the viscosity of	rom 273 to 579 K [133, 215, 236, 294,	E F	e theoretical relation: 270 6.38	280 6.59	290 6.81	300	310 7.24	320	330	a verbuction factors.	350		370	recent below 350 K and up to ten per-	
There are 8 sets of experimental data available for the viscosity of	n-pentane covering a range of temperature from 273 to 579 K [133, 215, 236, 294,	300, 319, 320, 374 .	The analysis was performed using the theoretical relation:		TM/ 586 93 = 11	G 20		from which the group $[\sigma^2\Omega(T^*)/f_{\perp}] = y_{\Delta k}$ was computed. The values obtained	Moses alothod so a final to of 1/T and the cities obtained was commoned with a	were process as a marked of 1/1, and the curve obtained was co- similar curve for methane, using appropriate reduction factors.		In the table generation, more weight was given to the high temperature	data of Agnew [374], and those of Titani [215], and at lower temperature to those	of McCoubrey [320]. Errors of up to five percent below 350 K and up to ten per-	month from his all and an accompanies of a companies of the contract of

•	9.23	9.45	9.67	98.88	10.10	10.32	10.54	10.76	10.97	11.19	11.40	11.61	11.82	12.04	12.25	12.46
3	400	410	420	430	440	450	460	470	480	490	200	510	520	230	540	550

FIGURE 53-G(T). DEPARTURE PLOT FOR VISCOSITY OF GASEOUS 1-PENTANE

TABLE 54-L(T). VISCOSITY OF LIQUID PROPANE

RECOMMENDED VALUES [Temperature, T, K; Viscosity, μ , 10-3 N s m⁻²]

~
0
-
90
72
∍
Ł
a
-
α

SATURATED LIQUID

Six sets of experimental data were found in the literature. The data re-	SATURAT	SATURATED LIQUID
by Gnapp [75] covers the wir in the correlation. The data the critical temperature. The of Gerf and Galkov [69, 70]	F	3
	80	19.16
The correlating technique was to use an equation:	8	7.521
1.ce : - 4 + 13/17 + 5	100	3.793
	110	2.258
to represent the experimental values, where the residual 5 was smoothed graph-	120	1.501
ically and used to generate a table from which recommended values were com- nuted.	140	0.8234
	150	0.6425
The accuracy should be about # 3% except near the critical temperature	160	0.5376
where integer interests are experienced, where confidence to the analysis of the con- additions of land State of the confidence of the confidence of the con-	021	0.4525
received communications, once and through the man and the properties of the critical point, but diverges gradually with decreasing temperature.	190	0.3391
	200	0.2996
	210	0.2651
•	220	0.2360
	230	0.2111
	240	0.1895
	250	0.1708
	260	0.1549
	270	0.1408
	290	0.1282
	300	0.1055
	310	0.0940
	320	0.0829
	330	0.0724
	040	0.0017
	350	0.0512
	360	0.0410
		170.0

Crit. Temp.

1

FÍGURE 54-L(T). DEPARTURE PLOT FOR VISCOSITY OF LIQUID PROPANE

TABLE 54-V(T). VISCOSITY OF PROPANE VAPOR

DISCUSSION

APOR
ATED \
SATUR

Recommended values for the viscosity of the saturated vapor were computed through the correlating technique of Jossi, Stiel and Thodos [100] using the recommended values of the 1 atm gra, and with the density values reported by Din [48].

The accuracy of the correlation is of about $\pm\,5\%$ with larger deviation expected near the critical point.

RECOMMENDED VALUES	[Temperature, Γ, K; Viscosity, μ, 10-3	SATURATED VAPOR
--------------------	--	-----------------

0.00798	0.00880	0.00925	0.00973	0.01025	0.01100	0.01208	0.01490	0 00110
280 290	300	310	320	330	340	350	360	369*

* Crit. Temp.

TABLE 54-G(T). VISCOSITY OF GASEOUS PROPANE

DISCUSSION	RECOMMENDED VALUES
GAS	[Temperature, T, K; Viscosity, μ , 10-8 N s m-3]
There are 15 sets of experimental data available for the viscosity of propane [1, 5, 30, 38, 71, 72, 126, 133, 192, 200, 203-204, 225, 229,	GAS
236, 264]. However they cover a nairow range of temperature (from 273 to 548 K) with the secondism of some data of Unbitsma 1926 orders in to 1973 K	3 .
These may well be in serious error (about 40%) and were not considered in the	
analysis.	280 7.73
The snalvate of data was made using the theoretical relation for viewative	66.1
1- F/	
$\mu = 286.93 \frac{3}{0.710} \frac{1}{10} \frac{1}{10}$	
to compute the group $\sigma^2\Omega(T^4)/\ell_\mu$ from the experimental data.	
The values obtained were then nighted as a function of 1/T. A grenking	350 9.56
was operated, and from the tabl	350 9.82
compased.	
More weight was given to some authors. mainly: Wobser 1264 and	390 10.59
Trantz (225, 229) whose work with other gases is well known.	
The accuracy is within two percent.	
	430 11.50
	460 12.34
	490 13.06
	450 14.24
	550 14.47
	590 15.38
	600 15.60

TABLE 55-L(T). VISCOSITY OF LIQUID PROPYLENE

DISCUSSION

NOISSION	RECOMMEN	RECOMMENDED VALUES
SATURATED LIQUID	Temperature, T. K; V	[Temperature, T. K; Viscosity, μ . 10 ⁻³ N s m ⁻²]
The state of the s	SATURATED LIQUID	ed liquid
Four sets of experimental data were found in the literature 1994, 10., 13., 160] covering a range of temperature from 88 K to 270 K. There is thus a lack of experimental data from the latter temperature to the critical. The agreement between the sets is generally good.	۴	3
An equation of the type:		
$\log \mu = A + B/T + \delta$	06	12.25
	100	4. 523
was used to generate the recommended values. The residual 0 was smoothed	110	2.327
graphically from 88 K to the critical temperature.	120	1.425
	130	0.975
The accuracy is thought to be $\pm 3\%$.	140	0.723
	150	0.568
	160	0.462
	170	0.384
	180	0.326
	190	0.282
	200	0.2466
	210	0.2178
	220	0.1932
	230	0.1724
	240	0,1548

* Crit. Temp.

0.1399 0.1260 0.1130 0.01909 0.0396 0.0686 0.0686 0.0686 0.0482 0.0482 0.0404 0.0330

250 260 270 280 280 390 310 330 340 350 360 365*

FIGURE 55-L(T). DEPARTURE PLOT FOR VISCOSITY OF LIQUID PROPYLENE

TABLE 55-V(T). VISCOSITY OF PROPYLENE VAPOR

DISCUSSION

RECOMMENDED VALUES [Temperature, T, K; Viscosity, μ , 1]	
--	--

SATURATED VAPOR	[Temperature, T, K; V	[Temperature, T, K; Viscosity, μ , 10-8 N s m-2]
Recommended values for the viscosity of the saturated vapor were gen-	SATURAT	SATURATED VAPOR
erated using the correlation technique of Jossi, Sticl and Thodos [100].	L	31.
A generalized curve of the excess viscosity versus reduced temperature		
for several gases was drawn. The excess viscosity for propylene, read from	210	. 00604
that curve, and the recommended value of the gas at 1 atm, were used to	220	. 00637
generate the recommended value for the viscosity of the saturated vapor was ob-	230	. 00672
tained.	240	. 00707
The exempent is thought to be + 5%	250	. 00742
	260	. 00779
	270	. 00815
	280	. 00852
	290	. 00888
	300	. 00930
	310	98600.
	320	. 01050
	330	. 01127
	340	. 01233
	350	. 01400
	360	. 01669
	365*	. 02394

* Crit. Temp.

TABLE 55-G(T). VISCOSITY OF GASEOUS PROPYLENE

RECOMMENDED VALUES

ā	ŕ
u	ø
٠	5
-	
٤	
ũ	5
ě	ř
С	3

GAS

CAS	[Temperature, T. K;	[Temperature, T. K; Viscosity. μ. 10 ⁻⁶ N s m ⁻²]
Two sets of experimental values were found in the literature. These are smoothed values given by Nechtzhii 1160] and one value at 0'C hy Titoni 1916]	5	GAS
	L	7
The theoretical expression		·
K/T	210	6.04
	220	6.36
	230	6.67
was used to obtain values of of 10 as a function of 1/T. These values were fitted	240	6.98
of react equate to the equation:	250	7.28
F/A · 4 - 02*	260	7.59
(2)	270	7.89
which represents the date well in the corresimental	280	8.19
in equation (1) to obtain the recommended values.	290	8.49
	300	8.78
The accuracy is thought to be of about $\pm 2\%$. Above 320 K the tible values	310	9.08
are extrapolated.	320	9.36
	330	9.64
	340	9.93
	350	10.22
	360	10.50

FIGURE 55-G(T). DEPARTURE PLOT FOR VISCOSITY OF GASEOUS PROPYLENE

TABLE 56-G(T). VISCOSITY OF GASEOUS TOLUENE

Ī

FIGURE 56-G(T). DEPARTURE PLOT FOR VISCOSITY OF GASEOUS TOLUENE

TABLE 57-L(T). VISCOSITY OF LIQUID TRICHLOROFLUOROMETHANE

RECOMMENDED VALUES [Temperature, T, K, Viscosity, μ 10-3 N s m⁻²]

DISCUSSION

SATURATED LIQUID

<u>.</u> Ţ.

Nine sets of data were found in the literature [14, 58, 79, 123,371,	SATURATED LIQUID	D LIQUD
184, 274, 275, 276], covering a temperature range from about 200 K to about 350 K. They are of equal reliability. They were fitted to an equation	Т	3
log µ = A + B/T		
to the second of the Dane she later a commence to the critical (A71 K)	170	3.514
in the range 110 to 550 ft. I four the rather temperature to the critical a curve was drawn graphically to join the value of the viscosity at the critical	180	2.670 9.088
temperature, estimated by the method of Stiel and Thodos [207].		0000
•	200	1.674
The recommended curve is thought to be reliable to ±5% below 390 K	210	1.370
and may be reliable to about 110% from 390 N to the critical point.	220	1.142
	240	0.831
	250	0.722
	260	0.635
	270	0.563
	280	0.504
	290	0.454
	300	0.413
	310	0.377
	320	0.346
	330	0.320
	340	0.297
	350	0.2764
	360	0.2586
	370	0.2428
	380	0.2287
	390	0.2161
	400	0.2025
	410	0, 1865
	420	0.1690
	430	0, 1505
	440	0. 1305
	450	0.108
	460	0.084
	471%	0.007
	•	

* Crit. Temp.

TABLE 57-V(T). VISCOSITY OF TRICHLOROFLUOROMETHANE VAPOR

-
z
\sim
u
=
-
Y4
и
~
~
e Th
-4
7
_

SATURATED VAPOR

Recommended values for the viscosity of the saturated vapor were estimated with the correlating equations of Stiel and Thodos [207]. Their accuracy is thought to be $\pm 5\%$ although this figure may rise to $\pm 10\%$ near to the critical point.

RECOMMENDED VALUES

[Temperature, T. K, Viscosity, μ . 10⁻³ N s m⁻²]

SATURATED VAPOR

F

0.01063	0.01100	0.01137	0.01174	0.01212	0,01250	0.01290	0.01332	0.01377	0.01422	0.01470	0.01520	0.01575	0.01645	0.01730	0.01830	0.0197	0.0218	0.0278	0,0333
590	300	310	320	330	340	350	360	370	380	390	400	410	420	430	440	450	460	470	471

* Crit. temp.

ETHANE TABI

~
=
0
~
蚩
0
∹
≠
Če.
=
•
~
=
ų.
_
_
-
0
≖
≃-
_
_
<i>(</i> /2
_
$\tilde{}$
_
Œ
GASEOU
٠,
_
Ĺu,
~
v
~
_
듣
2
2
2
COSI
<u>S</u>
/ISCOSI/
VISCOSIT
VISCOSIT
VISCOSIT
VISCOSIT
. VISCOSIT
BLE 57-G(T). VISCOSIT

DISCUSSION	RECOMMENDED VALUES	
	[Temperature, T, K, Viscosity, μ, 10-4 N s m-2]	[s m-2]
מעק	GAS	
There are four sets of data for R 11, those of Tsui [238], McCullum [143] and of Benning [2, 14]. Data are also reported in a manufacturer's bulletin	3.	
[274].		
The commentation was a made by convenienting	240 9.14	
The Correlation was made by computing	250 9.42	
(9.2) = KYT	•	
and additionation the inclined the consideration of the Recommended	280 10.32	
values and calculated values of the viscosity were computed through the equation	290 10.63	
obtained. The accuracy of the correlation is thought to be $\pm 2\%$.	300 10.95	
	340 12.25	
	350 12.58	
	360 12.92	
	380 13.60	
	400 14.29	
	430 15.32	
	450 16.02	
	490 17.43	
	500 17.78	

TABLE 58-L(T). VISCOSITY OF LIQUID TRICHLOROTRIFLUOROETHANE

•		
Ì		
,		

RECOMMENDED VALUES	[Temperature, T, K, Viscosity, μ , 10-3 N s m-2]	SATURATED LIQUID			230 2.206 240 1.779	250	10 260 1,217 1,217 1,217 1,218 1,028 1,028 1,028	280	290 0.760	300 0.663	320 0.518	340 0.417	360 0.343		390 0.266	410 0.228		440 0.175		7,0°,0 A84 (1,0°,0°)
NOISSOCIET	SATURATED LIQUID	Four sets of experimental data [13, 14, 123, 140] and two sets of	values from manufacturer's technical notes[275, 276] were found in the literature. There is a good consistency between sets except for the data of Kinser [123] at low temperature.	An adjustment was made to an equation	$\log \mu = \Lambda + B/T$		396 K. Above this temperature, a curve was drawn to join smoothly the value		1	The accuracy is about ±5% below 390 K, but may be poorer above.										

" Crit. Temp.

TABLE 58-V(T). VISCOSITY OF TRICHLOROTRIFLUOROETHANE VAPOR

RECOMMENDED VALUES [Temperature, T, K, Viscosity, μ , 10-3 N s m⁻²]

SATURATED VAPOR

3

۳

SCHEMON

4
•
3
•
•
9
5
•

SATURATED VAPOR

Recommended values for the viscosity of R 113 were obtained using the excess viscosity concept. The method used was the method of Stiel and Thodos [207]. The excess viscosity was taken from a curve of reduced excess viscosity versus reduced temperature constructed from the values of density and of viscosity from other refrigerants.

The accuracy is thought to be about $\pm 5\%$ although the figure may be higher around the critical temperature.

0.01081 0.01109 0.01136	0.01164 0.01189 0.01218 0.01248 0.01282	0.01318 0.01357 0.01405 0.01446 0.01504	0.0157 0.0166 0.0178 0.0200 0.0296
320 330 340	350 360 370 380 390	400 410 420 430 440	450 460 470 480 487**

* Crit, Temp.

TABLE 58-G(T). VISCOSITY OF GASEOUS TRICHLOROTRIFLUOROETHANE

ISCUSSIO

TABLE 59-L(T). VISCOSITY OF LIQUID TRIFLUOROMETHANE

DISCUSSION

SATURATED LIQUID

/

Only one set of experimental data by Phillips [166] was found in the literature, covering a temperature range from 190 to 260 K. The author gives also an equation of the type:

 $\log \mu = A + B/T + C/T^2 + D/T^3$

which was adopted in the range 200-260 K, and from which recommended values were generated. Above the latter temperature the curve was joined smoothly to the estimated viscosity at the critical temperature.

Deviations of the experimental data from the curve are low, but no means exist to assess the accuracy of the data.

Above 260 K the accuracy may be very poor, and the values must be considered as tentative values.

RECOMMENDED VALUES [Temperature, T, K: Viscosity, u, N s m⁻² · 10-8]

SATURATED LIQUID

0.425	0.392			0.316	. 29		56			0.208		<u>8</u>	0.176			٠.	Ξ.	Ξ.	0.121	0.109	•	0		0.029
170	175	180	185		6	200	202	 215	C)	225	230	235	240	245	250	255	260	265	270	275	280	285	290	293*

* Crit. Temp.

こののできて、大丁の大田の大大大大大

FIGURE 59-L(T). DEPARTURE PLOT FOR VISCOSITY OF LIQUID TRIFLUOROMETHANE

TABLE 59-V(I). VISCOSITY OF TRIFLUOROMETHANE VAPOR

2	ź
ŧ	Ž
Š	Ļ
÷	,
è	į
ř	١

SATURATED VAPOR	lemperature, I. K.	Lemperature, I, K, Viscosity, 4, 10 Ns m
Recommended values for the viscosity of the saturated vapor were com-	SATURA	SATURATED VAPOR
puted with the method of Stiel and Thodos [207] which makes use of the excess vis- costly concept. A graph of reduced excess viscosity versus reduced tempera-	F	3
ture, was constructed for several refrigerants. From this graph, the excess	200	0.00979
viscosity was read and used with the recommended values for the 1 atm gas, to	210	0.01034
generale the present values.	220	0.01102
	230	0.01169
The scenario 1s poor and should be about ± 10% close to the boiling point.	240	0.01243
ore any event agos when approaching the critical point.	250	0.0132
	260	0.0142
	270	0.0154
	280	0.0170
	290	0.0213
	293*	0.0288

TABLE 59-G(T). VISCOSITY OF GASEOUS TRIFLUOROMETHANE

DISCUSSION

1

[Temperal	GAS	II I	230 11.31	240 250	2/0 13.40 280 13.90 200 13.90		330 16,36 340 16,84	360 17,77	380 18,69		430 20,30 440 21 33	460 22,18 470 22,59	480 23,00 490 23,41	
Five sets of experimental data were found in the literature [40, 143, 235	Comments and the state of the King of the	$O^2\Omega = \frac{K}{\mu}$	were least aquare fitted to a quadratic equation in 1/T from which recommended values were generated.	The accuracy of the correlation is about + 2%.										

4. BINARY SYSTEMS

BINARY SYSTEMS

The viscosity data (expressed in N s m⁻²) for ninety-nine binary systems are presented in Figures and Tables 60 through 158. Each Figure and Table includes data on a single binary system and it is further divided into as many as three different sections to accommodate data with composition, density, and temperature dependences. Those data originally reported in the research document as a function of pressure have been converted to be as a function of density.

In graphical smoothing of the data for a binary system giving the composition dependence at a particular temperature, the two end points, referring to the two pure components, were regarded as correct, and then, consistent with the accuracy of the data, a smooth curve was drawn through the experimental points. This approach, which was adopted in almost all cases, has many implications. The reliability of the viscosity data for pure fluids is generally better than that for the mixtures obtained on the same apparatus. This is because in principle a better theoretical mechanistic formulation of the viscometer is accomplished for pure fluids. Also in relative measurements, viscometers are calibrated at the end points with pure fluids and consequently these are most reliable of all the reported data points. A reconsideration of the data of a particular worker will then be necessary in case his data on pure fluids is significantly different from the most probable values. A greater reliance can be placed in such cases on the relative changes in viscosity with the variable parameter than on the absolute values.

A close look at the viscosity data of the binary systems as displayed in various figures reveals that no general common trends in the variation of viscosity with temperature, composition, and density exist. It appears that the viscosity of a binary gaseous system always increases with temperature for a given composition and density of the mixture. On the other hand the viscosity of several of the liquid systems examined such as sodium chlorate - sodium nitrate, iron - carbon, lead - tin, carbon tetrachloride - octamethylcyclotetrasiloxane, n-decane - methane, ethane - ethylene, and ethylene - methane exhibit the opposite trend, viz. the viscosity decreases with increasing temperature.

The variation of viscosity with composition is rather complex. Some systems such as argon - krypton, helium - neon, argon - ammonia, liquid benzene - octamethylcyclotetrasiloxane, carbon monoxide - bydrogen, carbon monoxide - oxygen, liquid carbon tetrachloride - octamethylcyclotetrasiloxane, ethylene - oxygen, hydrogen - nitric oxide, etc. exhibit a monotonic increase in the viscosity with increasing proportion of the heavier component in the mixture. Similarly, for many systems such as argon - neon, neon - krypton, krypton - xenon, neon - xenon, argon - sulfur dioxide, liquid benzene - n-hexane, carbon dioxide - nitrogen, carbon dioxide - oxygen, carbon dioxide - propane, carbon monoxide - ethylene, ethylene - nitrogen, methane - propane, nitrous oxide - propane, carbon dioxide - sulfur dioxide, their viscosity is found to systematically decrease with the increasing proportion of the heavier component in the mixture. For many other systems such as argon - helium, argon - xenon, helium - krypton, helium - xenon, ethane - hydrogen, ethylene - hydrogen, hydrogen - propane, carbon dioxide - hydrogen chloride, hydrogen - ammonia, hydrogen - ethyl ether, hydrogen - sulfur dioxide, methane - ammonia, methane - sulfur dioxide, carbon tetrachloride - methanol, etc. the viscosity exhibits a maximum at a certain value of the mole fraction of the heavier component in the mixture. In the liquid carbon tetrachloride - isopropyl alcohol and benzene - cyclohexane systems, a minimum is observed in the viscosity versus mole fraction of the heavier component. Thus, examples of all possible variations have been encountered while treating the data on binary systems.

The dependence of viscosity on density is also likewise complicated. For most of the systems such as argon - neon, helium - krypton, argon - hydrogen, argon - nitrogen, helium - carbon dioxide, helium - nitrogen, krypton - carbon dioxide, n-butane - methane, carbon dioxide - methane, carbon dioxide - nitrogen, carbon tetrafluoride - methane, methane - nitrogen, methane - propane, the viscosity is found to increase with density. Of all the systems examined here only the viscosity of helium - hydrogen system is found to decrease with density and this dependence is feeble.

It may be noted that even for mixtures of nonpolar and spherically symmetric rare gas molecules the viscosity variation is not systematic and does not fall in one characteristic category. This stresses the need for a careful study of the predictive procedures and thorough analysis of the available data on viscosity of fluid mixtures.

The experimental data for ternary, quaternary, and multicomponent systems are presented in Tablea 159 through 188. These data are not further processed like binary systems except in a few cases which are either pure air or its mixtures with other substances.

TABLE 60-G(C)E. EXPERIMENTAL VISCOSITY DATA AS A FUNCTION OF COMPOSITION FOR GASEOUS ARGON-HELIUM MIXTURES

Cur. No.	Fig. No.	Ref. No.	Author (a)	Temp.	Pressure (atm)	Mole Fraction of Ar	Viscosity (N s m ⁻² x 10 ⁻⁶)	, Remarks
1	60-G(C)	165	Rietveld, A.O.,	72.0		1,000	6.35	Ar: purity not specified, He:
	• •		Van Itterbeek, A., and			0.828	6.79	hydrogen free; oscillating disk
			Van den Berg, G.J.			0.657	7.21	method, relative measurements;
						0.557	7.52	mixture composition corrected for
						0.538	7.57	thermal diffusion effect; precision
						0.4585	7.78	about 1.0%; $L_1 = 0.365\%$, $L_2 =$
						0.391	8.01	0.598%, L ₃ = 1.709%.
						0.357	8.08	
						0.258	8.45	
						0.159	8.34	
_						0.000	7.98	
2	60-G(C)	165	Rietveld, A.O., et al.	81.1		1.000 0.828	7.05 7.37	Same remarks as for curve 1 excel $L_1 = 0.507\%$, $L_2 = 0.713\%$, $L_3 =$
						0.657	7.97	1.873%.
						0.557	8, 28	2.0.0/2.
						0.538	8,28	
						0.4585	8.55	
						0.391	8.72	
						0.357	8.83	
						0, 258	9.19	
						0.159	9.02	
						0.000	8.59	
3	60-G(C)	165	Rietveld, A.O., et al.	90, 2		1.000	7.60	Same remarks as for curve 1 excer
_	(-)		,,,			0.828	8.28	$L_1 = 0.411\%$, $L_2 = 0.713\%$, $L_3 =$
						0.657	8.61	1.908%.
						0.557	8.89	
						0.538	. 8.95	
						0.391	9.35	
						0.357	9.48	
						0.258	9.69	•
						0.159	9.71	
						0.000	9.10	
						0.000	9.15	
4	60-G(C)	165	Rietveld, A.O., et al.	192.5		1.000	15.38	Same remarks as for curve 1 excep
						0.887	15.74	$L_1 = 0.305\%$, $L_2 = 0.411\%$, $L_3 =$
						0.8055	15.96	0.829%.
						0.801	15.94	
						0.711	16.13	
						0.622	16.25	
						0.494	16.62	
						0.465	16.58	
						0.411	16.81	
						0.303 0.200	16.88	
						0.200	16.64	
						0.1055	16.07	
						0.000	14.71 14.48	
5	60-G(C)	165	Rietveld, A.O., et al.	229.5		1,000	17.68	Same remarks as for curve 1 excep
•	,		111001012, 11.0., 0141.	223.0		1.000	11.00	$L_1 = 0.054\%$, $L_2 = 0.093\%$, $L_3 =$
						0.8865	18.08	0.218%.
						0.805	18.33	
						0.800	18.38	
						0.710	18.54	
						0.621	18.70	
						0.464	18.96	
						0.409	19.06	
						0.301	19.17	
						0.199	18.74	
						0. 105	17.99	
						0.000	16.42	
						0.000	16.27	
6	60-G(C)	211	Tansier, P.	288.2		100.00	22.20	Ar: prepared by method of Ramany
						96.074	22.31	and Teavers, He: spectroscopicall
						90.93	22.43	analyzed for purity, prepared by
						85.715	22.53	heating Mondzite sand to glowing;
			•			80.744	22.66	capillary transpiration method;
						77,055	22.64	$L_1 = 0.200\%$, $L_2 = 0.396\%$, $L_3 =$
						68.458	22.66	1.178%.
						61.193	23.03	
						53.374	22.99	
						29. 147	22.80	
						19.215	22.26	
						0.000	19.66	

TABLE 60-C(C)E. EXPERIMENTAL VISCOSITY DATA AS A FUNCTION OF COMPOSITION FOR GASEOUS ARGON-HELIUM MIXTURES (continued)

No.	Fig. No.	Ref. No.	Author(s)	Temp.	Pressure (mm Hg)	Mole Fraction of Ar	Viscosity (N s m ⁻² x 10 ⁻⁶)	Remarks
7	60-G(C)	165	Rictveld, A.O., Van Rerbeek, A., and	291.1		1.000 0.828	21.85,21.68	Same remarks as for curve 1 except $L_1 = 0.138\%$, $L_2 = 0.186\%$, $L_3 =$
			Van den Berg, G.J.			0.657	22.70	0,444%.
						0.557	23.06	
						0.538	23.02 22.93	
						0.4585 0.391	22.93 22.96	
						0.357	22.75	
						0.258	22.46	
						0.159	21,76	
						0.000	19.35	
8	60-G(C)	165	Rietveld, A.O., et al.	291.1		1.000 1.000	21.72 21.75	Same remarks as for curve 1 except $L_1 = 0.249\%$, $L_2 = 0.297\%$, $L_3 =$
						0.8865	22,23	0.514%.
						0.805	22.43	
						0.800	22.40	
						0.710	22.81	
						0.621	22.94	
						0.464	23.11	
						0.409	23.04	
						0.301	22.90	
						0.199	22.29	
						0.105	21.01 19.14	
						0'000 0'000	19.14	
9	60-G(C)	213	Thornton, E. and	291.2	700	1,000	22.0	Ar: 99.8 pure, He: spectroscopic-
			Baker, W.A.D.			0,914	22.2	ally pure; modified Rankine visco-
						0,844	22.4	meter, relative measurements;
						0.782	22.5	uncertainties: mixture composition
						0.720	22.7	$\pm 0.3\%$, viscosity $\pm 1.0\%$; L ₁ = 0.196
						0,645	22.7	$L_2 = 0.249\%, L_3 = 0.548\%.$
						0.574	22.8 22.9	
						0.520 0.438	22.8	
						0.299	22.7	
						0.208	22.2	
						0.061	20.5	
10	60-G(C)	000	Trants M and	293		0.000 1.0000	19.4 22.11	Gas purity: He < 1% Ne, Ar < 0.5%
10	00-G(C)	223	Trautz, M. and Kipphan, K.F.	230		0.6180	22.11	No: method of Trautz and Weizel,
			Esphian, II. I			0.5094	22.96	calibrated with air; $L_1 = 0.000\%$,
						0.0000	19.73	$L_2 = 0.000\%, L_3 = 0.000\%.$
11	60-G(C)	223	Trautz, M. and	373		1,0000	26.84	Same remarks as for curve 10
			Kipphan, K. F.			0,6180	27.45	except $L_1 = 0.144\%$, $L_2 = 0.211\%$,
						0.5094 0.0000	27.50 23.20	$L_3 = 0.394\%.$
12	60-G(C)	211	Tanzler, P.	373.2		100.00	27.56	Same remarks as for curve 6 except
			•			95.074	27.56	$L_1 = 0.165\%$, $L_2 = 0.230\%$, $L_3 =$
						90,930	27.70	0.429%.
						85.715	27.83	
			•			80,744	27.91	
						77.055	27.84	
						68.458	27.90	
						61,193	28.06 27.88	
						53,374 20,147	27.53	
						19,215	26.64	
						0.000	23.55	
13	60-G(C)	211	Tanzler, P.	456.2		100.00	32.27	Same remarks as for curve 6 except
						95.074	32.17	$L_1 = 0.124\%$, $L_2 = 0.204\%$, $L_3 =$
			•			90.930	32.32	0.526%.
						85.715	32.48	
						80.744	32.52	
						68,458	32.50 32.44	
						61.193 19.215	32.44 30.42	
						0.000	26.91	
				473		1.0000	32.08	Same remarks as for curve 10
14	60~G(C)	223	Trautz, M. and	410				
14	60-G(C)	223	Trautz, M. and Kipphan, K.F.	410		0,6180	32.50 27.15	except $L_1 = 0.000\%$, $L_2 = 0.000\%$, $L_3 = 0.000\%$.
14	60~G(C)	223		410		0.6180 0.0000	32.50 27.15	except $L_1 = 0.000\%$, $L_2 = 0.000\%$, $L_3 = 0.000\%$.
14 15	60-G(C)			523				

TABLE 60-Q(C)S. SMOOTHED VISCOSITY VALUES AS A FUNCTION OF COMPOSITION FOR GASEOUS ARGON-HELIUM MIXTURES

Mole Fraction of Ar	72.0 K [Ref, 165]	81,1 K [Ref. 165]	90.2 K [Ref. 165]	192.5 K [Ref. 165]	229.5 K [Ref. 165]	288.2 K [Ref. 211]	291.1 K [Ref. 165]	291.1 K [Ref. 165]
0.00	7.98	8.59	9.12	14.48	16.35	19.66	19.35	19.11
0.05	8,23	8.90	9.40	15.45	17.57	20.60	20.31	20,10
0.10	8,34	9.02	9.60	16.02	17.94	21.36	21.10	20.92
0.15	8.37	9.07	9.70	16.39	18.41	21.92	21.68	21.72
0.20	8, 37	9.07	9.74	16.64	18.75	22.33	22 12	22.28
0. 25	8, 32	9, 03	9.70	16.79	19.00	22.63	22.44	22.64
0.30	8,24	8.96	9.60	16.88	19.17	22.84	22.67	22.87
0.35	8,13	8.86	9.47	16.89	19.15	22.98	22.83	23.00
0.40	8.00	8.74	9.32	16.84	19.09	23.06	22.93	23.07
0.45	7.85	8.60	9.17	16.71	19.01	23.08	22.97	23.07
0.50	7.70	8.44	9.03	16,57	18.93	23.10	22.98	23.06
0.55	7.54	8.27	8.90	16.44	18.85	23.08	22.95	23.03
0.60	7.40	8.09	8.76	16.31	18.76	23.04	22.89	22.97
0.65	7.24	7.92	8.63	16.19	18.67	22.98	22.78	22.91
0.70	7.09	7.76	8.49	16.07	18.57	22.90	22.69	22.81
0.75	6, 95	7.61	8.35	15.97	18.46	22.80	22.56	22.67
0.80	6.82	7.48	8.21	15.86	18.34	22.69	22.41	22.50
0.85	6.70	7.36	8.07	15.76	18, 20	22.58	22.24	22.33
0.90	6,57	7.25	7.93	15.67	18.04	22.46	22.06	22.13
0.95	6,50	7.15	7.80	15.57	17.87	22.34	21.87	21.93
1.00	6.35	7.05	7.68	15.47	17.68	22.20	21.68	21.73

Mole Fraction of Ar	291.3 K [Ref. 213]	293.0 K {Ref. 223]	373.0 K [Ref. 223]	373.2 K [Ref. 211]	456.2 K [Ref. 211]	473.0 K [Ref. 223]	523.0 K [Ref. 223]
0.00	19.40	19.73	23.20	23.55	26.91	27.15	29.03
0.05	20, 31	22.63	23.80	24.42	28.26	27.76	29.82
0.10	21.14	21.31	24.43	25.26	29.22	28.39	30.63
0.15	21.74	21.81	25,02	26.08	29, 94	28.99	31.38
0.20	22.15	22.19	25.56	26.76	30.52	29.52	32.07
0.25	22.41	22.46	26.04	27.25	30.98	30.00	32.66
0.30	22.60	22.66	26,43	27.58	31.34	31.40	33.17
0.35	22.72	22.80	26.76	27.80	31.65	31.82	33.60
0.40	22.80	22.89	27,04	27.92	31.90	32.16	33.98
0.45	22.85	22.94	27.24	27.98	32.08	31.44	34.29
0,50	22.87	22.97	27,38	28.00	32, 24	31,68	34.53
0.55	22.86	22.96	27,46	27.99	32.35	31,87	34.72
0.60	22.82	22.93	27,48	27.98	32.43	32,01	34.84
0,65	22.78	22.88	27,49	27.95	32.48	32, 12	34.92
0.70	22.70	22.82	27.46	27.91	32.50	32, 19	34.96
0.75	22.61	22.74	27.42	27.86	32.50	32, 22	34.96
0,80	22.50	22.64	27,34	27.81	32.48	32, 23	34.92
0.85	22.37	22.5 3	27.24	27.75	32.45	32, 22	34.82
0,90	22.21	22.40	27.13	27.69	32.40	32, 18	34.75
0.96	22.05	22,26	27,00	27.63	32.35	32.13	34.62
1.00	21.88	22.11	26.85	27.56	32.28	32.08	34.48

FIGURE 60-G(): VISCOSIT (DATA AS A FUNCTION OF COMPOSITION FOR the SOLUTION HELIUM MIXTURES

FIGURE 60-G(C). VISCOSITY DATA AS A FUNCTION OF COMPOSITION FOR GASEOUS ARGON-HELIUM MIXTURES (continued)

TABLE 60-G(D)E. EXPERIMENTAL VISCOSITY DATA AS A FUNCTION OF DENSITY FOR GASEOUS ARGON-HELIUM MIXTURES

Cur. No.	Fig. No.	Ref. No.	Author(s)	Mole Fraction of Ar	Temp. (K)	Density (g cm ⁻³)	Viscosity (N s $m^{-2} \times 10^{-6}$)	Remarks
1	60~G(D)	91	Iwasaki, H. and	1,0000	293.2	0.001684	22, 275	Ar: 99.997 pure, He: 99.99 pure;
	` '		Kestin, J.			0.009403	22, 362	oscillating disk viscometer; accur-
						0.017944	22.462	acy of absolute measurements of
						0.034916	22,681	pure fluids and of relative measure
						0.052123	22.954	ments of mixtures with respect to
						0.069120	23, 221	pure fluids is 0.1 to 0.2%.
						0.088147	23, 572	pure muids is 0.1 to 0.2%.
2	60-G(D)	91	Iwasaki, H. and	0.801	293.2	0.001352	22.707	Same remarks as for curve 1.
2	00-G(D)	91	Kestin, J.	0.801	235.2	0.001332	22.778	Dame Temaras as for Cutve 1.
			medun, o.			0.001349	22.711	
						0.001343	22.775	
						0.015220	22.859	
						0.022387	22, 932	
						0.029405	23.025	
						0.036642	23.115	
						0.043813	23, 202	
						0.051011	23.302	
						0.058095	23,409	
						0.065387	23,520	
						0.071995	23,615	
3	60-G(D)	91	Iwasaki, H. and	0.629	293.2	0.001108	23.095	Same remarks as for curve 1.
	00-U(D)	31	Kestin, J.	0.025	250.2	0.006404	23, 150	
			Mesun, v.			0.012295	23.192	
						0.016262	23.220	
						0.023522	23.296	
						0.029335	23.371	
						0.033182	23.391	
						0.038620	23.441	
						0.046485	23.524	
						0.052188	23.600	
						0.057799	23.656	
4	60-G(D)	91	Iwasaki, H. and	0.366	293.2	0.000725	23, 161	Same remarks as for curve 1.
-			Kestin, J.	•	-	0.004363	23.181	
						0.007996	23. 205	
				•		0.011684	23.234	
						0.015261	23, 253	
						0.010201	23.281	
						0.022740	23.296	
						0.026175	23.322	•
						0.029571	23.356	
						0.033003	23.382	
						0.036717	23.411	
5	60-G(D)	91	Iwasaki, H. and	0.193	293.2	0.000460	22,528	Same remarks as for curve 1.
-		•-	Kestin, J.			0.002774	22.527	
						0.005055	22.540	
						0.007343	22.539	
						0.001343	22.549	
						0.012014	22.551	
						0.014246	22.570	
						0.016539	22.573	
						0.018868	22.587	
						0.021145	22.59 3	
						0.023312	22.603	
6	60-G(D)	91	Iwasaki, H. and	0,137	293.2	0.000371	22.027	Same remarks as for curve 1.
-			Kestin, J.			0.002263	22.033	•
			, • •			0.004143	22.040	
						0.006065		
							22,038	
						0.007845	22.042	
						0.009744	22.053	
						0.011640	22,046	
						0.013460	22.056	
						0.015299	22.067	
						0.017150	22.063	
						0.017150 0.018879	22.063 22.074	

TABLE 60-G(D)E. FXPERIMENTAL VISCOSITY DATA AS A FUNCTION OF DENSITY FOR GASEOUS ARGON-HELIUM MIXTURES (continued)

Cur. No.	Fig. No.	Ref. No.	Author(s)	Mole Fraction of Ar	Temp.	Density (g cm ⁻³)	Viscosity (N s $m^{-2} \times 10^{-6}$)	Remarks
7	60-G(D)	91	Iwasaki, H. and Kestin, J.	0.058	293.2	0.000254 0.001539 0.002809 0.004060 0.005348 0.006641 0.007849 0.009136 0.010400 0.011418 0.012825	20. 902 20. 913 20. 901 20. 901 20. 901 20. 899 20. 904 20. 900 20. 898 20. 897 20. 902	Same remarks as for curve 1.
8	60-G(D)	91	Iwasaki, H. and Kestin, J.	0.000	293.2	0.000169 0.003565 0.005790 0.008477	19.604 19.597 19.586 19.577	Same remarks as for curve 1.
9	60-G(D)	91	Iwasaki, H. and Kestin, J.	1.000	303.2	0.001611 0.009849 0.01808 0.03495 0.05235 0.06893 0.08567	22. 944 23. 048 23. 136 23. 356 23. 628 23. 902 24. 206	Same remarks as for curve 1.
10	60-G(D)	91	iwasaki, H. and Kestin, J.	0.789	303,2	0.001304 0.007714 0.021341 0.035070 0.048620 0.062392 0.068892	23.396 23.454 23.605 23.769 23.950 24.162 24.260	Same remarks as for curve 1.
11	60-G(D)	91	Iwasaki, H. and Kestin, J.	0.577	303.2	0.000994 0.006075 0.016226 0.026487 0.036742 0.046956 0.052386	23.748 23.796 23.883 23.983 24.088 24.221 24.281	Same remarks as for curve 1.
12	60-G(D)	91	Iwasaki, H. and Kestin, J.	0.390	303.2	0.000728 0.004428 0.011719 0.019209 0.026597 0.033959 0.037575	23.811 23.843 23.884 23.931 23.994 24.059 24.086	Same remarks as for curve 1.
13	60-G(D)	91	Iwasaki, H. and Kestin, J.	0.214	303.2	0.000469 0.002883 0.007591 0.012415 0.017168 0.021879 0.024140	23. 239 23. 244 23. 258 23. 269 23. 293 23. 317 23. 327	Same remarks as for curve 1.
14	60-G(D)	91	Iwasaki, H. and Kestin, J.	0.125	303.2	0,000346 0,002143 0,005505 0,008974 0,012404 0,015807 0,017505	22.430 22.445 22.445 22.454 22.459 22.468 22.463	Same remarks as for curve 1.
15	60-G(D)	91	Iwasaki, H. and Kestin, J.	0.061	303.2	0.000248 0.001515 0.002744 0.006545 0.010269 0.012732	21.481 21.495 21.487 21.477 21.488 21.485	Same remarks as for curve 1.
16	60-Q(D)	91	Iwasaki, H. and Kestin, J.	0.000	303.2	0.000162 0.001830 0.003444 0.006886 0.008275	20. 094 20. 094 20. 080 20. 076 20. 071	Same remarks as for curve 1.

TABLE 60-G(D)S. SMOOTHED VISCOSITY VALUES AS A FUNCTION OF DENSITY FOR GASEOUS ARGON-HELIUM MIXTURES

	Mole Fraction of Argon											
Density (g cm ⁻²)	0,000 (293.2 K) [Ref. 91]	0.058 (293.2 K) [Ref. 91]	0.137 (293.2 K) [Ref. 91]	0.193 (293.2 K) [Ref. 91]	0.366 (293.2 K) [Ref. 91]	0.629 (293.2 K) [Ref. 91]	0, 801 (293, 2 K) [Ref. 91]	1.000 (293.2 K) [Ref. 91]				
0.010	19,575	20, 900	22, 050	22.549	23.220	23.170	22.800	22.350				
0.020		20,912	22,075	22.590	23.287	23.240	22.915	22.471				
0.030				22.630	23.360	23.326	23.032	22.608				
0.040					23.449	23.437	23.151	22.760				
0.050						23.575	23.280	22.921				
0.060						23.720	23.434	23.079				
0.070							23.588	23, 235				
0.080			•					23.405				
0.090								23.610				

	Mole Fraction of Argon										
Density (g cm ⁻³)	0,000 (293.2 K) [Ref. 91]	0,061 (293.2 K) [Ref. 91]	0, 126 (293, 2 K) [Ref. 91]	0.214 (293.2 K) [Ref. 91]	0,390 (293.2 K) [Ref. 91]	0.577 (293.2 K) [Ref. 91] 23.830 23.918 24.015 24.130 23.260	0.789 (293.2 K) [Ref. 91]	1,000 (293.2 K) [Ref. 91]			
0.010	20.068	21.485	22,447	23.260	23.870	23.830	23.480	23.040			
0.020		21.490	22.470	23.302	23.940	23.918	23.585	23, 160			
0.030				23.372	24.105	24.015	23.700	23, 287			
0.040					24.110	24.130	23.827	23.430			
0.050						23.260	23.970	23.582			
0.060							24.120	23.760			
0.070		•					24.272	23.946			
0.080								24,120			

FIGURE 60-G(D), VISCOSITY DATA AS A FUNCTION OF DENSITY FOR GASEOUS ARGON-HELIUM MIXTURES

TABLE 60-G(T)E. EXPERIMENTAL VISCOSITY DATA AS A FUNCTION OF TEMPERATURE FOR GASEOUS ARGON-HELIUM MIXTURES

Cur. No.	Fig.	Ref. No.	Author(s)	Mole Fraction of Ar	Pressure (atm)	Temp. (K)	Viscosity (N s m ⁻² x 10 ⁻⁶)	Remarks
1	60-G(T)	211	Tanzler, P.	1.00000	74. 85 74. 84 74. 62	285, 2 372, 8 456, 2	22. 00 27. 46 32. 31	Ar: prepared by method of Ramsey and Teavers, He: spectroscopically analyzed for purity; prepared by heating Mondzite sane to glowing; capillary transpiration method.
2	60-G(T)	211	Tanzler, P.	0.9507 4	74.87 75.10 74.52	285. 8 3/3. 0 455. 9	22. 19 27. 45 32. 18	Same remarks as for curve 1.
3	60-G(T)	211	Tanzler, P.	0. 9093	75. 10 75. 06 75. 00	284. 5 372. 8 456. 3	22.17 27.68 32.44	Same remarks as for curve 1.
4	60-G(T)	211	Tanzler, P.	0. 85715	75. 17 75. 81 76, 19	286. 9 373. 1 457. 5	22. 44 27. 84 32. 54	Same remarks as for curve 1.
5	60-G(T)	211	Tanzler, P.	0.80744	74.95 75.36 75.20	292. 9 372. 8 456. 3	22. 94 27. 90 32. 50	Same remarks as for curve 1.
6	60-G(T)	211	Tanzler, P.	0.77055	75. 76 75. 65	293. 7 373. 0	23. 01 27. 85	Same remarks as for curve 1.
7	60-G(T)	211	Tanzler, P.	0.68458	75. 19 75. 03 75. 61	295.3 372.7 456.3	23. 16 27. 27 32. 53	Same remarks as for curve 1.
8	60-G(T)	211	Tanzler, P.	0, 61193	75. 35 75. 33 75. 75	294.8 372.6 456.8	23. 41 28. 07 32. 44	Same remarks as for curve 1.
9	60 - G(T)	211	Tanzler, P.	0,53374	75.31 75.29	294. 1 372. 7	23. 34 27. 85	Same remarks as for curve 1.
10	60-G(T)	211	Tanzler, P.	0,29174	76. 11 76. 05	292. 3 373. 1	23. 03 27. 52	Same remarks as for curve 1.
11	60-G(T)	211	Tanzler, P.	0.19215	75. 49 75. 78 75. 67	292. 1 373. 0 456. 2	22. 46 26. 58 30. 39	Same remarks as for curve 1.
12	60-G(T)	211	Tanzler, P.	0,00000	75.50 75.00 75.66	288.5 372.8 457.8	19. 69 23. 48 26. 99	Same remarks as for curve 1.

TABLE 60-G(T)S. SMOOTHED VISCOSITY VALUES AS A FUNCTION OF TEMPERATURE FOR GASEOUS ARGON-HELIUM MIXTURES

T			Mole Fractio	n of Argon		
Temp. (K)	0.0000 [Ref. 211]	0,1922 [Ref. 211]	0.2917 [Ref. 211]	0.5337 [Ref. 211]	0,6119 [Ref. 211]	0.6846 [Ref. 211]
275						22.12
287.5	19.66				22.96	
290			22.92	23.10		
300	20.24	22.92	23.46	23.67	23.74	23.40
310			24.02	24.24		
312.5	20.82	23.59				
320			24.58	24.81		
325	21.39	24.24	24.86	25.10	25.28	24.72
330			25.14	25.39		
337.5	21.95	24.87				
340			25.40	25.97		
350	22.50	25.48	26.24	26.53	26.78	26.00
360			26.80			
362.5		26.08				
370			27.35	27.68		
375	23.60	26.68	27.63	27.96	28.18	27.40
380			27.90	28, 26		
400	24.66	27.86			29.54	28.92
425	25.70	29.00			30.86	30.50
450	26.70	30.12			32.10	32.10
462.5	27.19					

T		1	Mole Fractic	n of Argon		
Temp. (K)	0.7706 [Ref. 211]	0.8074 [Ref. 211]	0.8572 [Ref. 211]	0.9093 [Ref. 211]	0.9507 [Ref. 211]	1,0000 [Ref. 211]
275		21.83		21.56	21.50	21.35
287.5			22.45			
290	22.78					
300	23.38	23.40	23.30	23.15	23.07	22.96
310	24.00					
312.5						
320	24.60					
325	24.90	24.98	24.90	24.71	24.60	24.55
330	25.21					
337.5						
340	25.82					
350	26.42	26.5 3	26.46	26.28	26.10	26.11
360	27.04					
362.5						
370	27.65					
375	27.94	28,04	27.96	27.82	27.56	27.61
380	28.26					
400		29.47	29.43	29, 30	29.00	29.09
425		30.84	30.80	30.70	30.44	30.54
450		32.16	32.13	32,08	31.84	31.97
462.5						

FIGURE 60-G(T). VISCOSITY DATA AS A FUNCTION OF TEMPERATURE FOR GASEOUS ARGON - HELIUM MIXTURES

TABLE 61-G(C)E. EXPERIMENTAL VISCORTY DATA AS A FUNCTION OF COMPORTION FOR GASEOUS ARGON-KRYPTON MIXTURES

Cur. No.	Fig. No.	Ref. No.	Author(s)	Temp. (K)	Pressure mm Hg	Mole Fraction of Kr	Viscosity (N s m ⁻² x 10 ⁻⁶)	Remarks
1	61-G(C)	278	Thornton, E.	291.2	70 0	1.000	24.8	Kr: 99-100 pure, balance Xe; Ar:
						0.865	24.5	99. 8 pure; modified Rankine visco-
						0.777	24.5	meter, relative measurements;
						0.673	24.2	uncertainties: mixture composition
						0.546	23.9	$\pm 0.3\%$, viscosity $\pm 1.0\%$; L _i =
						0.443	23.6	0.095%, L ₂ = 0.167%, L ₃ = 0.410%.
						0.330	23.3	•
						0.228	23.0	
						0.109	22.6	
						0.000	22.1	

Table 61-G(c)s. $\begin{array}{l} \text{SMOOTHED VISCOSITY VALUES AS A FUNCTION OF COMPOSITION FOR GASEOUS } \\ \text{ARGON-KRYPTON MIXTURES} \end{array}$

Mole Fraction of Kr	291.2 K [Ref. 278]
0.00	22, 10
0.05	22. 34
0.10	22.56
0.15	22.75
0.20	22.91
0.25	23.62
0.30	23. 21
0.35	23. 35
0.40	23.48
0. 45	23.62
0.50	23. 75
0.55	23.88
0.60	24.01
0.65	24. 12
0.70	24. 24
0.75	24.34
0.80	24, 44
0.85	24. 54
0.90	24. 63
0.95	24. 72
1.00	24. 80

FIGURE 61-G(C). VISCOSITY DATA AS A FUNCTION OF COMPOSITION FOR GASEOUS ARGON-KRYPTON MIXTURES

TABLE 62-G(C)E. EXPERIMENTAL VISCORITY DATA AS A FUNCTION OF COMPOSITION FOR GASEOUS ARGON-NEON MIXTURES

Cur. No.	Fig. No.	Ref. No.	Author(s)	Temp. (K)	Pressure (mm Hg)	Mole Fraction of Ar	Viscosity (N s m ⁻² x 10 ⁻⁶)	Remarks
1	62-G(C)	180	Rietveld, A.O. and Van Itterbeek, A.	72.3		1.0000 0.8300 0.6707 0.5011 0.3231 0.1613 0.0000	6. 38 7. 00 7. 70 8. 52 9. 52 10. 56 11. 72	Gas purities are not specified; oscillating disk viscometer, relative measurements; precision about 1% ; L ₁ = 0.027%, L ₂ = 0.071%, L ₃ = 0.189%.
2	62-G(C)	180	Rietveld, A.O. and Van Itterbeek, A.	90.3		1.0000 0.8390 0.6713 0.4828 0.3265 0.1634 0.0000	7. 75 8. 51 9. 22 10. 18 11. 16 12. 37 13. 52	Same remarks as for curve 1 except $L_1 = 0.195\%$, $L_2 = 0.317\%$, $L_3 = 0.733\%$.
3	62-G(C)	180	Rietveld, A.O. and Van Itterbeek, A.	193.4		1.0000 0.8298 0.6690 0.5024 0.3292 0.1698 0.0000	15. 29 16. 38 17. 32 18. 75 20. 27 21. 79 23. 52	Same remarks as for curve 1 except $L_1=0.424\%,\ L_2=0.638\%,\ L_3=1.461\%.$
4	62-G(C)	180	Rietveld, A.O. and Van Itterbeek, A.	229.0		1. 0000 1. 0000 1. 0000 0. 8320 0. 6507 0. 5017 0. 4308 0. 3348 0. 1654 0. 0000	18. 03 18. 00 17. 88 19. 24 20. 63 21. 82 22. 58 23. 39 25. 00 26. 70	Same remarks as for curve 1 except $L_1=0.196\%,\ L_2=0.276\%,\ L_3=0.624\%.$
5	62-G(C)	180	Rietveld, A.O. and Van Itterbeek, A.	291.1		1.0000 1.0000 0.8323 0.6757 0.4970 0.3227 0.1693 0.0000	22. 15 22. 06 23. 39 24. 69 26. 36 27. 93 29. 61 31. 29 31. 40	Same remarks as for curve 1 except $L_1=0.163\%,\ L_2=0.224\%,\ L_3=0.407\%.$
6	62-G(C)	213	Thornton, E. and Baker, W.A.D.	291.2	700.0	1.000 0.900 0.803 0.726 0.638 0.541 0.436 0.328 0.221 0.157 0.000	22. 0 22. 8 23. 6 23. 9 24. 7 25. 5 26. 7 27. 8 28. 5 29. 0 30. 7	Ar: impurities not exceeding 0.2%; He: spectroscopically pure; modified Rankine viscometer, relative measurements; uncertainties: mixture composition $\pm 0.3\%$, viscosity $\pm 1.0\%$ L ₁ = 0.460%, L ₂ = 0.599, L ₃ = 1.238
7	62-G(C)	221	Trautz, M. and Binkele, H.E.	293		0.0000 0.2680 0.6091 0.7420 1.0000	30. 92 28. 08 25. 04 24. 01 22. 13	Ar: Linde Co., commercial grade, 99. 8-99. 5 purity, Ne: Linde Co., commercial grade, 99. 0-99. 5 purity capillary method, $r=0.2019$ mm; accuracy $<\pm0.4\%$; $L_1=0.000\%$, $L_2=0.000\%$.
8	62-G(C)	221	Trautz, M. and Binkele, H. E.	373		0,0000 0,2680 0,6091 0,7420 1,0000	36, 23 33, 13 29, 90 28, 85 26, 93	Same remarks as for curve 7 except $L_1 = 0.000\%$, $L_2 = 0.000\%$, $L_3 = 0.000$
9	62-G(C)	221	Trautz, M. and Binkele, H. E.	473		0,0000 0,2680 0,6091 0,7420 1,0000	42. 20 38. 90 35. 29 34. 13 32. 22	Same remarks as for curve 7 except $L_1=0.000\%,\ L_2=0.000\%,\ L_3=0.000$
10	62- G(C)	221	Trautz, M. and Binkele, H. E.	523		0.0000 0.2680 0.6091 0.7420 1.0000	45. 01 41. 50 37. 93 36. 58 34. 60	Same remarks as for curve 7 except $L_1 = 0.107\%$, $L_2 = 0.170\%$, $L_3 = 0.27$

TABLE 62-G(C)S. SMOOTHED VISCORTY VALUES AS A FUNCTION OF COMPOSITION FOR GASEOUS ARGON-NEON MIXTURES

Mole Fraction of Ar	72.3 K [Ref. 180]	90.3 K [Ref. 180]	193.4 K [Ref. 180]	229, 0 K [Ref. 180]	291.1 K [Ref. 180]
0.00	11.72	13. 52	23. 52	26, 70	31.38
0.05	11.37	13.14	22. 9 5	26.16	30.08
0.10	11.01	12. 76	22.42	25, 64	30, 24
0. 15	10.65	12. 38	21.90	25, 13	29, 70
0. 20	10. 31	12. 01	21.40	24. 63	29. 16
0, 25	9. 98	11. 66	20. 90	24. 14	28. 66
0.30	9. 66	11.32	20. 44	23.65	28. 16
0. 35	9. 35	11. 00	19. 98	23.18	27.68
0. 4 0	9.06	10.68	19. 54	22.72	27. 20
0.45	8, 80	10. 38	19. 10	22. 28	26. 73
0. 50	8. 53	10.10	18.68	21.85	26. 26
0.55	8. 28	9, 83	18. 27	21. 43	25. 80
0.60	7.03	9. 57	17.86	21.03	25. 34
0.65	7. 80	9. 32	17. 28	20. 62	24. 90
0. 70	7. 56	9. 10	17.12	20. 22	24.48
0.75	7.34	8. 87	16.79	19.82	24.06
0.80	7.12	8. 65	16.47	19.42	23. 76
0.85	6. 92	8. 44	16. 16	19.04	23. 26
0.90	6.74	8. 21	15.86	18.67	22.87
0. 95	6. 56	8. 00	15, 56	18. 34	22.48
1.00	6. 38	7. 75	15, 29	18.02	22.11

Mole Fraction of Ar	291.2 K [Ref. 213]	293 K [Ref. 221]	373 K [Ref. 221]	473 K [Ref. 221]	523 K [Ref. 221]
0.00	30. 89	30. 92	36, 23	42. 20	45.01
0.05	30. 31	30. 38	35, 65	41.57	44.32
0. 10	29.75	29.82	35.08	40.95	43.65
0. 15	29. 21	29.30	34, 45	40. 32	43.00
0.20	28. 70	28. 78	33. 90	39. 72	42.37
0. 25	28. 22	28. 29	33. 36	39. 14	41.72
0.30	27.82	27.78	32. 81	38. 55	41.13
0.35	27. 25	27. 30	32, 30	37. 99	40.55
0.40	26. 79	26. 82	31, 80	37. 44	40.00
0.45	26.34	26.38	31.30	36. 90	39. 47
0. 50	25. 9 0	25. 92	30, 85	36.40	38. 92
0. 55	25. 46	25. 52	30, 40	35. 89	38. 41
0.60	25. 03	25. 10	29, 99	35.40	37. 91
0. 65	24. 61	24.72	29. 60	34. 92	37.43
0.70	24. 20	24. 35	29.20	34. 50	37.00
0.75	23. 81	23. 94	28, 82	34. 07	36. 60
0. 80	23. 43	23.60	28.48	33.67	36. 19
0. 85	23.06	23. 22	28.08	33. 30	35. 79
0. 90	22.71	22. 88	27.68	32. 92	35.40
0. 95	22. 36	22. 50	27. 30	32. 58	35.00
1.00	22. 00	22. 13	26. 93	32. 22	34. 60

FIGURE 62-G(C) VISCOSITY DATA AS A FUNCTION OF COMPOSITION FOR GASEOUS ARGON - NEON MIXTURES

Secretary of the secret

man well

-

.

.

FIGURE 62-G(C). VISCOSITY DATA AS A FUNCTION OF COMPOSITION FOR GASEOUS ARGON-NEON MIXTURES (continued)

TABLE 62-G(D)E. EXPERIMENTAL VISCOSITY DATA AS A FUNCTION OF DENSITY FOR GASEOUS ARGON-NEON MIXTURES

Cur. No.	Fig.	Ref. No.	Author(s)	Mole Fraction of Ar	Temp. (K)	Density (g cm ⁻³) (N	Viscosity s m ⁻² x 10 ⁻⁶)	Remarks
1	62-G(D)	323	Kestin, J. and Nagashima, A.	0.000	293.2	0.04037 0.03294 0.02495 0.01640 0.008471 0.009526 0.03744 0.02910 0.02068 0.01166 0.004197 0.0008502	31.597 31.572 31.536 31.497 31.476 31.412 31.608 31.577 31.543 31.499 31.473 31.450	Ar: 99.997 pure, Ne: 99.991 pure; oscillating disk viscometer; accuracy ±0.1%, ratios of viscosity values ±0.04%.
2	62-G(D)	323	Kestin, J. and Nagashima, A.	0.402	293. 2	0. 04133 0. 03342 0. 02517 0. 01723 0. 009201 0. 001192	27.527 27.434 27.356 27.296 27.215 27.163	Same remarks as for curve 1.
3	62-G(D)	323	Kestin, J. and Nagashima, A.	0.668	293.2	0.04901 0.04192 0.03513 0.02806 0.02092 0.01408 0.006994 0.001435	25. 314 25. 222 25. 129 25. 055 24. 985 24. 893 24. 847 24. 790	Same remarks as for curve 1.
4	62-G(D)	323	Kestin, J. and Nagashima, A.	0. 901	293. 2	0.04980 0.04006 0.03213 0.02392 0.01569 0.008007 0.001622	23. 610 23. 458 23. 351 23. 251 23. 155 23. 062 23. 003	Same remarks as for curve 1.
5	62-G(D)	323	Kestin, J. and Nagashima, A.	1.000	293.2	0.08723 0.06875 0.06010 0.05103 0.04260 0.03399 0.02519 0.01675 0.008399 0.001684	23. 608 23. 258 23. 123 22. 970 22. 836 22. 711 22. 587 22. 488 22. 384 22. 300	Same remarks as for curve 1.
6	62-G(D)	323	Kestin, J. and Nagashima, A.	0,000	303.2	0.03733 0.03156 0.02263 0.01638 0.008003 0.0008327	32.364 32.346 32.300 32.298 32.246 32.213	Same remarks as for curve 1.
7	62-G(D)	323	Kestin, J. and Nagashima, A.	0.402	303. 2	0.03872 0.03192 0.02433 0.01612 0.008851 0.001146	28. 203 28. 094 28. 030 27. 974 27. 923 27. 856	Same remarks as for curve 1
8	62-G(D)	323	Kestin, J. and Nagashima, A.	0.668	303. 2	0. 04547 0. 03845 0. 02914 0. 02022 0. 01034 0. 001378	25. 966 25. 865 25. 775 25. 671 25. 581 25. 475	Same remarks as for curve 1.
9	62-G(D)	323	Kestin, J. and Nagashima, A.	0.901	303. 2	0. 04407 0. 03887 0. 03102 0. 02310 0. 01542 0. 007688 0. 001569	24. 201 24. 125 24. 016 23. 904 23. 818 23. 738 23. 666	Same remarks as for curve 1.
10	62-G(D)	323	Kestin, J. and Nagashima, A.	1.000	303.2	0. 08430 0. 06913 0. 05766 0. 04953 0. 04086 0. 03268 0. 02421 0. 01635 0. 009095 0. 001650	24, 236 23, 960 23, 725 23, 597 23, 479 23, 353 23, 243 23, 142 23, 044 22, 960	Same remarks as for curve 1.

TABLE 62-G(D)8. SMOOTHED VISCOSITY VALUES AS A FUNCTION OF DENSITY FOR GASEOUS ARGON-NEON MIXTURES

		Mo	le Fraction of Arg	gon	
Density (g cm ⁻²)	0.000 (293.2 K) [Ref. 323]	0.402 (293.2 K) [Ref. 323]	0.668 (293.2 K) [Ref. 323]	0.901 (293.2 K) [Ref. 323]	1,000 (293,2 K) [Ref. 323
0,0000	31.50			23.00	
0.0025	31.49	27.174	24.790	23.02	
0.0050	31.48	27.190	24.820	23,04	22.338
0.0100	31.48	27.223	24.875	23.08	22,400
0.0150	31.49	27.260	24.930	23.14	22. 46 9
0.0200	31.50	27.302	24.980	23.20	22.525
0.0250	31.52	27.349	25.040	23.26	22.588
0.0300	31.54	27.401	25.098	23.33	22.655
0.0350	31,56	27.560	25.153	23.39	22.725
0.0400	31.60	27.515	25.210	23.46	22.795
0.0450		27.576	25.265	23.54	22,870
0.0500			25.320	23.62	22.946
0.0550					23,025
0.0600					23.105
0.0650					23.190
0.0700					23, 280
0.0750					23.370
0.0800					23.465
0.0900					23.665
0.0950					23.770
0.1000					23.875

		Mol	e Fraction of Arg	on	
Density (g cm ⁻³)	0.000 (303.2 K) [Ref. 323]	0.402 (303.2 K) [Ref. 323]	0,668 (303.2 K) [Ref. 323]	0.901 (303.2 K) [Ref. 323]	1,000 (303,2 K) [Ref. 323]
0.0025	32.230	27.174			
0.0050	32, 23 9	27.189	25.512	23.705	
0.0100	32, 258	27.223	25.560	23.758	23.070
0.0150	32,278	27.260	25.615	23.810	23.130
0.0200	32, 297	27.302	25.667	23.870	23.188
0.0250	32.317	27.349	25.716	23.930	23, 250
0.0300	32.336	27.400	25.770	23.995	23, 315
0.0350	32, 356	27.456	25.824	24.067	23.383
0.0400	32.374	27.515	25.885	24.140	23, 455
0.0450	32.393	27.517	25.958	24.213	23.526
0.0500			26.035	24.295	23.601
0.0550					23,680
0.0600					23.762
0.0650		•			23, 850
0.0700					23.945
0.0750					24.040
0.0800					24, 142
0.0850					24, 250
0.0900					24.365

FIGURE 62-G(D). VISCOSITY DATA AS A FUNCTION OF DENSITY FOR GASEOUS ARGON - NEON MIXTURES

TABLE 63-G(C)E. EXPERIMENTAL VISCOSITY DATA AS A FUNCTION OF COMPOSITION FOR GASEOUS ARGON-XENON MIXTURES

Cur. No.	Fig. No.	Ref. No.	Author(s)	Temp. (K)	Pressure mm Hg	Mole Fraction of Xe	Viscosity (N s m ⁻¹ x 10 ⁻⁶)	Remarks
1	63-G(C)	324	Thornton, E.	291.2	700	1. 000	22.5	Xe: 99-100 pure, balance Kr,
						0. 905	22. 6	Ar: 99. 8 pure; modified Rankine
						0.792	22.8	viscometer, relative measurements
						0. 701	22. 9	uncertainties: mixture composition
						0.598	22. 9	$\pm 0.3\%$, viscosity $\pm 1.0\%$; L ₁ =
						0.498	23. 0	0.153%, L, = 0.189%, L3 = 0.444%
						0.405	22. 9	2
						0.300	22. 9	
						0.213	22.8	
						0.109	22.4	,
						0,000	22.1	

TABLE 63-G(C)S. SMOOTHED VISCOSITY VALUES AS A FUNCTION OF COMPOSITION FOR GASEOUS ARGON-XENON MIXTURES

Mole Fraction of Xe	291.2 K [Ref. 324]
	[Itel: 024]
0.00	22.10
0.05	22. 29
0.10	22.47
0.15	22.62
0.20	22.74
0.20	22.14
0.25	22. 82
0.30	22.88
0.35	22. 91
0.40	22.94
0.45	22.95
0.50	22.96
0.55	22. 95
0.60	22.94
0.65	22. 91
0.70	22.87
0.75	22, 82
0.80	
	22.77
0.85	22. 71
0.90	22. 64
0.95	22. 57
1.00	22, 50

FIGURE 63-G(C). VISCOSITY DATA AS A FUNCTION OF COMPOSITION FOR GASEOUS ARGON-XENON MIXTURES

TABLE 64-G(C)E. EXPERIMENTAL VISCOSITY DATA AS A FUNCTION OF COMPOSITION FOR GASEOUS HELIUM-KRYPTON MIXTURES

Cur. No.	Fig. No.	Ref. No.	Author(s)	Temp. (K)	Pressure (mm Hg)	Mole Fraction of Kr	(N s m ⁻² x 10 ⁻⁶)	Remarks
1	64-G(C)	325	Nasini, A.G. and	283.2		0.0000	19. 52	He and Kr: commercial grade;
	• •		Rossi, C.			0.1021	23. 35	capillary method; precision ±0.2-
						0. 2046	24. 97	0.3% ; $L_1 = 0.054\%$, $L_2 = 0.098\%$,
						0.3086	25. 61	$L_3 = 0.285\%$.
						0. 4995	25.54	•
						0. 7098	25. 16	
						0.8100	24. 93	
						0.8845	24.75	
						0. 9454	24,64	
						1.0000	24.41	
2	64-G(C)	278	Thornton, E.	291.2	700	1.000	24.8	Kr: 99-100 pure, balance Xe, He:
						0.891	25.2	spectroscopically pure; modified
						0. 7 9 7	25. 4	Rankine viscometer, relative meas-
						0.698	25. 9	urements; uncertainties: mixture
						0.600	26.0	composition ±0.3%, viscosity ±1.0%
						0.439	26. 3	L ₁ = 0.200%, L ₂ = 0.294%, L ₃ =
						0.353	26.4	0.548%.
						0. 272	26. 2	
						0. 151	24. 9	
						0.069	22.9	
						0.000	19. 4	
3	64-G(C)	325	Nasini, A.G. and	373.2		0.0000	23, 35	Same remarks as for curve 1 except
	` '		Rossi, C.			0.1021	27. 85	$L_1 = 0.056\%$, $L_2 = 0.077\%$, $L_3 = 0.199$
						0.2046	30.01	• • • • • • • • • • • • • • • • • • • •
						0.3086	31.09	
						0. 4995	31.42	
						0.7098	31.27	
						0.8100	31.15	
						0.8845	30, 96	
						0.9454	30. 76	
						1.0000	30.68	

TABLE 64-G(C)S. SMOOTHED VISCOSITY VALUES AS A FUNCTION OF COMPOSITION FOR GASEOUS HELIUM-KRYPTON MIXTURES

Mole Fraction	283, 2 K	291.2 K	373. 2 K
of Kr	[Ref. 325]	[Ref. 278]	[Ref. 325
0.00	19. 52	19.40	23. 35
0.05	21.80	22. 15	25. 81
0.10	23.30	23. 94	27.73
0.15	24.29	24, 94	28. 97
0. 20	24. 90	25.61	29, 95
0. 25	25. 28	26.06	30. 64
0. 30	25, 56	26. 30	31.03
0.35	25.68	26. 4 0	31.22
0.40	25. 66	26. 44	31.33
0.45	25. 62	26, 42	31.40
0.50	25. 56	26. 36	31.41
0. 55	25. 46	26. 26	31.40
0, 60	25. 36	26. 14	31. 37
0.65	25. 26	26.00	31.33
0. 70	25. 16	25. 84	31.28
0. 75	25.06	25. 70	31. 22
0.80	24.9 5	25. 53	31. 16
0.85	24.82	25. 36	31.06
0. 90	24. 70	25. 18	30. 94
0.95	24. 56	25. 00	30. 80
1.00	24. 42	24. 82	30, 66

FIGURE 64-G(C). VISCOSITY DATA AS A FUNCTION OF COMPOSITION FOR GASEOUS HELIUM-KRYPTON MIXTURES

3

TABLE 64-G(D)E. EXPERIMENTAL VISCOSITY DATA AS A FUNCTION OF DENSITY FOR GASEOUS HELIUM-KRYPTON MIXTURES

Cur. No.	Fig.	Ref. No.	Author(s)	Mole Fraction of Kr	Temp. (K)		Viscosity s m ⁻² x 10 ⁻⁶)	Remarks
1	64-G(D)	326	Kestin, J., Kobayashi, Y., and Wood, R.T.	1.000	293. 2	0. 09126 0. 08253 0. 07000 0. 06342 0. 05413 0. 04137 0. 03566 0. 02653 0. 01765 0. 01045 0. 004016	26. 013 25. 901 25. 737 25. 662 25. 530 25. 402 25. 310 25. 203 25. 121 25. 057 24. 996	Kr: 99.99 pure, He: 99.995 pure; oscillating disk viscometer; uncertainties: mixture composition ±0.0027 viscosity ±0.10%, viscosity ratios ±0.04%.
2	64-G(D)	326	Kestin, J., et al.	0. 6737	293. 2	0.05892 0.03775 0.01205 0.002437	26. 478 26. 254 26. 021 25. 931	Same remarks as for curve 1.
3	64-G(D)	326	Kestin, J., et al.	0. 4924	293. 2	0.04513 0.02738 0.009019 0.001825	26. 752 26. 604 26. 449 26. 378	Same remarks as for curve 1.
4	64-G(D)	326	Kestin, J., et al.	0.3881	293.2	0.03800 0.02139 0.007274 0.001474	26.752 26.620 26.533 26.462	Same remarks as for curve 1.
5	64-G(D)	326	Kestin, J., et al.	0. 3239	293. 2	0.03164 0.01822 0.006256 0.001265	26.633 26.530 26.439 26.391	Same remarks as for curve 1.
6	64-G(D)	326	Kestin, J., et al.	0. 2823	293. 2	0.02762 0.01647 0.005528 0.001118	26.470 26.408 26.335 26.285	Same remarks as for curve 1.
7	64-G(D)	326	Kestin, J., et al.	0. 1909	293. 2	0.01974 0.01191 0.003994 0.0008098	25. 736 25. 699 25. 671 25. 638	Same remarks as for curve 1.
8	64-G(D)	326	Kestin, J., et al.	0. 1415	293. 2	0. 01591 0. 009441 0. 003191 0. 0006443	24. 991 24. 964 24. 947 24. 909	Same remarks as for curve 1.
9	64-G(D)	326	Kestin, J., et al.	0.1068	293, 2	0.01106 0.007778 0.002602 0.0005277	24. 223 24. 235 24. 202 24. 180	Same remarks as for curve 1.
10	64-G(D)	326	Kestin, J., et al.	1.0000	303. 2	0.08791 0.06985 0.05972 0.04487 0.03436 0.01710 0.01026 0.003421	26. 782 26. 531 26. 392 26. 208 26. 073 25. 909 25. 820 25. 759	Same remarks as for curve 1.
11	64-G(D)	326	Kestin, J., et al.	0. 6737	303. 2	0. 04816 0. 02561 0. 01166 0. 002356	27. 156 26. 946 26. 802 26. 716	Same remarks as for curve 1.
12*	64-G(D)	326	Kestin, J., et al.	0.4924	303. 2	0. 04357 0. 02640 0. 008717 0. 001765	27. 487 27. 336 27. 210 27. 151	Same remarks as for curve 1.
13	64-G(D)	326	Kestin, J., et al.	0. 3881	303, 2	0.02961 0.02431 0.02019 0.007034 0.001425	27. 425 27. 385 27. 344 27. 266 27. 205	Same remarks as for curve 1.
14	64-G(D)	326	Kestin, J., et al.	0. 3239	303.2	0. 03025 0. 01817 0. 006007 0. 001224	27.317 27.249 27.168 27.129	Same remarks as for curve 1.
15	64-G(D)	326	Kestin, J., et al.	0, 2823	303. 2	0.02320 0.01606 0.005346 0.001097	27. 164 27. 119 27. 044 27. 011	Same remarks as for curve 1.

TABLE 84-G(D)E. EXPERIMENTAL VISCOSITY DATA AS A FUNCTION OF DENSITY FOR GASEOUS HELIUM-KRYPTON MIXTURES (continued)

Cur. No.	Fig. No.	Ref. No.	Author(s)	Mole Fraction of Kr	Temp. (K)	Density Viscos (g cm ⁻³) (N s m ⁻² x	
16	64~G(D)	326	Kestin, J., et al.	0.1909	303. 2	0. 01944 26. 3 0. 01153 26. 3 0. 003862 26. 3 0. 0007836 26. 2	55 15
17	64-G(D)	326	Kestin, J., et al.	0. 1415	303. 2	0. 01547 25. 6 0. 009458 25. 6 0. 003044 25. 6 0. 0006230 25. 5	0 6 63
18	64-G(D)	326	Kestin, J., et al.	0.1068	303. 2	0.01202 24.8 0.007522 24.8 0.002516 24.8 0.0005102 24.7	24 09
19*	64-G(D)	326	Kestin, J., et al.	0.0000	303.2	0.003927 20.0 0.003691 20.0 0.003198 20.0 0.002767 20.0 0.002378 20.0 0.002023 20.0 0.001203 20.0 0.0007979 20.0 0.0004884 20.0 0.0001656 20.0	75 72 72 77 669 73 77 71

TABLE 64-G(D)S. SMOOTHED VISCOSITY VALUES AS A FUNCTION OF DENSITY FOR GASEOUS HELIUM-KRYPTON MIXTURES

				Mole Fractio	n of Krypton				
Density (g cm ⁻³)	0.1068 (293.2 K) [Ref. 326]	0.1415 (293.2 K) [Ref. 326]	0. 1909 (293. 2 K) [Ref. 326]	0.2823 (293, 2 K) [Ref. 326]	0.3239 (293.2 K) [Ref. 326]	0.3881 (293.2 K) [Ref. 326]	0.4924 (293.2 K) [Ref. 326]	0,6737 (293.2 K) [Ref. 326]	1.0000 · (293, 2 K) [Ref. 326
0. 00125	24. 188	24, 920	25, 644						
0.00125	24. 205	24. 940	25, 663	26, 297	26, 402	26, 476	26. 387		
0.00235	24. 215	24. 958	25, 678	20. 231	20. 402	20, 410	20.007		
0.00500	24. 225	24. 970	25. 690	26, 320	26. 427	26, 510	26.418	25, 975	25. 005
0, 00625	24. 232	24. 980	25. 700	20.020	20.421	20.010	20.410	23. 515	20.000
0. 00750	24. 235	24. 988	25, 708	26. 341	26. 452	26. 539	26. 449		
0.00875	24. 235		25. 712						
0.01000	24. 232	24. 995	25, 716	26. 362	26. 475	26, 570	26. 479	26.014	25.054
0.01125	24.224				•	·			
0.01250		25.000	25.720	26. 382		26. 5 9 5	26. 508		
0.01500		25. 000	25.724	26.400	26. 520	26.618	26. 536	26. 050	25, 098
0.01625		25.000							
0. 01750			25.724	26, 416			26. 565		
0.02000			25.700	26, 432	26. 561	26.659	26. 593	26.092	25.142
0.02250				26. 4 4 6			26.618		
0.02500				26.459	26. 599	26. 692	26. 642	26. 134	25, 1 9 0
0.02750				26.472			26.664		
0.03000					26.631	26.718	26.682	26.178	25. 241
0. 03500					26.659	26.740	26.712	26. 274	25.295
0. 03750					26.674	26. 750			
0.04000						26. 760	26.735	26.274	25. 350
0.04500							26. 752	26. 3 22	25. 408
0. 05000								26.380	25.468
0.05500								26. 435	25. 524
0.06000								26. 490	25. 5 9 0
0.06500									25. 652
0.07000									25.719
0. 07500									25. 785
0. 08000									25.855
0. 08500									25. 921
0.09000									25. 994
0.09500									26.066
0.10000									26. 140

TABLE 64-G(D)S. SMOOTHED VISCOSITY VALUES AS A FUNCTION OF DENSITY FOR GASEOUS HELIUM-KRYPTON MIXTURES (continued)

_			М	ole Fraction of	Krypton				
Density (g cm ⁻³)	0.0000 (303.2 K) [Ref. 326]	0.1068 (303.2 K) [Ref. 326]	0, 1415 (303, 2 K) [Ref. 326]	0.1909 (303.2 K) [Ref. 326]	0.2823 (303.2 K) [Ref. 326]	0.3239 (303.2 K) [Ref. 326]	0.3881 (303.2 K) [Ref. 326]	0.6737 (303.2 K) [Ref. 326]	1.0000 (303.2 K) [Ref. 326]
0.00050	20.070								
0.00100	20.072								
0.00125		24. 783	25, 565	26. 292					
0.00150	20.073								
0.00200	20.073								
0.00250	20.074	24. 810	25. 585	26. 320	27. 023	27.138	27. 215	26. 718	
0.00300	20.074								
0.00350	20.075								
0.00375		24.820	25, 601	26.340					
0.00400	20, 075								
0.00450	20.076								
0.00500	20.076	24.828	25.612	26. 352	27.044	27.160	27. 239	26. 749	
0.00625		24.831		26. 362					
0.00750	•	24. 831	25. 628	26.369	27.064	27. 179	27, 262		
0.00875		24. 833							
0.01000		24. 833	25, 636	26, 370	27, 084	27. 198	27. 284	26, 808	25. 048
0.01125		24.835							
0.01250		24.835	25.638	26. 372		27. 215			
0.01500			25. 634	26, 378	27.118	27. 320	27. 306	26.874	
0.01625			25.632						
0.01750				26. 378					
0.02000				26.378	27.148	27. 262	27. 359	26.914	25. 142
0.02500					27. 174	27. 292	27.389	26, 962	
0.03000						27. 316	27.415	27.008	25, 240
0.03250							27. 42 8		
0.03500						27. 380		27.060	
0.04000								27.092	25, 350
0.04500								27. 131	
0.05000								27. 168	25.468
0.06000									25.590
0.07000									25. 719
0.08000									25.855
0.09000									25. 995
0.10000									26, 140

FIGURE 64-G(D). VISCOSITY DATA AS A FUNCTION OF DENSITY FOR GASEOUS HELIUM - KRYPTON MIXTURES

FIGURE 64-G(D) VISCOSITY DATA AS A FUNCTION OF DENSITY FOR GASEOUS HELIUM-KRYPTON MIXTURES (continued)

FIGURE 64-G (D). VISCOSITY DATA AS A FUNCTION OF DENSITY FOR GASEOUS HELIUM-KRYPTON MIXTURES (continued)

- -

-

<u>....</u>.

-

. . .

<u>.</u>.

TABLE 65-G(C)E. EXPERIMENTAL VISCOSITY DATA AS A FUNCTION OF COMPOSITION FOR GASEOUS HELIUM-NEON MIXTURES

Cur. No.	Fig. No.	Ref. No.	Author(s)	Temp. (K)	Pressure (mm Hg)	Mole Fraction of Ne	Viscosity (N s m ⁻² x 10 ⁻⁶)	Remarks
1	65-G(C)	179	Rietveld, A.O., Van Itterbeek, A., and Velds, C.A.	20.4	40.0 19.0 13.0 9.0 7.0	0.000 0.256 0.492 0.720 1.000	3. 50 3. 67 3. 69 3. 61 3. 51	He and Ne: purities not specified; oscillating disk viscometer, relative measurements; uncertainties: $2-3\%$, more at low temperatures; $L_1=1.041\%$, $L_2=1.649\%$, $L_3=2.770\%$.
2	65-G(C)	179	Rietveld, A.O., et al.	65.8	58.0 36.0 26.0 21.0 17.0	0.000 0.258 0.509 0.761 1.000	7. 45 9. 15 9. 96 10. 32 10. 45	Same remarks as for curve 1 except $L_1=0.808\%,\ L_2=1.400\%,\ L_3=2.925\%.$
3	65-G(C)	179	Rietveld, A.O., et al.	90.2	40.0 25.0 18.0 15.0 12.0	0.000 0.251 0.491 0.755 1.000	9. 12 11. 35 12. 51 13. 19 13. 50	Same remarks as for curve 1 except $L_1 = 0.394\%, \ L_2 = 0.608\%, \ L_3 = 1.107\%$
4	65-G(C)	179	Rietveld, A.O., et al.	194.0	57.0 37.0 27.0 21.0 18.0	0.000 0.244 0.482 0.759 1.000	14. 93 18. 82 21. 10 22. 73 23. 60	Same remarks as for curve 1 except L_1 = 0.002%, L_2 = 0.005%, L_3 = 0.011%.
5	65-G(C)	325	Nasini, A.G. and Rossi, C.	284.2		0.0000 0.0340 0.2861 0.4995 0.6804 0.7850 0.9091 0.9461 0.9900	19. 29 20. 00 24. 20 26. 60 27. 80 28. 45 29. 17 29. 31 29. 50	Ne: commercial grade, 99%pure; He: commercial grade; capillary method; precision ± 0.2 – 0.3% ; L ₁ = 0.134% , L ₂ = 0.286% , L ₃ = 0.679% .
6	65-G(C)	213	Thornton, E. and Baker, W. A. D.	291.2	700	1.000 0.894 0.783 0.655 0.565 0.393 0.250 0.158 0.000	30.8 30.7 29.9 29.2 28.1 26.4 24.4 22.8 19.2	Ne and He: spectroscopically pure; modified Rankine viscometer, relative measurements; uncertainties: mixture composition $\pm 0.3\%$, viscosity $\pm 1.0\%$; L ₁ = 0.237%, L ₂ = 0.437%, L ₃ = 1.091%.
7	65-G(C)	221	Trautz, M. and Binkele, H.E.	293.0		1.0000 0.7341 0.4376 0.2379 0.0000	30. 92 29. 71 27. 02 24. 29 19. 41	He and Ne: Linde Co., commercial grade, 99.0-99.5 purity; capillary method, $r=0.2019$ mm; $L_1=0.220\%$, $L_2=0.395\%$, $L_3=0.844\%$.
8	65-G(C)	179	Rietveld, A.O., Van Itterbeek, A., and Velds, C.A.	293.1	58.0 38.0 28.0 22.0 19.0	0.000 0.262 0.498 0.752 1.000	19.61 24.76 27.72 29.73 30.97	Same remarks as for curve 1 except $L_1 = 0.041\%$, $L_2 = 0.064\%$, $L_3 = 0.115\%$.
9	65-G(C)	221	Trautz, M. and Binkele, H. E.	373.0		1.0000 0.7341 0.4376 0.2379 0.0000	36. 23 34. 79 31. 71 28. 46 22. 81	Same remarks as for curve 7 except $L_1 = 0.061\%$, $L_2 = 0.135\%$, $L_3 = 0.30\%$.
10	65-G(C)	325	Nasini, A.G. and Rossi, C	373.2		0.0000 0.0340 0.2861 0.4995 0.6804 0.7850 0.9091 0.9461 0.9900	23. 35 24. 18 29. 21 32. 00 33. 62 34. 31 35. 25 33. 35 35. 49	Same remarks as for curve 5 except $L_1=0.104,\ L_2=0.162\%,\ L_3=0.313\%$
11	65-G(C)	221	Trautz, M. and Binkele, H. E.	473.0		1.0000 0.7341 0.4376 0.2379 0.0000	42. 20 40. 56 37. 02 33. 27 26. 72	Same remarks as for curve 7 except $L_1 = 0.105\%$, $L_2 = 0.181\%$, $L_3 = 0.377$

TABLE 65-G(C)E. EXPERIMENTAL VISCOSITY DATA AS A FUNCTION OF COMPOSITION FOR GASEOUS HELIUM-NEON MIXTURES (continued)

Cur. No.	Fig. No.	Ref. No.	Author(s)	Temp. (K)	Pressure (mm Hg)	Mole Fraction of Ne	Viscosity (N s m ⁻² x 10 ⁻⁶)	Remarks
12	65-((C)	221	Trautz, M. and Binkele, H.E.	523.0		1.0000 0.7341 0.2379 0.0000	45. 01 43. 10 35. 55 28. 53	Same remarks as for curve 7 except $L_1 = 0.049\%$, $L_2 = 0.098\%$, $L_3 = 0.197\%$.

TABLE 65-G(C)S. SMOOTHED VISCOSITY VALUES AS A FUNCTION OF COMPOSITION FOR GASEOUS HELIUM-NEON MIXTURES

Mole Fraction	20.4 K [Ref. 179]	65. 8 K [Ref. 179]	90.2 K [Ref. 179]	194.0 K [Ref. 179]	284.2 K [Ref. 325]	291.2 K [Ref. 213
<u>V <</u>	[Rel. 179]	[Rel. 179]	[Rei. 179]	[Rel. 179]	[Net. 325]	[Nei. 213
0.00	3.50	7. 45	9.12	14, 93	19.29	19.20
0.05	3.60	7.72	9.72	15. 88	20.32	20.40
0.10	3, 65	8. 04	10, 28	16.77	21.28	21.56
0.15	3.68	8. 30	10.70	17.58	22.08	22.60
0.20	3.69	8. 60	11.10	18.30	22.95	23. 52
	==					
0.25	3.70	8. 82	11.44	18.95	23.56	24.40
0.30	3. 70	9. 08	11.76	19.55	24.40	25. 18
0.35	3.70	9. 25	12.00	20.02	25.01	25 . 9 0
0.40	3.70	9.47	12.26	20.50	25.59	26. 60
0.45	3.70	9. 67	12.50	20. 90	26. 10	27. 20
0.50	3.70	9. 80	12.68	21.30	26,60	27. 78
0.55	3.70	9. 92	12.80	21.60	27.03	28.30
0.60	3.70	10.08	12.98	21. 91	27.42	28.72
0.65	3. 70	10. 19	13.08	22. 21	27.75	29. 12
0.70	3.70	10. 22	13.10	22.50	28.11	29.48
0.10	0.10	10.22	10.10	22.00	20.11	20.40
0.75	3. 70	10.30	13.23	22.75	28.40	29.72
0.80	3.68	10.38	13.35	22.98	28.68	30.00
0.85	3.67	10.42	13.40	23. 15	29.40	30, 29
0.90	3.64	10.48	13.40	23.30	29.15	30. 50
0.95	3.62	10.50	13.50	23.50	29.35	30. 70
1.00	3.61	10.50	13.51	23.60	29.50	30. 80
lole Fraction	293.0 K [Ref. 221]	293.1 K [Ref. 179]	373.0 K [Ref. 221]	373. 2 K [Ref. 325]	473.0 K [Ref. 221]	523.0 K [Ref. 22
<u> </u>	(ICCI. CEL)	[(1101. 222)			[11C1. 22.
0.00	19.41	19.61	22, 81	23. 35	26.72	25. 53
0.05	20.61	20. 89	24.20	24.59	28. 32	30. 29
0.10	21.72	21, 98	25. 43	25.75	29. 80	31.81
0, 15	22.73	22. 76	26.60	26. 80	31.17	33. 30
0, 20	23.70	23, 81	27. 70	27. 76	32. 42	34. 58
	04.55					
0, 25	24.55	24.60	28.71	28. 65	33. 62	25. 92
0.30	25.32	25, 34	29.65	29. 43	34. 70	37. 08
0.35	26.09	26. 03	30.50	30. 18	35. 67	38. 10
0.40	26. 78	26.66	31.28	30.85	26.55	39.00
0.45	27.40	27. 24	31.99	31.45	37. 35	39. AO
0.50	27. 9 2	27, 78	32, 60	32.00	38.10	40. 51
0.55	28.41	28. 27	33.18	32.51	38.78	41.20
0,60	28.89	28, 72	33.70	33. 00	39.38	41.70
0.65	29.28	29, 12	34.13	33. 45	39. 88	42. 32
0.70	29.60	29. 49	34.55	33. 82	40.30	42. 80
0.75	29.90	29, 82	34.90	34. 18	40.70	43. 26
0.75	30.15	30, 10	35. 25		41.10	
0.85				34.50		43. 58
	30.40	30. 36	35.58 35.86	34. 80	41.40	44. 08 44. 40
0.90	30.60	30, 58 30, 78		35. 09 35. 30	41.58	
0.90 0.95	30.80	30. 78	36.10	35. 30	41.93	44. 71

FIGURE 65-G(C), VISCOSITY DATA AS A FUNCTION OF COMPOSITION FOR GASEOUS HELIUM - NEON MIXTURES

TABLE 65-G(D)E. EXPERIMENTAL VISCOSITY DATA AS A FUNCTION OF DENSITY FOR GASEOUS HELIUM-NEON MIXTURES

Cur. No.	Fig.	Ref. No.	Author(s)	Mole Fraction of Ne	Temp. (K)	Density (g cm ⁻³) (N	Viscosity s m ⁻² x 10 ⁻⁶)	Remarks
1	65-G(D)	323	Kestin, J. and Nagashima, A.	0. 741	293. 2	0. 02545 0. 02308 0. 01984 0. 01627 0. 01325 0. 009941 0. 006707 0. 003337 0. 000687	30. 036 30. 043 30. 016 29. 995 29. 994 29. 968 29. 973 29. 959 29. 948	Ne: 99. 991 pure, He: 99. 989 pure; oscillating disk viscometer; accuracy ± 0. 1%, ratios of viscosity values ± 0. 4%.
2	65-G(D)	323	Kestin, J. and Nagashima, A.	0.567	293. 2	0. 01986 0. 01842 0. 01625 0. 01354 0. 01081 0. 008046 0. 005268 0. 002779 0. 000562	28, 628 28, 619 28, 608 28, 611 28, 589 28, 593 28, 578 28, 571 28, 546	Same remarks as for curve 1.
3	65-G(D)	323	Kestin, J. and Nagashima, A.	0.350	293. 2	0. 01253 0. 009980 0. 006385 0. 003217 0. 0004179	26, 204 26, 215 26, 224 26, 225 26, 182	Same remarks as for curve 1.
4	65-G(D)	323	Kestin, J. and Nagashima, A.	0.154	293. 2	0.008369 0.006188 0.004033 0.002174 0.0002863	23. 048 23. 039 23. 045 23. 047 23. 034	Same remarks as for curve 1.
5	65~G(D)	323	Kestin, J. and Nagashima, A.	0.051	293. 2	0.006377 0.004948 0.003269 0.001563 0.0002145	20. 864 20. 874 20. 883 20. 894 20. 879	Same remarks as for curve 1.
6	65-G(D)	323	Kestin, J. and Nagashima, A.	0.000	293.2	0.01025 0.006924 0.005250 0.003550 0.002124 0.0009969 0.0001753	19. 606 19. 601 19. 602 19. 609 19. 603 19. 620 19. 597	Same remarks as for curve 1.
.7	65-G(D)	323	Kestin, J. and Nagashima, A.	0.741	303. 2	0. 02237 0. 01950 0. 01584 0. 01306 0. 009696 0. 006486 0. 003520 0. 000677 0. 000691	30. 751 30. 745 30. 715 20. 718 30. 699 30. 673 30. 649 30. 639 30. 665	Same remarks as for curve 1.
8	65-G(D)	323	Kestin, J. and Nagashima, A.	0.567	303. 2	0. 01757 0. 01576 0. 01309 0. 01052 0. 008510 0. 005450 0. 002652 0. 000565 0. 000562	29. 291 29. 277 29. 292 29. 286 29. 267 29. 275 29. 251 29. 244 29. 267	Same remarks as for curve 1.
9	65-G(D)	323	Kestin, J. and Nagashima, A.	0.350	303. 2	0. 01361 0. 01166 0. 009811 0. 007903 0. 005887 0. 003708 0. 001963 0. 0004068	26. 851 26. 855 26. 874 26. 864 26. 852 26. 844 26. 857 26. 846	Same remarks as for curve 1.
10	65~G(D)	323	Kestin, J. and Nagashima, A.	0.154	303. 2	0.009158 0.007769 0.006513 0.005217 0.003901 0.002579 0.001323 0.0002735	23. 589 23. 595 23. 586 23. 590 23. 597 23. 606 23. 605 23. 586	Same remarks as for curve 1.

TABLE 65-G(D)E. EXPERIMENTAL VISCOSITY DATA AS A FUNCTION OF DENSITY FOR GASEOUS HELIUM-NEON MIXTURES (continued)

Cur. No.	Fig. No.	Ref. No.	Author(s)	Mole Fraction of Ne	Temp. (K)	Density (g cm ⁻³) (h	Viscosity Is m ⁻² x 10 ⁻⁶)	Remarks
11	65-G(D)	323	Kestin, J. and Nagashima, A.	0, 051	303.2	0.006724 0.005448 0.004114 0.002836 0.001519 0.0002074	21. 361 21. 381 21. 382 21. 389 21. 391 21. 377	Same remarks as for curve 1.
12	65-G(D)	323	Kestin, J. and Nagashima, A.	0.000	303.2	0.009806 0.007700 0.006650 0.005581 0.003424 0.003324 0.002324 0.001566 0.0008202 0.0001717	20. 074 20. 082 20. 074 20. 068 20. 069 20. 077 20. 088 20. 082 20. 085 20. 080	Same remarks as for curve 1.

TABLE 65-G(D)S. SMOOTHED VISCOSITY VALUES AS A FUNCTION OF DENSITY FOR GASEOUS HELIUM-NEON MIXTURES

	Mole Fraction of Neon									
Density (g cm ⁻³)	0.000 (293.2 K) [Ref. 323]	0. 051 (293. 2 K) [Ref. 323]	0.154 (293.2 K) [Ref. 323]	0.350 (293.2 K) [Ref. 323]	0.567 (293.2 K) [Ref. 323]	0.741 (293.2 K) [Ref. 323				
0.00000	19.600	20, 888	23.038	26.173	28. 540	29, 940				
0.00125	19.604	20.890	23.048							
0.00250	19.605	20, 890	23.050	26.210	28.560	29.960				
0. 00375	19.605	20,883	23.051							
0, 00500	19.604	20.878	23.050	26. 225	28.578	29, 970				
0. 00625	19.607	20.870	23. 045							
0.00750	19.610	20.860	23.046	26.221	28. 583	29, 980				
0.00875	19.610	20.850	23.048							
0.01000	19,607	20.840	23.042	26.215	28. 5 9 0	29, 990				
0.01125	19.600									
0. 01250				26.203	28. 595	29.993				
0. 01500				26. 190	28. 602	30.000				
0.01750					28. 612	30.010				
0. 02000					28, 620	30.025				
0.02250						30.030				
0. 02500						30.032				

	Mole Fraction of Neon									
Density (g cm ⁻³)	0.000 (303.2 K) [Ref. 323]	0.051 (303.2 K) [Ref. 323]	0.154 (303.2 K) [Ref. 323]	0.350 (303.2 K) [Ref. 323]	0.567 (303.2 K) [Ref. 323]	0.741 (303.2 K) [Ref. 323]				
0.00000 0.00125	20. 070 20. 078	21.373 21.390	23. 573 23. 600	26.846	29. 248	30. 630				
0. 00250 0. 00375	20, 079 20, 080	21. 391 21. 390	23, 602 23, 600	26.860	29. 262	30. 651				
0, 00500	20, 080	21.386	23.601	26.862	29. 270	30.672				
0.00625	20.085	21.372	23.598							
0. 00750 0. 00875	20. 083 20. 076	21.345	23. 598 23. 595	26, 868	29, 275	30, 685				
0.01000	20.070		23.590	26.865	29. 280	30. 700				
0. 01250				26. 860	29. 295	30.718				
0.01500 0.01750 0.02000				26. 850	29. 300 29. 299	30. 732 30. 750 30. 755				
0. 02250						30. 750				

FIGURE 65-G(D). VISCOSITY DATA AS A FUNCTION OF DENSITY FOR GASEOUS HELIUM-NEON MIXTURES

FIGURE 65-G(D). VISCOSITY DATA AS A FUNCTION OF DENSITY FOR GASEOUS HELIUM-NEON MIXTURES (continued)

• . . .

. . .

_

T.1BLE 66-G(C)E. EXPERIMENTAL VISCOSITY DATA AS A FUNCTION OF COMPOSITION FOR GASEOUS HELIUM-XENON MIXTURES

Cur. No.	Fig.	Ref. No.	Author(s)	Temp. (K)	Pressure (mm Hg)	Mole Fraction of Xe	Viscosity (N s m ⁻² x 10 ⁻⁶)	Remarks
1	1 66-G(C) 324	324	Thornton, E.	291.2	700	1.000	22, 4	Xe: 99-100 pure, balance Kr. He:
			·			0.898	22.9	spectroscopically pure; modified
						0.792	23, 2	Rankine viscometer, relative meas-
						0.687	23.7	urements; uncertainties: mixture
						0. 5 94	24, 2	composition ±0.3%, viscosity ±1.0%
						0.494	24.5	$L_1 = 0.199\%$, $L_2 = 0.295\%$, $L_3 =$
						0, 401	24. 9	0.760%.
						0.304	25. 2	·
						0, 201	25. 2	
						0.169	24.8	
						0, 063	23. 2	
						0,000	19.4	

 $\begin{array}{ll} \textbf{TABLE 66-G(C)S.} & \textbf{SMOOTHED VISCOSITY VALUES AS A FUNCTION OF COMPOSITION FOR GASEOUS} \\ \textbf{HELIUM-XENON MIXTURES} \end{array}$

Mole Fraction of Xe	291. 2 K [Ref. 9]
0.00	19.40
0.05	22.43
0.10	24.39
0.15	24. 86
0. 20	25. 11
0. 25	25. 21
0. 30	25. 20
0.35	25.07
0.40	24.90
0.45	24.72
0.50	24. 53
0.55	24, 38
0.60	24.13
0.65	23.92
0.70	23. 70
0.75	23.48
0.80	23, 26
0. 85	23, 04
0.90	22, 83
0. 95	22, 61
1.00	22, 40

FIGURE 66 - G (C) VISCOSITY DATA AS A FUNCTION OF COMPOSITION FOR GASEOUS HELIUM- XENON MIXTURES

.. .

___*

. ___.

TABLE 67-G(C)E. EXPERIMENTAL VISCOSITY DATA AS A FUNCTION OF COMPOSITION FOR GASEOUS KRYPTON-NEON MIXTURES

Cur. No.	Fig. No.	Ref. No.	Author(s)	Temp. (K)	Pressure (mm Hg)	Mole Fraction of Kr	Viscosity (N s $m^{-2} \times 10^{-6}$)	Remarks
1	67-G(C)	278	Thornton, E.	291.2	700	1.000	24. 9	Kr: 99-100 pure, balance Xe, Ne:
						0.88 9	25. 5	spectroscopically pure; modified
						0.797	26.4	Rankine viscometer, relative meas-
						0.647	27.5	urements; uncertainties: mixture
						0.533	28.0	composition $\pm 0.3\%$, viscosity $\pm 1.0^{\circ}$
						0.438	28. 7	$L_1 = 0.248\%$, $L_2 = 0.336\%$, $L_3 =$
						0.339	29. 4	0.6624.
						0, 229	30. 3	
						0.111	31.0	
						0.065	31. 2	
						0.000	31. 3	

TABLE 67-G(C)S. SMOOTHED VISCOSITY VALUES AS A FUNCTION OF COMPOSITION FOR GASEOUS KRYPTON-NEON MIXTURES

Mole Fraction of Kr	291.2 K {Ref. 278
0.00	31.29
0.05	31. 23
0.10	31.05
0.15	30. 76
0. 20	30. 44
0. 25	30. 10
0. 30	29. 76
0. 35	29.40
0.40	29.03
0. 45	28.6 8
0. 50	28, 33
0.55	27. 99
0.60	27.65
0, 65	27. 31
0.70	26.97
0. 75	26.62
0. 80	26. 29
0.85	25. 45
0. 90	25.60
0. 95	25. 25
1.00	24. 90

FIGURE 67-G(C). VISCOSITY DATA AS A FUNCTION OF COMPOSITION FOR GASEOUS KRYPTON-NEON MIXTURES

フ

TABLE 68-G(C)E. EXPERIMENTAL VISCOSITY DATA AS A FUNCTION OF COMPOSITION FOR GASEOUS KRYPTON-XENON MIXTURES

Cur. No.	Fig. No.	Ref. No.	Author(s)	Temp. (K)	Pressure (mm Hg)	Mole Fraction of Xe	$Viscosity (N s m^{-2} x 10^{-6})$	Remarks
1	68-G(C)	324	Thornton, E.	291.2	700	1.000	22.5	Xe: 99-100 pure, balance Kr, Kr:
	(- /					0.876	22.8	99-100 pure, balance Xe; modified
						0.786	22.9	Rankine viscometer, relative meas
						0.693	23. 3	urements; uncertainties: mixture
						0.595	23.3	composition ±0.3%, viscosity ±1.0
						0, 491	23.7	$L_1 = 0.729\%$, $L_2 = 1.263\%$, $L_3 =$
						0. 393	23. 8	2.418%.
						0.296	24.0	=
						0.201	24.3	
						0.115	24.5	
						0.000	24.7	

TABLE 68-G(C)S. SMOOTHED VISCOSITY VALUES AS A FUNCTION OF COMPOSITION FOR GASEOUS KRYPTON-XENON MIXTURES

Mole Fraction of Xe	291.2 K [Ref. 324
0.00	24.70
0. 05	24.60
0.10	24.48
0.15	24. 39
0. 20	24. 29
0. 25	24.17
0. 30	24.06
0. 35	23.95
0.40	23.84
0.45	23.73
0.50	23. 62
0. 55	23. 51
0.60	23.40
0, 65	23. 29
0.70	23. 17
0.75	23. 06
0.80	23. 95
0.85	22. 84
0.90	22.73
0.95	22.61
1.00	22, 50

FIGURE 68-G(C). VISCOSITY DATA AS A FUNCTION OF COMPOSITION FOR GASEOUS KRYPTON - XENON MIXTURES

TABLE 69-G(C)E. EXPERIMENTAL VISCOSITY DATA AS A FUNCTION OF COMPOSITION FOR GASEOUS NEON-XENON MIXTURES

Cur. No.	Fig. No.	Ref. No.	Author(s)	Temp. (K)	Pressure (mm Hg)	Mole Fraction of Xe	Viscosity (N s m ⁻² x 10 ⁻⁶)	Remarks
1	69-G(C)	324	Thornton, E.	291.2	700	1.000	22, 4	Xe: 99-100 pure, balance Kr. Ne:
	, ,					0.903	23. 2	spectroscopically pure; modified
						0.794	24.0	Rankine viscometer, relative meas-
						0.594	25.8	urements; uncertaintles: mixture
						0.393	27, 8	composition ±0.3%, viscosity ±1.0%
						0.285	29.1	$L_1 = 0.208\%$, $L_2 = 0.282\%$, $L_3 =$
						0.199	29.9	0.487%.
						0.103	30.6	
						0.000	31.0	

TABLE 69-G(C)S. SMOOTHED VISCOSITY VALUES AS A FUNCTION OF COMPOSITION FOR GASEOUS NEON-XENON MIXTURES

Mole Fraction of Xe	291.2 K [Ref. 324]
	[2101. 024]
0.00	31.00
0.05	30, 83
0.10	30.60
0.15	30. 32
0.20	29. 97
0.25	29. 53
0.30	29. 01
0. 35	28. 43
0.40	27.84
0.45	27. 29
0.50	26. 79
0.55	26. 31
0.60	25. 84
0.65	25. 38
0. 70	24. 94
0. 75	24.50
0. 80	24.06
0.85	23. 64
0.90	23. 22
0. 95	22. 81
1.00	22.40

FIGURE 69-G(C). VISCOSITY DATA AS A FUNCTION OF COMPOSITION FOR GASEOUS NEON-XENON MIXTURES

Ţ

-

. . .

TABLE 70-G(D)E. EXPERIMENTAL VISCOSITY DATA AS A FUNCTION OF DENSITY FOR GASEOUS ARGON-CARBON DIOXIDE MIXTURES

Cur. No.	Fig. No.	Ref. No.	Author(s)	Mole Fraction of CO ₂	Temp. (K)	Density (g cm ⁻³)	Viscosity (N s m ⁻² x 10 ⁻⁶)	Remarks
1	70-G(D)	326	Kestin, J., Kobayashi, Y., and Wood, R.T.	0.9172	293. 2	0.05135 0.02857 0.009322 0.001873	15. 713 15. 453 15. 309 15. 273	CO ₂ : 99.8 pure, Ar: 99.999 pure; oscillating disk viscometer; uncer- tainties: mixture composition ±0.002% viscosity ±0.1%, viscosity ratios ±0.044
2	70-G(D)	326	Kestin, J., et al.	0. 8425	293. 2	0.05063 0.02867 0.009132 0.001859	16.307 16.038 15.874 15.826	Same remarks as for curve 1.
3	70-G(D)	326	Kestin, J., et al.	0. 6339	293.2	0.04770 0.02744 0.008969 0.001807	17.940 17.645 17.459 17.386	Same remarks as for curve 1.
4	70-G(D)	326	Kestin, J., et al.	0. 5398	293. 2	0.04665 0.02658 0.008859 0.001798	18.682 18.396 18.191 18.123	Same remarks as for curve 1.
5	70-G(D)	326	Kestin, J., et al.	0.3324	293. 2	0.04300 0.02633 0.008625 0.001765	20, 271 20, 023 19, 806 19, 728	Same remarks as for curve 1.
6	70-G(D)	326	Kestin, J., et al.	0. 2675	293. 2	0.04472 0.02551 0.008857 0.001753	20.826 20.532 20.321 20.229	Same remarks as for curve 1.
7	70-G(D)	326	Kestin, J., et al.	0. 0000	293.2	0. 04271 0. 03806 0. 03318 0. 02941 0. 02496 0. 02106 0. 01671 0. 01252 0. 008196 0. 004983 0. 001707	22. 861 22. 783 22. 708 22. 648 22. 584 22. 536 22. 471 22. 419 22. 363 22. 322 22. 274	Same remarks as for curve 1.
8	70-G(D)	326	Kestin, J., et al.	1.0000	303.2	0. 05057 0. 04483 0. 03924 0. 03471 0. 02871 0. 02207 0. 01865 0. 01379 0. 009020 0. 005350 0. 001803	15. 585 15. 504 15. 447 15. 392 15. 327 15. 277 15. 254 15. 216 15. 194 15. 172	Same remarks as for curve 1.
9	70 - G(D)	326	Kestin, J., et al.	0.9172	303.2	0.04757 0.02784 0.009001 0.001766	16.211 15.978 15.815 15.781	Same remarks as for curve 1.
10	70-G(D)	326	Kestin, J., et al.	0. 8425	303.2	0.04742 0.02750 0.008861 0.001751	16.810 16.555 16.390 16.339	Same remarks as for curve 1.
11	70-G(D)	326	Kestin, J., et al.	0. 6339	303. 2	0.04575 0.02624 0.008794 0.001759	18. 484 18. 203 18. 014 17. 946	Same remarks as for curve 1.
12	70 - G(D)	326	Kestin, J., et al.	0. 5398	303.2	0.04424 0.02624 0.008739 0.001776	19. 252 18. 968 18. 757 18. 687	Same remarks as for curve 1.
13	70-G(D)	326	Kestin, J., et al.	0. 3324	303. 2	0.04249 0.02545 0.008540 0.001706	20. 871 20. 622 20. 403 20. 330	Same remarks as for curve 1.

TABLE 70-G(D)E. EXPERIMENTAL VISCOSITY DATA AS A FUNCTION OF DENSITY FOR GASEOUS ARGON-CARBON DIOXIDE MIXTURES (continued)

Cur. No.	Fig. No.	Ref. No.	Author(s)	Mole Fraction of CO ₂	Temp. (K)	Density (g cm ⁻³)	Viscosity (N s m ⁻² x 10 ⁻⁶)	Remarks
14	70-G(D)	326	Kestin, J., et al.	0. 2675	303. 2	0. 04191 0. 02593 0. 008334 0. 001695		Same remarks as for curve 1.
15	70-G(D)	326	Kestin, J., et al.	0.0000	303. 2	0. 04093 0. 03660 0. 03257 0. 02845 0. 02410 0. 02022 0. 01532 0. 01206 0. 008055 0. 004849 0. 001650	22,971	Same remarks as for curve 1.

TABLE 70-G(D)S. SMOOTHED VISCOSITY VALUES AS A FUNCTION OF DENSITY FOR GASEOUS ARGON-CARBON DIOXIDE MIXTURES

	Mole Fraction of Carbon Dioxide										
Density (g cm ⁻³)	0.0000 (293.2 K) [Ref. 326]	0. 2675 (293. 2 K) [Ref. 326]	0. 3324 (293. 2 K) [Ref. 326]	0. 5398 (293. 2 K) [Ref. 326]	0. 6339 (293. 2 K) [Ref. 326]	0.8425 (293.2 K) [Ref. 326]	0. 9172 (293. 2 K) [Ref. 326]				
0.0025	22, 282										
0.0050	22, 320	20.308	19.764	18, 160	17.420	15, 842	15.294				
0.0100	22.387	20.330	19.820	18.220	17.460	15, 880	15.320				
0.0150	22.450	20.380	19.880	18.262	17.508	15.910	15.342				
0. 0200	22,520	20. 44 0	19.942	18. 320	17.550	15.950	15.380				
0.0250	22.586	20.511	20,000	18, 378	17.600	15.998	15, 422				
0.0300	22,658	20.580	20.075	18.440	17.660	16.050	15.478				
0.0350	22.730	20,660	20.148	18.500	17.720	16.113	15. 525				
0.0400	22, 820	20, 738	20.226	18.579	17.800	16, 174	15, 582				
0.0450	22.908	20.820	20.318	18.660	17.898	16. 238	15.640				
0.0500				18. 758	18.010	16.300	15, 700				

	Mole Fraction of Carbon Dioxide									
Density (g cm ⁻³)	0.0000 (303.2 K) [Ref. 326]	0. 2675 (303. 2 K) [Ref. 326]	0.3324 (303.2 K) [Ref. 326]	0. 5398 (303. 2 K) [Ref. 326]	0.6339 (303.2 K) [Ref. 326]	0.8425 (303.2 K) [Ref. 326]	0. 9172 (303. 2 K) [Ref. 326]	1.0000 (303.2 K) [Ref. 326]		
0.0025	22.944									
0.0050	22.980	20.880	20.378	18,715	17.970	16.360	15, 796	15. 159		
0.0100	23.040	20.940	20, 422	18.758	18, 100	16.400	15, 820	15.179		
0.0150	23, 102	21.008	20.490	18.812	18, 074	16, 438	15.860	15, 220		
0.0200	23.172	21.080	20.558	18, 880	18. 140	16. 480	15. 900	15. 260		
0. 0250	23. 250	21.160	20. 620	18, 941	18, 198	16, 520	15. 942	15, 294		
0.0300	23.320	21.240	20.680	19. 020	18, 260	16, 578	15.995	15, 338		
0.0350	23, 399	21.310	20.758	19.100	18. 326	16.634	16, 050	15.382		
0.0400	23. 470	21.380	20, 830	19.180	18, 400	16, 700	16, 115	15.440		
0.0450				19. 260	18. 478	16.778	16. 180	15. 510		
0.0500								15, 580		

FIGURE 70-G(D). VISCOSITY DATA AS A FUNCTION OF DENSITY FOR GASEOUS ARGON - CARBON DIOXIDE MIXTURES

and ...

.

2

TABLE 71-G(C)E. EXPERIMENTAL VISCOSITY DATA AS A FUNCTION OF COMPOSITION FOR GASEOUS ARGON-HYDROGEN MIXTURES

Cur. No.	Fig. No.	Ref.	Author(s)	Temp. (K)	Pressure (atm)	Mole Fraction of Ar	Viscosity (N s m ⁻² x 10 ⁻⁶)	Remarks
1	71-G(C)	226	Trautz, M. and	293		1.0000	22.11	Ar: Linde Co., impurities 0.2 N2;
			Ludewigs, W.			0.7058	21.40	H2: made by electrolysis; capillary
						0.5543	20.56	method; $L_1 = 0.052\%$, $L_2 = 0.098\%$,
						0.3485	18.57	$L_3 = 0.215\%$.
						0.0000	8.75	
2	71-G(C)	226	Trautz, M. and	373		1.0000	26.84	Same remarks as for curve 1 except
			Ludewigs, W.			0.7058	25.86	$L_1 = 0.080\%$, $L_2 = 0.179\%$, $L_3 =$
			•			0.5543	24.88	0.400%.
						0.3485	22.38	
						0.0000	10.29	
3	71-G(C)	2 2 6	Trautz, M. and	473		1.0000	32.08	Same remarks as curve 1 except
	-		Ludewigs, W.			0.7058	30.70	$L_1 = 0.000\%$, $L_2 = 0.000\%$, $L_3 =$
						0.5543	29.48	0.000%.
						0.3485	26.36	
			1			0.0000	12.11	
4	71-G(C)	226	Trautz, M. and	523		1.0000	34.48	Same remarks as for curve 1 excep
	` •		Ludewigs, W.			0.7058	33,10	$L_1 = 0.000\%$, $L_2 = 0.000\%$, $L_3 =$
						0.5543	31.64	0.000%.
						0.3485	28.26	
						0.0000	12.96	

TABLE 71-G(C)S. SMOOTHED VISCOSITY VALUES AS A FUNCTION OF COMPOSITION FOR GASEOUS ARGON-HYDROGEN MIXTURES

Mole Fraction of Ar	293 K [Ref. 226]	373 K [Ref. 226]	473 K [Ref. 226]	523 K [Ref. 226
0.00	8.75	10.29	12.11	12.96
0 .0 5	9.08	12.83	15.30	16.40
0.10	13.00	15,00	18.10	19.50
0.15	14.60	17.20	20.50	22.08
0,20	15.96	18.90	22.50	24.16
0.25	17.02	20,30	24.04	25.80
0.30	17.90	21.48	25.38	27.20
0.35	18.64	22.41	26.44	28.34
0.40	19.22	23.22	27.38	29.34
0.45	19.71	23.90	28.20	30.20
0.50	20.16	24.48	28.88	30.87
0.55	20.38	24.90	29.44	31.60
0.60	20.90	25.30	29.90	32.18
0.65	21.80	25.61	30.32	32,68
0.70	21.40	25.90	30.68	33.07
0.75	21.60	26.15	30.90	33.40
0.80	21.75	26.28	31.22	33,70
0.85	21.84	26.48	31.48	33.92
0,90	21.99	26.61	31.70	34.16
0.95	22,10	26.77	31.90	34.32
1.00	22.11	26.84	32.08	34.48

FIGURE 71-G(C). VISCOSITY DATA AS A FUNCTION OF COMPOSITION FOR GASEOUS ARGON-HYDROGEN MIXTURES

the second secon

TABLE 71-G(D) E. EXPERIMENTAL VISCOSITY DATA AS A FUNCTION OF DENSITY FOR GASEOUS ARGON-HYDROGEN MIXTURES

Cur.	Fig. No.	Ref. No.	Author(s)	Mole Fraction of Ar	Temp. (K)	Density (g cm ³ x 10 ⁻⁴)	Viscosity (N s m ⁻² x 10 ⁻⁶)	Remarks
1	71-G(D)	327	Van Lierde, J.	0.361	286.0	0.109 0.0175 0.00638 0.00231 0.000817 0.000290 0.000123 0.0000517	17. 31 14. 28 10. 50 6. 23 2. 98 1. 11 0. 52 0. 23	Oscillating disk viscometer; original data reported as a func- tion of pressure, density calcu- lated from pressure using ideal gas equation.
2	71-G(D)	327	Van Lierde, J.	1.000	287.0	0.323 0.0532 0.0137 0.00616 0.00306 0.00154 0.000719 0.000365 0.000188 0.0000950	21. 31 18. 72 13. 38 9. 16 5. 98 3. 56 1. 83 0. 99 0. 47 0. 27	Same remarks as for curve 1.
3	71-G(D)	327	Van Lierde, J.	0.000	287.4	0.0201 0.000948 0.000341 0.000146 0.0000606 0.0000270	8. 47 4. 82 2. 79 1. 49 0. 69 0. 32	Same remarks as for curve 1.
4	71-G(D)	327	Van Lierde, J.	0.856	288.2	0.499 0.0624 0.0188 0.00791 0.00351 0.00076 0.000880 0.000458 0.000233 0.000119 0.0000609	20. 18 18. 57 14. 15 9. 71 6. 88 4. 09 2. 31 1. 20 0. 69 0. 35 0. 20	Same remarks as for curve 1.
5	71-G(D)	327	Van Lierde, J.	0.545	288.2	0.202 0.0301 0.0105 0.00443 0.00261 0.00169 0.000839 0.000428 0.000225 0.000114 0.0000588	19.50 16.49 12.55 8.58 6.15 4.62 2.71 1.46 0.80 0.42 0.22	Same remarks as for curve 1.
6	71-G(D)	327	Van Lierde, J.	0.361	288.2	0.157 0.0231 0.0123 0.00487 0.00149 0.00128 0.000601 0.000242 0.000121	18. 15 17. 22 16. 06 13. 44 8. 57 7. 70 4. 82 2. 25 1. 66	Same remarks as for curve 1.
7	71-G(D)	327	Van Lierde, J.	0.000	288.2	0.0145 0.00559 0.00290 0.00110 0.000907 0.000183 0.000183 0.00019 0.0000923 0.0000567 0.0000337	8. 55 8. 28 7. 93 6. 80 6. 71 4. 65 3. 38 2. 71 2. 29 1. 46 0. 88 0. 35	Same remarks as for curve 1.
8	71-G(D)	327	Van Lierde, J.	0.546	290.2	0.184 0.0385 0.0205 0.0110 0.00882 0.00318 0.00170 0.000914 0.000481	19. 38 18. 63 17. 65 16. 23 13. 07 11. 72 8. 51 5. 67 3. 85 2. 10	Same remarks as for curve 1.

TABLE 71-G(D) E. EXPERIMENTAL VISCOSITY DATA AS A FUNCTION OF DENSITY FOR GASEOUS ARGON-HYDROGEN MIXTURES (continued)

Cur. No.	Fig. No.	Ref. No.	Author(s)	Mole Fraction of Ar	Temp.	Density (g cm ³ x 10 ⁻⁴)	Viscosity (N s m ⁻² x 10 ⁻⁶)	Remarks
9	71-G(D)	327	Van Lierde, J.	1.000	290.9	0.0429 0.0152 0.00543 0.00396 0.00203 0.00125 0.000670 0.000415 0.000160	20.50 18.60 13.96 12.56 8.93 6.41 4.07 2.71	Same remarks as for curve 1.
10	71-G(D)	327	Van Lierde, J.	0.856	291.5	0.106 0.0432 0.0151 0.00488 0.00191 0.00108 0.000672 0.000320 0.000143	21. 15 20. 47 18. 16 13. 43 8. 32 5. 82 4. 08 2. 15 0. 87	Same remarks as for curve 1.

TABLE 71-G(D)S. SMOOTHED VISCOSITY VALUES AS A FUNCTION OF DENSITY FOR GASEOUS ARGON-HYDROGEN MIXTURES

				Mole Fracti	on of Argon			
Density (g cm ⁻³ x 10 ⁻⁴)	0.361 (288.2 K) [Ref. 327]	0.000 (288, 2 K) [Ref. 327]	0.546 (290.2 K) [Ref. 327]	0.856 (291.5 K) [Ref, 327]	1.000 (287.0 K) [Ref. 327]	0.000 (287.4 K) [Ref. 327]	0.856 (288.2 K) [Ref. 327]	0.545 (288.2 K [Ref. 327
0.010	15. 56	8.26	15.84	16.92	11.84	7.85	11.29	12.36
0.015	16.48	8.59	17.08	18.08	13.87	8.24	13.21	13.73
0.020	17.02	8.76	17.64	18.80	15.11	8.48	14.39	14.58
0.025	17.30		18.00	19. 34	16.02	8.58	15.27	15. 20
0.030	17.46		18.28	19.74	16.74		15.95	15. 69
0.035	17. 56		18.52	20.04	17.32		16.52	16.09
0.040	17.63		18.70	20.34	17.80		17.01	16.44
0.045	17.68		18.88	20.50	18.19		17.43	16.75
0.050	17.74		19.00	20.68	18.52		17.82	17.01
0.060	17.83		19.17	20.91	19.03		18.45	17.47
0.070	17.92		19.28	21.04	19.43		18.95	17.84
0.080	17.97		19.32	21.12	19.77		19.33	18.15
0.090	18.02		19.35	21.12	20.06			18.40
0.100	18.06		19.36	21.12	20.30			18.61
0.125	18.12		19.37		20.72			19.00
0.150	18.14		19.38		20.95			19.23
0.175			19.39		21.07			19.36
0.200			19.39		21.14			19.51
0,225					21.23			
0.250					21.28			
0.275					21.31			
0.300					21.32			

FIGURE 71-G(D) VISCOSITY DATA AS A FUNCTION OF DENSITY FOR GASEOUS ARGON-HYDROGEN MIXTURES

-

*

. .

- .. --- ...

TABLE 72-G(D)E. EXPERIMENTAL VISCOSITY DATA AS A FUNCTION OF DENSITY FOR GASEOUS ARGON-NITROGEN MIXTURES

Cur. No.	Fig. No.	Ref. No.	Author(s)	Mole Fraction of Ar	Temp.	Density (g cm ⁻³)	Viscosity (N s m ⁻² x 10 ⁻⁶)	Remarks
1	72-G(D)	328	DiPippo, R., Kestin, J. and Oguchi, K.	, 1.000	293.2	0.03864 0.03847 0.02520 0.02508 0.008352 0.001746	22.796 22.789 22.595 22.601 22.386 22.284	Ar: 99.99 pure, N_2 : 99.999 pure oscillating disk viscometer; uncertainties: error $\pm 0.1\%$ and precision $\pm 0.05\%$.
2	72-G(D)	328	DiPippo, R., et al.	0.8010	293.2	0.03644 0.02368 0.007877 0.001640	21.907 21.731 21.534 21.430	Same remarks as for curve 1.
3	72-G(D)	328	DiPippo, R., et al.	0.6138	293.2	0.03405 0.02218 0.007336 0.001504	21.026 20.862 20.669 20.599	Same remarks as for curve 1.
4	72-G(D)	328	DiPippo, R., et al.	0.4054	293.2	0.03159 0.03154 0.02054 0.006835 0.001417	20.013 20.011 19.857 19.683 19.616	Same remarks as for curve 1.
5	72~G(D)	328	DiPippo, R., et al.	0.2263	293.2	0.02952 0.01920 0.006394 0.001330	19.103 18.959 18.791 18.722	Same remarks as for curve 1.
6	72-G(D)	328	DiPippo, R., et al.	1.000	303.2	0.03749 0.02432 0.008008 0.001656	23.429 23.245 23.033 22.938	Same remarks as for curve 1.
7	72-G(D)	328	DiPippo, R., et al.	0.8010	303.2	0.03512 0.02281 0.007566 0.001583	22.512 22.336 22.136 22.050	Same remarks as for curve 1.
8	72-G(D)	328	DiPippo, R., et al.	0.6138	303.2	0.03294 0.02149 0.007081 0.001487	21.604 21.437 21.256 21.182	Same remarks as for curve 1.
9	72-G(D)	328	DiPippo, R., et al.	0.4054	303.2	0.03036 0.01986 0.006618 0.001369		Same remarks as for curve 1.
10	72-G(D)	328	DiPippo, R et al.	0,2263	303.2	0.02854 0.01842 0.006164 0.001276	19.606 19.468 19.308 19.241	Same remarks as for curve 1.

TABLE 72-G(D)S. SMOOTHED VI SCOSITY VALUES AS A FUNCTION OF DENSITY FOR GASEOUS ARGON-NITROGEN MIXTURES

	Mole Fraction of Argon									
Density (g cm ⁻³)	0,2263 (293,2 K) [Ref. 328]	0.4054 (293.2 K) [Ref. 328]	0.6138 (293.2 K) [Ref. 328]	0.8010 (293.2 K) [Ref. 328]	1.0000 (293.2 K) [Ref. 328					
0.0025	18.730	19.638	20.610	21,445	22.292					
0.0050	18.750	19.686	20.640	21.480	22.340					
0,0075	18.770	19.732	20.670	21.510	22.371					
0.0100	18.792	19.773	20.700	21.548	22.409					
0.0125	18.821	19.812								
0.0150	18,855	19.850	20.767	21.620	22.472					
0.0175		19.880								
0.0200	18,930	19.910	20.830	21.690	22.532					
0.0250	19,020	19.960	20.900	21.760	22.590					
0.0300	19,118	19.999	20.970	21.829	22.665					
0,0350			21.040	21.885	22.739					
0.0400					22.810					

	Mole Fraction of Argon									
Density (g cm ⁻³)	0.2263 (303.2 K) [Ref. 328]	0.4054 (303.2 K) [Ref. 328]	0.6138 (303.2 K) [Ref. 328]	0.8010 (303.2 K) [Ref. 328]	1,0000 (303,2 K) [Ref. 328]					
0.0025	19,270	20.178		22.069	22.951					
0.0050	19.310	20.226	21.190	22.100	22.990					
0.0075	19.348	20.265	21.230	22.130						
0.0100	19, 382	20.300	21.270	22.158	23.060					
0.0125	19.420	20.340	21.308	22.192						
0.0150	19.450	20.370	21.345	22,225	23,130					
0.0200	19,512	20.425	21.422	22.290	23.195					
0.0250	19.570	20.489	21.496	22.360	23,260					
0.0300	19,620	20.542	21.565	22,430	23.325					
0.0350			21.630	22.501	23.390					
0.0375					23.423					

FIGURE 72-G(D). VISCOSITY DATA AS A FUNCTION OF DENSITY FOR GASEOUS ARGON-NITROGEN MIXTURES

- ---

2

TABLE 73-G(D)E. EXPERIMENTAL VISCOSITY DATA AS A FUNCTION OF DENSITY FOR GASEOUS HELIUM-CARBON DIOXIDE MIXTURES

Cur. No,	Fig. No.	Ref. No.	Author(s)	Mole Fraction of CO ₂	Temp. (K)	Density Viscosit (g cm ⁻³) (N s m ⁻² x 1	
1	73-G(D)	328	DiPippo, R., Kestin, J., and Oguchi, K.	1. 000	303, 2	0.04633 15.49 0.02880 15.32 0.009107 15.19 0.009101 15.20 0.001854 15.16	oscillating disk viscometer; error ± 0.1%, precision ± 0.05%.
2	73-G(D)	328	DiPippo, R., et al.	0. 8626	303, 2	0. 03913 16. 05 0. 02470 15. 92 0. 02464 15. 92 0. 007935 15. 82 0. 001634 15. 78	2 2 2
3	73-G(D)	328	DiPippo, R., et al.	0.6655	303, 2	0.02988 17.02: 0.02581 16.99: 0.02297 16.96: 0.01909 16.93: 0.01518 16.90: 0.01002 16.88: 0.006215 16.85: 0.003702 16.84: 0.001277 16.82:	L 4 5 7 5 6 6
4	73-G(D)	328	DiPippo, R., et al.	0. 5095	303. 2	0. 02322 17. 96; 0. 01494 17. 89; 0. 004931 17. 84; 0. 001021 17. 81;	9 5
5	73-G(D)	328	DiPippo, R., et al.	0.3554	303.2	0, 01705 18, 99; 0, 01107 18, 95; 0, 007366 18, 93; 0, 003670 18, 92; 0, 003671 18, 90; 0, 002204 18, 90; 0, 000764 18, 89;	7 8 2 2 6 8
6	73-G(D)	328	DiPippo, R., et al.	0. 2580	303. 2	0.0131 19.673 0.008596 19.65 0.002886 19.623 0.000599 19.59	1
7	73-G(D)	328	DiPippo, R., et al.	0.1961	303.2	0.01093 20.05 0.007135 20.04 0.004758 20.03 0.002374 20.02 0.001421 20.01 0.000492 20.00	3 1 3 3
8	73-G(D)	328	DiPippo, R., et al.	0.0819	303.2	0.006669 20.47' 0.006621 20.46' 0.006612 20.46' 0.004371 20.46' 0.004342 20.45' 0.001466 20.45' 0.000307 20.43'	7 9 5 5 8
9	73-G(D)	328	DiPippo, R., et al.	0.0530	303. 2	0.005570 20.44 0.003673 20.43 0.001231 20.43 0.000255 20.410	7
10	73-G(D)	328	DiPippo, R., et al.	0.0414	303. 2	0.005193 20.40 0.003373 20.40 0.001140 20.39 0.000238 20.38	3 .
11	73-G(D)	328	DiPippo, R., et al.	0. 000	303.2	0.003670 20.08- 0.002377 20.09: 0.002344 20.08: 0.000802 20.09: 0.000167 20.08:	Same remarks as for curve 1.
12	73-G(D)	328	DiPippo, R., et al.	1.000	293. 2	0. 04871 14. 979 0. 03010 14. 810 0. 009414 14. 699 0. 001922 14. 670) 1
13	73-G(D)	328	DiPippo, R., et al.	0.8626	293.2	0.04093 15.536 0.02585 15.41 0.008169 15.31 0.001678 15.286	3

TABLE 73-G(D)E. EXPERIMENTAL VISCOSITY DATA AS A FUNCTION OF DENSITY FOR GASEOUS HELIUM-CARBON DIOXIDE MIXTURES (continued)

Cur. No.	Fig. No.	Ref. No.	Author(s)	Mole Fraction of CO ₂	Temp. (K)	Density (g cm ⁻³)	Viscosity (N s m ⁻² x 10 ⁻⁶)	Remarks
14	73-G(D)	328	DiPippo, R., et al.	0, 6655	293. 2	0. 03237 0. 03109 0. 01977 0. 01295 0. 006453 0. 006440 0. 006433 0. 001337	16.353 16.353 16.349	Same remarks as for curve 1.
15	73-G(D)	328	DiPippo, R., et al.	0. 5095	293. 2	0. 02396 0. 01554 0. 005109 0. 001061		Same remarks as for curve 1.
16	73-G(D)	328	DiPippo, R., et al.	0. 3554	293.2	0.01765 0.01139 0.007629 0.003806 0.000796	18.404	Same remarks as for curve 1.
17	73-G(D)	328	DiPippo, R., et al.	0.2580	293. 2	0, 01375 0, 008923 0, 002976 0, 000623	19.112	Same remarks as for curve 1.
18	73-G(D)	328	DiPippo, R., et al.	0.1961	293. 2	0.01129 0.007352 0.002456 0.000510	19.518	Same remarks as for curve 1.
19	73-G(D)	328	DiPippo, R., et al.	0.0819	293. 2	0.006884 0.004507 0.001513 0.001512 0.000315	19. 986 19. 978 19. 976 19. 960	Same remarks as for curve 1.
20	73-G(D)	328	DiPippo, R., et al.	0.0530	293.2	0.005809 0.005809 0.003797 0.001270 0.000266	19. 955 19. 953 19. 943	Same remarks as for curve 1.
21	73-G(D)	328	DiPippo, R., et al.	0.0414	293. 2	0.005365 0.003509 0.001176 0.000245	19.919 19.911	Same remarks as for curve 1.

TABLE 73-G(D)S. SMOOTHED VISCOSITY VALUES AS A FUNCTION OF DENSITY FOR GASEOUS HELIUM-CARBON DIOXIDE MIXTURES

Donaite.	Mole Fraction of Carbon Dioxide									
Density (g cm ⁻³)	0.0414 (293.2 K) [Ref. 328]	0, 0530 (293, 2 K) [Ref. 328]	0.0819 (293.2 K) [Ref. 328]	0.1961 (293.2 K) [Ref. 328]	0.2580 (293.2 K) [Ref. 328]					
0.0010	19.900	19, 940	19.966	19, 501						
0.0020	19. 905	19.942	19.970	19. 507	19. 092					
0.0030	19.910	19.948	19.972	19.510	15.052					
0.0040	19.915	19.950	19.978	19, 515	19.110					
0. 0050	19.920	19. 952	19. 981	19. 520	19, 110					
0.0060	19.925	19.960	19.986		10 105					
0.0070		207.200	19. 990	19, 528	19. 125					
0.0080			19.998	19.530	10 100					
0.0090			10.000	19. 538	19. 136					
0.0100				19. 541	19.148					
0. 0120				19.553	19, 155					
0.0140				40.000	19.163					
0.0150										
					19. 168					

Density		Mole Fract	ion of Carbon Di	oxide	
(g cm ⁻³)	0.3554 (293.2 K) [Ref. 328]	0.5090 (293.2 K) [Ref. 328]	0.6655 (293.2 K) [Ref. 328]	0.8626 (293.2 K) [Ref. 328]	1.0000 (293.2 K) [Ref. 328
0.0025	18.399	17.310	16, 332	15. 292	
0.0050	18.410	17, 320	16,346	15.301	14,680
0.0075	18.422	17.332	16.358	40.001	14.000
0.0100	18.435	17.345	16.368	15, 325	14.698
0.0125	18.448	17.354		10.023	14.050
0.0150	18.460	17. 370	16.385	15.350	14.720
0.0175	18.470	17.389		10000	14.120
0.0200	18.481	17.410	16.410	15, 380	14.747
0.0225		17.430			44.141
0.0250		17.457	16,440	15.412	14.775
0. 0300			16,500	15. 449	14.810
0.0325			1€, 530	10. 110	14.010
0. 0350			20.300	15. 486	14.846
0.0400				15, 530	14.888
0.0425				15.555	14.000
0. 0450					14. 935

TABLE 73-G(D)S. SMOOTHED VISCOSITY VALUES AS A FUNCTION OF DENSITY FOR GASEOUS HELIUM-CARBON DIOXIDE MIXTURES (continued)

	Mole Fraction of Carbon Dioxide										
Density (g cm ⁻³)	0.0000 (303, 2 K) [Ref. 328]	0.0414 (303.2 K) [Ref. 328]	0,0530 (303.2 K) [Ref. 328]	0.0819 (303.2 K) [Ref. 328]	0.1961 (303, 2 K) [Ref. 328]	0. 2580 (303. 2 K) [Ref. 328					
0.0010	20.090	20. 389	20, 420	20, 440	20.008	19. 599					
0.0020	20.088	20.390	20. 425	20. 441	20.010	19.601					
0.0030	20.087	20.392	20.430	20. 448	20.018	19.612					
0.0040	20.086	20.397	20.438	20.452	20.020	19,620					
0.0050	20.091	20.399	20. 440	20, 459	20.028	19.630					
0.0060		20. 401	20. 449	20, 463	20. 030	19. 640					
0.0070				20.47	20. 035	19.649					
0.0080					20.040	19.660					
0.0090					20.042	19.662					
0.0100					20. 050	19. 673					
0.0110					20.053						

	Mole Fraction of Carbon Dioxide										
Density (g cm ⁻³)	0.3554 (303.2 K) [Ref. 328]	0.5095 (303.2 K) (Ref. 328)	0.6655 (303.2 K) {Ref. 328}	0.8626 (303.2 K) [Ref. 328]	1.0000 (303, 2 K) [Ref. 328]						
0.0020	18. 905										
0.0025		17.818	16.831	15. 790							
0.0040	18.918										
0.0050	18. 920	17.832	16.850	15.802	15.172						
0.0060	18.928										
0.0075		17.850	16.865								
0.0080	18.939										
0.0100	18 . 94 8	17.868	16.880	15.835	15.200						
0.0120	18.958										
0. 0125		17. 885	16. 8 9 5								
0.0140	18.970										
0.0150	18.975	17. 902	16.910	15.862	15. 225						
0.0170	18. 990										
0. 0175		17.920									
0.0200		17. 94 0	16.940	15.892	15.255						
0. 0225		17. 955									
0.0250			16.978	15. 925	15.290						
0. 0300			17.018	15.970	15.330						
0. 0350				16.015	15, 371						
0.0400				16.063	15, 422						
0.0450					15, 479						

FIGURE 73-G(D). VISCOSITY DATA AS A FUNCTION OF DENSITY FOR GASEOUS HELIUM-CARSON DIOXIDE MIXTURES

TABLE 74-G(C)E. EXPERIMENTAL VISCOSITY DATA AS A FUNCTION OF COMPOSITION FOR GASEOUS HELIUM-HYDROGEN MIXTURES

Cur. No.	Fig. No.	Ref. No.	Author(s)	Temp. (KP	Pressure (atm)	Mole Fraction of He	Viscosity (N s m ⁻² x 10 ⁻⁶)	Remarks
1	74-G(C)	74	Gille, A.	273. 2		1.00000 0.96094	18. 925 18. 500	He: spectroscopically pure, H ₂ :
						0.89569	17. 596	spectroscopically pure, electrol-
						0.86400	17. 327	osis of sulfuric acid; capillary
						0.75087	16. 032	method; $r_{18} = 0.0060482 \pm 3 \text{ cm}$;
						0. 59716		accuracy of $\eta \pm 0.02\%$; $L_1 = 0.260\%$,
							14.306	$L_2 = 0.349\%, L_3 = 0.621\%,$
						0.39857	12. 267	
						0.18807	10. 165	
2	74-G(C)	74	Gille, A.	900.0		0.00000	8. 410	
-	14-0(0)	17	ome, A.	288.2		1.00000 0.96094	19.611 19.133	Same remarks as for curve 1 excer
						0.89569		$L_1 = 0.107\%$, $L_2 = 0.146\%$, $L_3 = 0.146\%$
						0.86400	18.319	0.241%.
							17.846	
						0.75087	16.528	
						0.59716	14.769	
						0. 39857	12.652	
						0.18807	10.548	
						0.00000	8.776	
3	74-G(C)	327	van Lierde, J.	291.7		0.000	8. 81	Oscillating disk viscometer; L, =
						0.189	10.57	0.173% , $L_2 = 0.255\%$, $L_3 = 0.569\%$.
						0.353	12.02	
						0. 503	13.43	
						0.565	13.97	
						0.683	15.36	
						0.811	16.86	
						1.000	19.69	
4	74-G(C)	221	Trautz, M. and	293.0		1.0000	19.74	He: Linde Co., commercial grade,
			Binkele, H. E.			0.4480	13.17	99-99. 5 purity; capillary method;
						0.3931	12.52	$r = 0.2019$ mm; accuracy $< \pm 0.4\%$;
						0.3082	11.66	$L_1 = 0.115\%$, $L_2 = 0.187\%$, $L_3 = 0.187\%$
						0.0000	8. 75	0.398%.
5	74-G(C)	221	Trautz, M. and	373.0		1.0000	23.20	Same remarks as for curve 4 excep
			Binkele, H.E.			0.4480	15.51	$L_1 = 0.053\%$, $L_2 = 0.084\%$, $L_3 =$
						0.3931	14. 78	
						0.3082	13. 83	0. 135%.
						0.0000	10.29	
6	74-G(C)	74	Gille, A.	272.0				
•	(-)		ome, m.	373.2		1.00000	23.408	Same remarks as for curve 1 excep
						0.96094	22.807	$L_1 = 0.309\%$, $L_2 = 0.414\%$, $L_3 =$
						0.89569	22. 032	0.686%.
						0.86400	21. 555	
						0.75087	19.860	
						0.59716	17.847	
						0.39857	15. 174	
						0.18807	12.646	
						0.00000	10.450	
7	74-G(C)		Trautz, M. and	473.0		1.0000	27. 15	Same remarks as for curve 4 except
			Binkele, H. E.			0.4480	18.17	L ₁ = 0.103%, L ₂ = 0.187%, L ₃ =
						0.3931	17. 28	0.404%.
						0.3082	16.19	0. ±0±/0.
						0.0000	12.11	
8	74-G(C)	221	Trautz, M. and	523.0		1.0000	29. 03	Same remarks as for curve 4 except
	•		Binkele, H. E.			0.4480	19.39	T _ 0 0000 t o com t
			•			0.3931	18.52	$L_1 = 0.000\%$, $L_2 = 0.000\%$, $L_3 = 0.000\%$
						0.3082		0.000%.
							17.32	
						0.0000	19. 96	

TABLE 74-G(C)S. SMOOTHED VISCOSITY VALUES AS A FUNCTION OF COMPOSITION FOR GASEOUS HELIUM-HYDROGEN MIXTURES

Mole Fraction of H ₂	273. 2 K [Ref. 74]	288.2 K [Ref. 74]	291.7 K [Ref. 327]	293.0 K [Ref. 221]	373, 0 K [Ref. 221]	373.2 K [Ref. 74]	473.0 K [Ref. 221]	523.0 K [Ref. 221]
0.00	8, 41	8, 78	8. 81	8.75	10. 29	10.45	12. 11	12.96
0.05	8. 86	9.26	9.28	9.20	10.89	11.00	12.79	13.70
0.10	9. 32	9.79	9. 74	9.67	11.46	11.56	13.45	14.39
0.15	9. 78	10, 23	10.19	10.10	12, 01	12.14	14. 10	15, 09
0.20	10.26	10.64	10.64	10.57	12.59	12.72	14.79	15.77
0.25	10.75	11.20	11.10	11.07	13. 18	13.32	15.40	16.48
0.30	11.24	11.68	11.54	11.58	13.75	13.93	16. 10	17.18
0.35	11.74	12.18	11.98	12.10	14.30	14.66	16.77	17.90
0.40	12, 24	12.68	12.42	12.64	14.90	15.18	17.48	18.62
0.45	12.76	13.18	12.89	13.18	15.50	15. 91	18.15	19.40
0.50	13. 26	13.70	13.38	13.70	16. 12	16.46	18, 88	20.19
0.55	13.78	14.28	13.8 9	14.24	16.77	17.11	19.60	20.99
0.60	14. 31	14.78	14.42	14.80	17.40	17.78	20, 39	21.80
0.65	14.86	15.34	14. 99	15.39	18.08	18.44	21. 19	22.66
0.70	15.40	15.90	15.56	15.99	18. 75	19.12	22.02	23. 5 2
0.75	15. 96	16.50	16.14	16.60	19. 45	19.81	22. 83	24.40
0.80	16.50	17,09	16.72	17.22	20.17	20.50	23.68	25.32
0.85	17.06	17.70	17.39	17.85	20. 90	21.22	24. 75	26.14
0. 90	17.64	18.32	18.08	18.50	21.65	21.94	25. 40	27.20
0.95	18.25	18.95	18.85	19.15	22. 42	22.69	26.28	28.12
1.00	18.91	19,61	19.69	19.76	23.20	23.40	27. 15	29.03

FIGURE 74-G(C). VISCOSITY DATA AS A FUNCTION OF COMPOSITION FOR GASEOUS HELIUM - HYDROGEN MIXTURES

TABLE 74-G(D)E. EXPERIMENTAL VISCORITY DATA AS A FUNCTION OF DENSITY FOR GASEOUS HELIUM-HYDROGEN MIXTURES

Cur. No.	Fig.	Ref. No.	Author(s)	Mole Fraction of H ₂	Temp. (K)	Density (g cm ⁻³)	Viscosity (N s m ⁻² x 10 ⁻⁶)	Remarks
1	74-G(D)	329	Kestin, J. and Yata, J.	0. 8596	293. 2	0, 000782 0, 000464 0, 000169	17. 819 17. 817 17. 809	He: 99. 995 pure, H ₂ : 99. 999 pure; oscillating disk viscometer; error ± 0.1%, precision ± 0.05%.
2	74-G(D)	329	Kestin, J. and Yata, J.	0. 8533	293. 2	0,000782 0,000468 0,000171	17. 739 17. 737 17. 739	Same remarks as for curve 1.
3	74-G(D)	329	Kestin, J. and Yata, J.	0.8488	293. 2	0.000778 0.000464 0.000171	17. 681 17. 681 17. 678	Same remarks as for curve 1.
4	74-G(D)	329	Kestin, J. and Yata, J.	0. 8429	293. 2	0.000775 0.000462 0.000167	17.637 17.631 17.618	Same remarks as for curve 1.
5	74-G(D)	329	Kestin, J. and Yata, J.	0.8325	293, 2	0,000766 0,000460 0,000166	17. 469 17. 471 17. 460	Same remarks as for curve 1.
6	74-G(D)	329	Kestin, J. and Yata, J.	0. 7737	293. 2	0.003369 0.002217 0.000737 0.000154	16. 728 16. 740 16. 740 16. 732	Same remarks as for curve 1.
7	74-G(D)	329	Kestin, J. and Yata, J.	0.6286	293. 2	0.003273 0.002029 0.000677 0.000141	15.070 15.077 15.077 15.064	Same remarks as for curve 1.
8	74-G(D)	329	Kestin, J. and Yata, J.	0.5196	293. 2	0,002919 0,001912 0,000634 0,000133	13. 855 13. 856 13. 862 13. 856	Same remarks as for curve 1.
9	74-G(D)	329	Kestin, J. and Yata, J.	0. 2629	293, 2	0.002412 0.001591 0.000529 0.000110	11.252 11.246 11.243 11.241	Same remarks as for curve 1.
10	74-G(D)	329	Kestin, J. and Yata, J.	0.8596	303.2	0.000757 0.000449 0.000166	18.247 18.240 18.239	Same remarks as for curve 1.
11	74-G(D)	329	Kestin, J. and Yata, J.	0. 8533	303.2	0.000756 0.000449 0.000165	18. 172 18. 173 18. 163	Same remarks as for curve 1.
12	74-G(D)	329	Kestin, J. and Yata, J.	0. 8488	303. 2	0.000752 0.000445 0.000163	18. 112 18. 113 18. 104	Same remarks as for curve 1.
13	74-G(D)	329	Kestin, J. and Yata, J.	0.8429	303. 2	0.000737 0.000444 0.000163	18.062 18.064 18.054	Same remarks as for curve 1.
14	74~G(D)	329	Kestin, J. and Yata, J.	0. 8325	303. 2	0.000741 0.000445 0.000162	17. 898 17. 891 17. 893	Same remarks as for curve 1.
15	74-G(D)	329	Kestin, J. and Yata, J.	0. 7737	303. 2	0.003371 0.002128 0.000711 0.000149	17. 126 17. 132 17. 131 17. 129	Same remarks as for curve 1.
16	74-G(D)	329	Kestin, J. and Yata, J.	0. 6286	303. 2	0.003076 0.001959 0.000657 0.000186 0.000138	15. 433 15. 433 15. 439 15. 435 15. 431	Same remarks as for curve 1.
17	74-G(D)	329	Kestin, J. and Yata, J.	0. 5196	303. 2	0.002856 0.001841 0.000614 0.000129	14. 186 14. 188 14. 192 14. 204	Same remarks as for curve 1.
18	74-G(D)	329	Kestin, J. and Yata, J.	0. 5196	303. 2	0,002386 0,002386 0,001525 0,000512 0,000108	11. 518 11. 516 11. 518 11. 517 11. 493	Same remarks as for curve 1.

TABLE 74-G(D)S. SMOOTHED VISCOSITY DATA AS A FUNCTION OF DENSITY FOR GASEOUS HELIUM-HYDROGEN MIXTURES

				Mole Fraction	n of Hydrogen				
Density (g cm ⁻³)	0. 2629 (293. 2 K) (Ref. 329j	0.5196 (293.2 K) [Ref. 329]	0.6286 (293.2 K) [Ref. 329]	0.7737 (293.2 K) [Ref. 329]	0.8325 (293.2 K) [Ref. 329]	0.8429 (293.2 K) [Ref. 329]	0, 8488 (293, 2 K) (Ref. 329)	0.8533 (293.2 K) [Ref. 329]	0. 8596 (293, 2 K) [Ref. 329
0.00010 0.00020 0.00025	11, 241	13.863	15, 067	· · · · · · · · · · · · · · · · · · ·	17. 455 17. 462	17. 614 17. 620	17.677 17.679	17. 738 17. 739	17. 894 17. 893
0, 00023 0, 00030 0, 00040	11.241	13. 903	13.001		17. 466 17. 470	17. 625 17. 630	17.680 17.682	17. 73 9 17. 738	17. 893 17. 892
0. 00050 0. 00060	11,244	13, 860	15. 075	16.738	17.472 17.472	17. 633 17. 636	17. 682 17. 682	17. 738 17. 738	17. 892 17. 895
0.00070 0.00075 0.00080	11.245		15. 080		17. 471 17. 470	17. 637 17. 636	17.682 17.682	17. 739 17. 739	17. 898 17. 900
0. 00090			•			17. 636	17.682	17.739	17, 902
0,00100 0,00125	11.247 11.248	13. 857 13. 856	15. 084	16. 741			17.681	17. 738	
0,00150 0.00175	11.249 11.250	13.856	15. 085	16. 743					
0.00200 0.00225	11,250 11,254	13.856	15.083	16. 740					
0.00250 0.00300	11.255	13. 856 13. 855	15, 080 15, 074	16. 737 16. 732					
0.00350		13, 855	15. 066	16. 728					
0.00400				16.718					

D				Mole Fract	ion of Hydroger	ı			
Density (g cm ⁻⁵)	0, 2629 (303, 2 K) [Ref. 329]	0.5196 (303.2 K) [Ref. 329]	0.6286 (303.2 K) [Ref. 329]	0.7737 (303.2 K) [Ref. 329]	0.8325 (303.2 K) [Ref. 329]	0, 8429 (303. 2 K) [Ref. 329]	0.8488 (303.2 K) [Ref. 329]	0. 8533 (303. 2 K) [Ref. 329]	0, 8596 (303, 2 K) [Ref. 329
0.00005					17.894	18.046		18. 161	18. 240
0.00010					17, 894	18.050	18. 102	18, 162	18.240
0.00015					17.894	18.053			
0.00020					17.893	18.056	18.106	18.164	18.240
0.00025	11.503	14. 200	15. 4 35	17. 128				18. 166	18.240
0.00030					17.892	18.062	18. 111	18. 168	18.240
0.00040					17.892	18.064	18. 113	18. 170	18.241
0.00050	11.513	14. 197	15.439	17, 133	17.892	18.065	18. 114	18.172	18. 242
0,00060					17, 895	18.064	18. 114	18.171	18. 245
0,00070					17.898	18.062	18. 114	18.166	18.247
0.00075	11.520	14. 195	15. 441						
0,00080					17.900	18.061	18. 112	18. 160	18.248
0,00100	11.519	14. 192	15. 442	17. 137					
0.00125	11.518	14. 190							
0.00150	11. 520	14. 187	15. 442	17. 138					
0.00175	11.520								
0.00200	11.520	14.187	15. 440	17, 134					
0.00250	11.518	14. 187	15. 439	17, 133					
0.00300		14. 190	15. 432	17. 130					
0, 00350			15. 429	17. 126					
0,00400				17. 123					

FIGURE 74-G(D). VISCOSITY DATA AS A FUNCTION OF DENSITY FOR GASEOUS HELIUM-HYDROGEN MIXTURES

1

TABLE 75-G(D)E. EXPERIMENTAL VISCOSITY DATA AS A FUNCTION OF DENSITY FOR GASEOUS HELIUM-NITROGEN MIXTURES

Cur No.		Ref.	Author(s)	Mole Fraction of N ₂	Temp (K)	Density (g cm ⁻³)	Viscosity (N s m ⁻² x 10 ⁻⁶)	Remarks
1	75-G(D)	330	Kao, J.T.F. and Kobayashi, R.	0.0000	183. 1	5 0.00264 0.00524 0.01032 0.01523 0.02000 0.02912 0.04590	14. 244 14. 211 14. 220 14. 225 14. 272 14. 342 14. 564	N_2 : 99. 997 pure, He: 99. 999 pure; capillary tube viscometer; error $\pm 0.137\%$.
2	75-G(D)		Kao, J.T.F. and Kobayashi, R.	0.1283	183. 1		14. 329 14. 337 14. 433 14. 510 14. 606 14. 816 15. 363	Same remarks as for curve 1.
3	75-G(D)	330	Kao, J. T. F. and Kobayashi, R.	0.4029	183.18	0.00907 0.01805 0.03572 0.05295 0.06968 0.10152 0.15837	13. 655 13. 750 13. 978 14. 280 14. 641 15. 335 17. 032	Same remarks as for curve 1.
4	75-G(D)	330	Kao, J.T.F. and Kobayashi, R.	0.8412	183. 15	0. 01640 0. 03336 0. 06884 0. 10594 0. 14383 0. 21751 0. 33551	12. 443 12. 700 13. 371 14. 287 15. 328 17. 909 23. 702	Same remarks as for curve 1,
5	75-G(D)	330	Kao, J.T.F. and Kobayashi, R.	1.0000	183. 15	0. 01921 0. 03962 0. 08435 0. 13436 0. 18829 0. 29279 0. 42992	11.904 12.284 13.230 14.558 16.167 20.656 29.987	Same remarks as for curve 1,
6	75–G(D)	330	Kao, J. T. F. and Kobayashi, R.	0. 0000	223. 15	0.00217 0.00431 0.00852 0.01261 0.01661 0.02431 0.03868 0.05499 0.06967	16. 241 16. 239 16. 239 16. 248 16. 248 16. 276 16. 411 16. 644 16. 958	Same remarks as for curve 1.
	75-G(D)	330	Kao, J.T.F. and Kobayashi, R.	0.1283	223. 15		16. 377 16. 415 16. 450 16. 487 16. 534 16. 649 16. 955 17. 506 18. 180	Same remarks as for curve 1.
	75–G(D)	330	Kao, J. T. F. and Kobayashi, R.	0.2540	223. 15	0. 00552 0. 01089 0. 02146 0. 03174 0. 04172 0. 06082 0. 09582 0. 13424 0. 16764	16. 183 16. 202 16. 281 16. 361 16. 490 16. 774 17. 417 18. 341 19. 410	Same remarks as for curve 1.
) 1	75-G(D)	330	Kao, J.T.F. and Kobayashi, R.	0.4029 ;		0. 00747 0. 01478 0. 02921 0. 04326 0. 05693 0. 06309 0. 13070 0. 18195	15. 802 15. 855 15. 996 16. 165 16. 368 16. 831 17. 891 19. 404	Same remarks as for curve 1.

TABLE 75-G(D)E. EXPERIMENTAL VISCOSITY DATA AS A FUNCTION OF DENSITY FOR GASEOUS HELIUM-NITROGEN MIXTURES (continued)

Cur. No.	Fig. No.	Ref. No.	Author(s)	Mole Fraction of N ₂	Temp. (K)	Density (g cm ⁻³)	Viscosity (N s m ⁻² x 10 ⁻⁶)	Remarks
10	75-G(D)	330	Kao, J. T. F. and Kobayashi, R.	0.6909	223.15	0. 01139 0. 02278 0. 04557 0. 06835 0. 09061 0. 13358 0. 16856 0. 28851 0. 34873	15. 016 15. 136 15. 470 15. 785 16. 229 17. 359 19. 878 23. 155 26. 673	Same remarks as for curve 1.
11	75-G(D)	330	Kao, J.T.F. and Kobayashi, R.	0.8412	223. 15	0. 01322 0. 02678 0. 05406 0. 08156 0. 10875 0. 16227 0. 25658 0. 34615 0. 41108	14. 578 14. 744 15. 222 15. 759 16. 380 17. 826 21. 193 26. 105 31. 060	Same remarks as for curve 1.
12	75-G(D)	330	Kao, J.T.F. and Kobayashi, R.	1.0000	223.15	0.01530 0.03143 0.06437 0.09848 0.13324 0.20190 0.31894 0.41796 0.48364	14. 229 14. 471 15. 055 15. 858 16. 785 19. 005 24. 152 31. 080 37. 511	Same remarks as for curve 1.
13	75-G(D)	330	Kao, J.T.F. and Kobayashi, R.	0.0000	273.15	0.00357 0.00699 0.01038 0.01370 0.02015 0.03233 0.04637 0.05926 0.07115	18. 719 18. 718 18. 736 18. 737 18. 755 18. 859 19. 013 19. 213	Same remarks as for curve 1.
14	75-G(D)	330	Kao, J. T. F. and Kobayashi, R.	0.0525	273. 15	0.00464 0.00918 0.01362 0.01797 0.02640 0.04233 0.06035 0.07692 0.09213	18. 814 18. 807 18. 782 18. 810 18. 892 18. 988 19. 178 19. 509 19. 875	Same remarks as for curve 1.
15	75-G(D)	330	Kao, J.T.F. and Kobayashi, R.	0. 1283	273. 15	0.00621 0.01229 0.01823 0.02405 0.03534 0.05667 0.06120 0.10336 0.12314	18. 890 18. 941 18. 989 19. 043 19. 120 19. 395 19. 740 20. 141 20. 631	Same remarks as for curve 1.
16	75-G(D)	330	Kao, J.T.F. and Kobayashi, R.	0. 2540	273. 15		18. 748 18. 757 18. 826 18. 910 19. 125 20. 300 20. 300 21. 010 21. 927	Same remarks as for curve 1.
17	75-G(D)	330	Kao, J.T.F. and Kobayashi, R.	0.4029	273. 15	0. 01206 0. 02384 0. 03533 0. 04653 0. 06807 0. 10783 0. 15179 0. 19014 0. 22368	18. 376 18. 513 18. 641 18. 601 19. 129 19. 911 21. 143 22. 371 23. 604	Same remarks as for curve 1.

TABLE 75-G(D)E. EXPERIMENTAL VISCOSITY DATA AS A FUNCTION OF DENSITY FOR GASEOUS HELIUM-NITROGEN MIXTURES (continued)

Cur.	Fig.	Ref. No.	Author(s)	Mole Fraction of N ₂	Temp.	Density (g cm ⁻³)	Viscosity (N s m ⁻² x 10 ⁻⁶)	Remarks
18	75-G(D)	330	Kao, J.T.F. and Kobayashi, R.	0.5450	273. 15	0, 01526 0, 02996 0, 04447 0, 05864 0, 08588 0, 13588 0, 19027 0, 23664 0, 27631	17. 935 18. 109 18. 396 18. 591 19. 141 20. 339 21. 973 23. 869 25. 760	Same remarks as for curve 1.
19	75-G(D)	330	Kao, J.T.F. and Kobayashi, R.	0, 6909	273. 15	0.01861 0.03682 0.05482 0.07245 0.10643 0.16855 0.23486 0.28973 0.33520	17. 564 17. 846 18. 148 18. 470 19. 174 20. 879 23. 207 25. 825 28. 444	Same remarks as for curve 1.
20	75-G(D)	330	Kao, J.T.F. and Kobayashi, R.	0.8412	273. 15	0,01080 0,02160 0,04321 0,06456 0,08562 0,12638 0,20064 0,27785 0,33926 0,38842	17.064 17.237 17.575 17.899 18.336 19.307 21.940 25.035 28.097 31.680	Same remarks as for curve 1.
21	75-G(D)	330	Kao, J.T.F. and Kobayashi, R.	1.0000	273. 15		17. 020 17. 246 17. 756 18. 358 19. 756 23. 066 27. 563 32. 340 36. 500	Same remarks as for curve 1.
22	75 - G(D)	331	Makavetskas, R.A., Popov, V.N., and Taederberg, N.V.	0. 565	284.7	0. 1370 0. 1093 0. 0834 0. 0534 0. 0252 0. 00850	20. 96 20. 45 19. 93 19. 36 18. 78 18. 49	Gas purities are not specified; capillary flow type viscometer; uncertainties are better than 4.5%; data corrected for thermal diffusion original data reported as a function of pressure, density calculated from pressure through interpolation and extrapolation of P-V-T data of Witonsky and Miller [370].
23	75-G(D)	331	Makavetskas, R.A., et	al. 0.222	285.6	0.0690 0.0572 0.0407 0.0282 0.0133 0.00450	20.88 20.63 20.32 20.12 20.05 19.95	Same remarks as for curve 22.
24	75-G(D)	331	Makavetskas, R.A., et	tal. 0.412	285.6	0. 1061 0. 0849 0. 0627 0. 0421 0. 0209 0. 00670	20.60 20.27 20.01 19.71 19.39 19.22	Same remarks as for curve 22.
25	75-G(D)	331	Makavetskas, R.A., et	tal, 0,778	287.0	0, 1673 0, 1410 0, 1041 0, 0693 0, 0325 0, 0109	21.75 21.14 20.16 19.42 18.62 18.32	Same remarks as for curve 22.
26	3 75-G(D	326	Kestin, J., Kobayashi, Y., and Wood, R.T.	0. 7949	293. 2	0. 02479 0. 02184 0. 01935 0. 01444 0. 00958 0. 00468 0. 00215 0. 00096	18. 360 18. 315 18. 260 8 18. 195 6 18. 145 0 18. 120	N ₂ : 99. 999 pure, He: 99. 995 pure; oscillating disk viscometer; uncertainties: mixture composition ±0.002%, viscosity ±0.1%, viscosit ratios ±0.04%.

TABLE 75-G(D)E. EXPERIMENTAL VISCOSITY DATA AS A FUNCTION OF DENSITY FOR GASEOUS HELIUM-NITROGEN MIXTURES (continued)

Cur. No.	Fig.	Ref. No.	Author(s)	Mole Fraction of N ₂	Temp. (K)	Density (g cm ⁻³) (N	Viscosity s m ⁻² x 10 ⁻)	Remarks
27	75-G(D)	326	Kestin, J., et al.	0,7251	293. 2	0. 02273 0. 01339 0. 004466 0. 0009080	18. 556 18. 434 18. 331 18. 294	Same remarks as for curve 26.
28	75~G(D)	326	Kestin, J., et al.	0.5005	293. 2	0, 01523 0, 01013 0, 003339 0, 0006932	19. 090 19. 030 18. 976 18. 950	Same remarks as for curve 26.
29	75-G(D)	326	Kestin, J., et al.	0.2900	293. 2	0, 01153 0, 009068 0, 006792 0, 004543 0, 002276 0, 0004648	19. 612 19. 596 19. 583 19. 570 19. 562 19. 542	Same remarks as for curve 26.
30	75~G(D)	326	Kestin, J., et al.	0.1682	293.2	0.007468 0.005176 0.001678 0.0003455	19.820 19.809 19.800 19.787	Same remarks as for curve 26.
31	75-G(D)	326	Kestin, J., et al.	0.1308	293. 2	0.007443 0.004337 0.001462	19.860 19.844 19.831	Same remarks as for curve 26.
32	75 - G(D)	326	Kestin, J., et al.	0.0361	293. 2	0.004997 0.002979 0.001011 0.0002106	19. 743 19. 746 19. 744 19. 739	Same remarks as for curve 26.
33	75-G(D)	326	Kestin, J., et al.	1.0000	303. 2	0. 02854 0. 02586 0. 02409 0. 02271 0. 01972 0. 01687 0. 01564 0. 01341 0. 01125 0. 009584 0. 007259 0. 005623 0. 003425 0. 001187	18. 394 18. 353 18. 322 18. 304 18. 262 18. 211 16. 200 18. 172 18. 143 18. 117 18. 091 18. 068 18. 046 18. 017	Same remarks as for curve 26,
34	75-G(D)	326	Kestin, J., et al.	0.7949	303. 2	0. 02364 0. 01383 0. 004652 0. 0009468	18.842 18.707 18.612 18.567	Same remarks as for curve 26,
35	75-G(D)	326	Kestin, J., et al.	0, 7251	303. 2	0.02142 0.01305 0.004434 0.0008901	19.019 18.902 18.803 18.757	Same remarks as for curve 26,
36	75-G(D)	326	Kestin, J., et al.	0.5005	303. 2	0.01538 0.009445 0.003219 0.0006615	19, 567 19, 508 19, 443 19, 419	Same remarks as for curve 26,
37	75-G(D)	326	Kestin, J., et al.	0.3129	303. 2	0.01175 0.006869 0.001924 0.0004675	20. 026 19. 997 19. 973 19. 957	Same remarks as for curve 26.
38	75-G(D)	326	Kestin, J., et al.	0.1686	303. 2	0.008024 0.004794 0.001461 0.0003333	20, 275 20, 261 20, 250 20, 242	Same remarks as for curve 26.
39	75-G(D)	326	Kestin, J., et al.	0.1682	303. 2	0.008071 0.004864 0.001660 0.0003363	20, 301 20, 277 20, 262 20, 246	Same remarks as for curve 26,
40	75-G(D)	326	Kestin, J., et al.	0.1308	303. 2	0.007066 0.004250 0.001437 0.0002947	20. 352 20. 315 20. 304 20. 285	Same remarks as for curve 26.
41	75-G(D)	326	Kestin, J., et al.	0.0361	303. 2	0.004806 0.002907 0.0009751 0.0002022	20, 204 20, 205 20, 206 20, 202	Same remarks as for curve 26.

TABLE 75-G(D)E. EXPERIMENTAL VISCOSITY DATA AS A FUNCTION OF DENSITY FOR GASEOUS HELIUM-NITROGEN MIXTURES (continued)

Cur. No.	Fig. No.	Ref. No.	Author(s)	Mole Fraction of N ₂	Temp. (K)	Density (g cm ⁻⁸) (Viscosity N s m ⁻² x 10 ⁻⁶)	Remarks
42	75-G(D)	326	Kestin, J., et al.	0.0000	303.2	0.003927 0.003691 0.003198 0.002767 0.002378 0.002023 0.001203 0.0007979 0.0004885 0.0001656	20, 074 20, 075 20, 072 20, 077 20, 069 20, 073 20, 077 20, 071 20, 070 20, 067	Same remarks as for curve 26.
43	75-G(D)	330	Kao, J.T.F. and Kobayashi, R.	0.0000	323.15	0.00150 0.00299 0.00593 0.00883 0.01167 0.01721 0.02777 0.04009 0.05152 0.06219	20. 867 20. 817 20. 807 20. 812 20. 810 20. 804 20. 832 20. 975 21. 175 21. 353	Same remarks as for curve 1.
44	75-G(D)	330	Kao, J.T.F. and Kobayashi, R.	0. 1283	323.15	0.00265 0.00527 9.01043 0.01549 0.02046 0.03013 0.04851 0.06986 0.08953 0.10756	21. 078 21. 133 21. 176 21. 207 21. 211 21. 228 21. 364 21. 689 22. 041 22. 523	Same remarks as for curve 1.
45	75-G(D)	330	Kao, J.T.F. and Kobayashi, R.	0.4029	323. 15	0.00513 0.01020 0.02018 0.02992 0.03944 0.05781 0.09205 0.13055 0.16483 0.19540	20. 630 20. 670 20. 738 20. 807 20. 940 21. 246 21. 776 22. 696 23. 682 24. 744	Same remarks as for curve 1.
46	75-G(D)	330	Kao, J.T.F. and Kobayashi, R.	0.8412	323. 15	0. 00911 0. 01818 0. 03615 0. 05384 0. 07121 0. 10476 0. 16650 0. 23315 0. 28896 0. 33563	19. 404 19. 482 19. 721 20. 020 20. 363 21. 023 22. 765 25. 059 27. 686 30. 290	Same remarks as for curve 1.
47	75-G(D)	330	Kao, J.T.F. and Kobayashi, R.	1.0000	323. 15	0. 01057 0. 02113 0. 04220 0. 06307 0. 08365 0. 12357 0. 19674 0. 27386 0. 33612 0. 38657	18. 958 19. 116 19. 399 19. 772 20. 236 21. 168 23. 512 26. 779 30. 274 33. 860	Same remarks as for curve 1,
48	75-G(D)	331	Makavetskas, R.A., Popov, V.N., and Tsederberg, N.V.	0.778	588, 8	0. 0938 0. 0726 0. 0543 0. 0344 0. 0174 0. 00680	31. 95 31. 42 31. 03 30. 62 30. 35 30. 12	Same remarks as for curve 22.
49	75-G(D)	331	Makavetskas, R.A., et	al. 0.412	590. 2	0.0575 0.0446 0.0328 0.0216 0.00960 0.00430	31. 57 31. 38 31. 20 31. 01 30. 80 30. 70	Same remarks as for curve 22.

EXPERIMENTAL VISCOSITY DATA AS A FUNCTION OF DENSITY FOR GASEOUS HELIUM-PITROGEN MIXTURES (continued) TABLE 75-G(D)E.

Cur. No	Fig. No.	Ref. No.	Author(s)	Mole Fraction of N ₂	Temp. (K)	Density (g cm ⁻³)	Viscosity (N s m ⁻² x 10 ⁻⁶)	Remarks
50	75-G(D)	331	Makavetskas, R.A.	, et al. 0.222	604.1	0.0372 0.0282 0.0203 0.0137 0.00650 0.00210	32.46 32.32 32.21 32.12 32.04 31.99	Same remarks as for curve 22.
51	75-G(D)	331	Makavetskas, R.A.	, et al. 0.565	604.8	0.0655 0.0523 0.0381 0.0250 0.0118 0.00400	31. 27 31. 05 30. 81 30. 43* 30. 31 30. 16	Same remarks as for curve 22.
52	75-G(D)	331	Makavetskas, R.A.	, et al. 0.222	822, 8	0.0288 0.0220 0.0162 0.0104 0.00530 0.00210	39. 74 39. 62 39. 55*** 39. 46 39. 39 39. 31	Same remarks as for curve 22.
53	75-G(D)	331	Makavetskas, R.A.	, et al. 0.412	873. 2	0.0417 0.0299 0.0224 0.0146 0.00710 0.00290	40. 22 40. 12 40. 04 39. 95 39. 86 39. 81	Same remarks as for curve 22.
54	75-G(D)	331	Makavetskas, R.A.	, et al. 0.778	901.6	0.0648 0.0507 0.0367 0.0242 0.0115 0.00460	40.58 40.41 39.97 39.78 39.53 39.41	Same remarks as for curve 22.
55	75-G(D)	331	Makavetskas, R.A.	, et al. 0.565	952.6	0.0420 0.0333 0.0241 0.0160 0.00760 0.00280	41.08 40.80 40.67 40.44 40.27	Same remarks as for curve 22,

^{*}Original table in the translation gives 40.43, which is believed to be in error. **Original table gives 39.35, which is believed to be in error.

TABLE 75-G(D)S. SMOOTHED VISCOSITY VALUES AS A FUNCTION OF DENSITY FOR GASEOUS HELIUM-NITROGEN MIXTURES

Donaitu			Mole Fraction	of Nitrogen	
Density (g cm ⁻³)	0.0000 (183.2 K) [Ref. 330]	0. 1283 (183. 2 K) [Ref. 330]	0.4029 (183.2 K) [Ref. 330]	0.8412 (183.2 K) [Ref. 330]	1.0000 (183.2 K) [Ref. 330]
0.0050	14. 223				
0. 01ಳ≎	14, 202	14.342	13.662		
0.0150	14.202				
0.0200		14.437	13.775		
0. 0250	14. 286			12.600	12.000
0. 0300	14.354	14. 544			
0.0350	14,420				
0.0400	14,488	14.662	14.032		
0.0450	14, 552				
0.0500	14.617	14.790	14. 175	13. 020	12.480
0.0600		14.943	14.320		
0.0700		15. 123			
0. 0750		15. 222			
0.0800		15, 324	14.680		
0.0850		15.428			
0.1000			15, 278	14. 130	13.605
0.1200			15.915		
0. 1400			16.495		
0. 1500				15.520	14.998
0.1600			17.079		
0. 2000				17. 200	16.620
0. 2500				19.300	18.650
0. 3000	*			21.790	21.140
0. 3250				23. 120	
0. 3500					24.080
0.4000					27.600
0.4250					29.500

Density (g cm ⁻³)	Mole Fraction of Nitrogen						
	0.0000 (223.2 K) [Ref. 330]	0.1283 (223.2 K) [Ref. 330]	0.2540 (223.2 K) [Ref. 330]	0.4029 (223.2 K) [Ref. 330]	0.6909 (223.2 K) [Ref. 330]	0.8412 (223.2 K) [Ref. 330]	1.0000 (223.2 K) [Ref. 330
0. 0100	16. 242						
0.0125		16.440	16, 218	15, 835			
0.0200	16.264						
0.0250	16.287	16.505	16.308	15.950	15.180		
0.0300	16.318						
0. 0375		16.600					
0.0400	16.418						
0.0500	16.563	16.720	16.595	16.260	15, 510	15.170	14.810
0.0600	16.731						
0.0625		16.870					
0. 0700	16.960						
0.0750	17.099	17.070	17.015	16.675	15.960		
0.1000		17.532	17.506	17.184	16.500	16.190	15.885
0. 1250		18.270	18.090	17.749	17.110		
0. 1500			18.815	18.432	17.840	17.492	17.230
0. 1750				19.180			
0.2000					19.490	19.080	17.910
0.2500					21.410	20.920	20.910
0. 3000					23.780	23.310	23. 208
0. 3 50 0					26.800	26.320	26.000
0.4000						30.195	29, 600
0.4500							34.060
0.4750							36, 600

TABLE 75-G(D)S. SMOOTHED VISCOSITY VALUES AS A FUNCTION OF DENSITY FOR GASEOUS HELIUM-NITROGEN MIXTURES (continued)

.				Mole	Fraction of N	litrogen			
Density (g cm ⁻³)	0.0000 (273.15 K) [Ref. 330]	0,0525 (273.15 K) [Ref. 330]	0. 1283 (273. 15 K) [Ref. 330]	0. 2540 (273. 15 K) (Ref. 330)	0.4029 (273.15 K) [Ref. 330]	0.5450 (273.15 K) {Ref. 330]	0.6909 (273.15 K) [Ref. 330]	0.8412 (273.15 K) [Ref. 330]	1.0000 (273.15 K) [Ref. 330]
0.0100	18.714	18.800							
0.0125			18.940	18.742	18.380				
0.0200	18,754	18.830							
0.0250	18, 794	18.859	19.030	18.810	18.520	18.090	17.680	17. 280	
0.0300	18, 838	18.892							
0. 0375			19.140						
0.0400	18, 9 30	18.969							
0.0500	19.054	19.056	19.270	19. 110	18.840	18.470	18,080	17.690	17.240
0.0600	19.246	19.174							
0.0625			19.412						
0, 0700	19, 452	19. 354							
0.0750			19.574	19.460	19.240	18.920			
0.0800	19,676	19, 581							
0.0875			19.773						
0.0900		19, 820							
0.1000			20.030	19.940	19.740	19.480	19.050	18.720	18.000
0.1125			20.342						
0.1250			20.720	20.540	20.358				
0.1500				21.247	21.078	20.800	20.380	20. 175	19.200
0.1750				22. 162	21.860				
0.2000					22.572	22.400	22.000	21.900	20.908
0.2250	*				23.531				
0.2500						24.450	24.020	23.800	23.200
0.2750						25.680			
0.3000							26.450	25. 99 8	25.820
0.3250							27.830		
0.3500								28.720	28.750
0.3750								30.270	
0.4000									32.100
0.4500									35.800

D 14			M	ole Fraction of	Nitrogen		
Density (g cm ⁻³)	0. 0361 (293.2 K) [Ref. 326]	0. 1308 (293. 2 K) (Ref. 326)	0. 1682 (293. 2 K) [Ref. 326]	0,2900 (293.2 K) [Ref. 326]	0.5005 (293.2 K) [Ref. 326]	0.7251 (293.2 K) [Ref. 326]	0.7449 (293.2 K) (Ref. 326)
0.00100	19.744						
0.00125		19.830	19, 795	19.545	18.955		
0,00200	19.748						
0.00250	19.750	19.834	19.801	19,552	18.964	18.310	18, 122
0.00300	19.750						
0.00375		19.843	19, 807	19, 560			
0.00400	19.749						
0,00500	19.743	19.850	19,811	19.568	18.985	18.336	18.146
0.00625		19.855	19.815	19.575			
0.00750		19.860	19.820	19.582	19.006	18.364	18.168
0.00875				19.591			
0.01000				19.600	19.033	18.343	18, 202
0.01125				19,608			
0.01250					19.060	18.423	18.232
0.01500					19.087	18.455	18.264
0. 01625					19.104		
0.01750						18.486	18.296
0.02000						18, 520	18.330
0.02250						18.553	18.366
0.02500							18.401

TABLE 75-G(D)S. SMOOTHED VISCOSITY VALUES AS A FUNCTION OF DENSITY FOR GASEOUS HELIUM-NITROGEN MIXTURES (continued)

D					Mole Fracti	on of Nitrog	gen			
Density (g cm ⁻¹)	0.0000 (303.2 K) [Ref. 326]	0.0361 (303.2 K) [Ref. 326]	0.1308 (303.2 K) [Ref. 326]	0. 1682 (303. 2 K) [Ref. 326]	0. 1686 (303. 2 K) [Ref. 326]	0.3129 (303.2 K) [Ref. 326]	0.5005 (303.2 K) [Ref. 326]	0. 7251 (303. 2 K) [Ref. 326]	0.7949 (303.2 K) [Ref. 326]	1.0000 (303.2 K) [Ref. 326
0. 00050	20.071									
0.00100	20.073	20. 245			20, 249					
0. 00125						19.970	19.400			
0, 00150	20, 075		20. 2 9 2	20. 255						
). ენგნე	20.077	20.246			20, 253					
. 00250	20.078	20. 246	20.303	20, 265	20, 255	19.980	19,410	18. 780	18.584	18.032
. 00300	20,077	20, 246			20, 256					
. 00350	20.076		20, 312	20. 267						
. 00375						19.988	19.450			
0.00400	20.075	20.245			20.260					
. 00450			20.323	20.275						
. 00500		20, 245		20. 280	20. 265	19. 992	19.463	18.803	18.610	18.065
. 00550			20. 332	20. 283						
. 00600					20, 267					
. 00625						19.998				
. 00650			20.342	20, 290						
0.00700					20.270					
. 00750			20.351	20, 295		20,005	19.455	18.840	18.635	18.096
. 00800					20, 275					
0.00850			20.363	20.300						
0. 00875						20.013				
0.01000						20,020	19.515	18.868	18.662	18. 128
. 01125						20, 028				
0. 01250						20.034	19.540	18.897	18.690	18.160
. 01500							19.565	18. 928	18. 721	18. 195
. 01625							19.577			
. 01750								18.970	18, 759	18, 228
. 02000								18. 992	18.792	18. 262
0. 02250								19.027	18.828	18. 297
0.02500										18.335

D			Mole Fraction of	Nitrogen	
Density (g cm ⁻³)	0.0000 (323.15 K) [Ref. 330]	0.1283 (323.15 K) [Ref. 330]	0.4029 (323.15 K) [Ref. 330]	0.8412 (323.15 K) [Ref. 330]	1.0000 (323.15 K [Ref. 330
0.005	20.818	21, 120			
0. 01 0	20.805	21. 174			
0.020	20.808	21.210			
0. 025	20.824		20, 780	19, 620	19.110
0. 030	20.856	21.226			
0. 040	20.976	21. 288			
0.050	21.147	21.378	21.040	19.985	19.305
0.060	21.316	21.512			
0.065	21.400				
0. 070		21.690			
0. 075			21, 422		
0. 080		21.875			
0.090		22.049			
0. 100			21.940	20. 970	20.550
0. 125			22, 565		
0. 150 v			23, 250	22, 270	21, 920
0. 175			24.030		
0. 200			24.915	23.870	23, 620
0. 250				25.800	25.650
0.300				28. 280	28.080
0. 325				29. 680	
0. 350					31.190
0.375					33,000

TABLE 75-G(D)S. SMOOTHED VISCOSITY VALUES AS A FUNCTION OF DENSITY FOR GASEOUS HELIUM-NITROGEN MIXTURES (continued)

Density	~		Mole Fra	ction of Nitrog	en	
(g cm ⁻³)	0.565 (284.7 K) [Ref. 331]	0.412 (285.6 K) [Ref. 331]	0, 222 (285.6 K) [Ref. 331]	0.778 (287.0 K) [Ref. 331]	0.778 (588.8 K)	0, 412 (590, 2 K)
0.005	18.36	19. 12		(1107, 001)	[Ref. 331]	(Ref. 331
0.010	18, 47	19, 21	19. 92	18. 19	30.05	
0.015	18, 58	19. 29	20.00	18. 24	30. 05	30, 71
0.020	18, 69	19.38	20.08	18. 37	30. 18	30.80
0.025	18, 80		20.15	18.47	30. 31	30, 89
		19.46	20.21	18.56	30. 42	30, 98
0. 030	18. 90	44		20.00	30. 53	31,07
0. 035	19,00	19. 53	20, 28	18.66		
0.040	19, 12	19. 61	20.34	18.72	30. 63	31.16
0.045	19. 22	19.69	20.40		30, 73	31, 24
0.050	19.32	19. 76	20, 46	18.84	30. 81	31. 32
	10. 32	19.84	20, 52	18.93	30, 90	31. 39
0.055	10.40			19.04	30. 98	31.46
. 060	19.43	19. 92	20. 57			01.40
. 065	19. 52	19. 99	20.62	19.13	31.05	31.52
. 070	19.62	20.06	20.67	19.22	31.12	
.075	19. 72	20. 13		19. 32	31. 20	31.60
	19. 81	20. 20	20. 71	19.43	31. 27	31.65
. 080				19.53	31.34	31. 72
	19. 89	20. 28			V2.04	
. 085	20.00	20, 34		19.65	31. 42	
. 090	20.08	20. 40		19.76	31.50	
095	20. 17	20.47		19.86		
100	20. 26	20. 52		19, 96	31.56	
		20. 32		20.08	31. 64	
105	20. 36	00.50			31.71	
110	20. 45	20. 58		20. 19		
115	20. 54	20.64		20, 28		
120	20. 63			20, 39		
125	20. 71					
	-4.11			20, 49		
130	20.80			20. 59		
35				00		
40	20.89			20. 69		
	20.98			20, 78		
				20, 87		

Density			Mole Fra	ction of Nitrog	en	
(g cm ⁻³)	0. 222 (604. 1 K) [Ref. 331]	0.565 (604.8 K) (Ref, 331)	0. 222 (822. 8 K) [Ref. 331]	0,412 (873,2 K) (Ref. 331)	0.778 (901.6 K)	0. 565 (952. 6 K)
0.005 0.010 0.015 0.020 0.025	32, 02 32, 09 32, 16 32, 22 32, 28	30. 16 30. 28 30. 39 30. 49	39. 36 39. 45 39. 54 39. 61	39. 82 39. 87 39. 96 40. 01	39, 40 39, 50 39, 60	(Ref. 331) 40, 20 40, 32 40, 44
0.030 0.035 0.040 0.045 0.050	32. 36 32. 42 32. 48 32. 55 32. 61	30, 59 30, 68 30, 78 30, 87 30, 95 31, 03	39. 68 39. 74 39. 80	40, 12 40, 12 40, 17 40, 23 40, 28	39, 69 39, 78 39, 87 39, 96 40, 04	40. 56 40. 67 40. 78 40. 88 40. 99
. 055 . 060 . 065 . 070		31. 10 31. 17 31. 24 31. 29		40, 32	40, 12 40, 20 40, 27 40, 34	41. 09 41. 20

FIGURE 75-G(D) VISCOSITY DATA AS A FUNCTION OF DENSITY FOR GASEOUS HELIUM - NITROGEN MIXTURES

FIGURE 75-G(D). VISCOSITY DATA AS A FUNCTION OF DENSITY FOR GASEOUS HELJUM-NITROGEN MIXTURES (continued)

1

FIGURE 75 - G(D). VISCOSITY DATA AS A FUNCTION OF DENSITY FOR GASEOUS HELIUM-NITROGEN MIXTURES (continued)

FIGURE 75-G(D). VISCOSITY DATA AS A FUNCTION OF DENSITY FOR GASEOUS HELIUM-NITROGEN MORTURES (continued)

TABLE 76-G(D)E. EXPERIMENTAL VISCOSITY DATA AS A FUNCTION OF DENSITY FOR GASEOUS HELIUM-OXYGEN MIXTURES

Cur. No.	Fig. No.	Ref. No.	Author(s)	Mole Fraction of O2	Temp.	Density (g cm ⁻³)	Viscosity (N s m ⁻² x 10 ⁻⁶)	Remarks
1	76-G(D)	329	Kestin, J. and Yata, J.	1.0000	293.2	0.03319 0.02565 0.02023 0.01343 0.00667 0.00139	20.764 20.643 20.577 20.467 20.406 20.346	O_2 : 99.995 pure, He: 99.995 pure; oscillating disk viscometer; error \pm 0.1% and precision \pm 0.05%.
2	76-G(D)	329	Kestin, J. and Yata, J.	0.7291	293.2	0.02609 0.02049 0.01528 0.01021 0.00509 0.00106	21.230 21.155 21.099 21.043 20.997 20.941	Same remarks as for curve 1.
3	76-G(D)	329	Kestin, J. and Yata, J.	0.5234	293.2	0.01844 0.01558 0.01166 0.007773 0.003882 0.000820	21,503 21,472 21,448 21,411 21,372 21,334	Same remarks as for curve 1.
4	76-G(D)	329	Kestin, J. and Yata, J.	0.4597	293.2	0.01722 0.01330 0.01056 0.007033 0.003515 0.000738	21.573 21.532 21.511 21.492 21.450 21.423	Same remarks as for curve 1.
5	76-G(D)	329	Kestin, J. and Yata, J.	0.3312	293.2	0.01378 0.01104 0.008308 0.005524 0.002766 0.000575	21.580 21.570 21.551 21.527 21.515 21.490	Same remarks as for curve 1,
6	76-G(D)	329	Kestin, J. and Yata, J.	0.1801	293.2	0.009210 0.007089 0.005606 0.003711 0.001883 0.000394	21.248 21.234 21.234 21.222 21.216 21.198	Same remarks as for curve 1.
1	76-G(D)	329	Kestin, J. and Yata, J.	0.1042	293,2	0.006841 0.005377 0.004295 0.002869 0.001438 0.000305	20.798 20.799 20.796 20.792 20.783 20.771	Same remarks as for curve 1.
8	76-G(D)	329	Kestin, J. and Yata, J.	0.0578	293.2	0.005660 0.004402 0.093470 0.003424 0.002329 0.001168 0.000243	20, 378 20, 370 20, 375 20, 380 20, 375 20, 371 20, 366	Same remarks as for curve 1.
9	76-G(D)	329	Kestin, J. and Yata, J.	1.0000	303.2	0.03226 0.02459 0.91951 0.01292 0.00642 0.00133	21, 331 21, 227 21, 156 21, 072 20, 988 20, 918	Same remarks as for curve 1,
10	76-G(D)	329	Kestin, J. and Yata, J.	0.7291	303.2	0.02501 0.01965 0.01470 0.00985 0.00490 0.00102	21.788 21.724 21.672 21.611 21.561 21.513	Same remarks as for curve 1,
11	76-Q(D)	329	Kestin, J. and Yata, J.	0.5234	303.2	0.01904 0.01504 0.01128 0.007497 0.003741 0.000777	22,062 22,035 21,998 21,972 21,922 21,986	Same remarks as for curve 1,
12	76-Q(D)	329	Kestin, J. and Yata, J.	0,3312	303.2	0.01247 0.01013 0.003016 0.002873 0.002673	22, 116 22, 106 22, 001 22, 070 22, 060 22, 043	Same remarks as for ourve 1.

TABLE 76-G(D)E. EXPERIMENTAL VISCOSITY DATA AS A FUNCTION OF DENSITY FOR GASEOUS HELIUM-OXYGEN MIXTURES (continued)

Cur. No.	Fig.	Ref. No.	Author(s)	Mole Fraction of O2	Temp.	Density (g cm ⁻¹)	Viscosity (N s m ⁻² 10 ⁻⁶)	Remarks
13	76-G(D)	329	Kestin, J. and Yata, J.	0.1801	303.2	0.008880 0.006852 0.005430 0.003607 0.001814 0.000379	21.768 21.757 21.751 21.743 21.738 21.724	Same remarks as for curve 1.
14	76-G(D)	329	Kestin, J. and Yat. J.	0.1042	303.2	0.006600 0.005222 0.004088 0.002760 0.001387 0.000287	21.302 21.304 21.298 21.297 21.288 21.265	Same remarks as for curve 1.
15	76-G(D)	329	Kestin, J. and Yata, J.	0.0578	303.2	0.005588 0.004494 0.003371 0.002251 0.001129 0.000235	20. 865 20. 873 20. 862 20. 869 20. 865 20. 845	Same remarks as for curve 1.
16	76-G(D)	329	Kestin, J. and Yata, J.	0.0000	303.2	0.003567 0.003014 0.002432 0.001605 0.000797 0.000169	20.095 20.102 20.096 20.096 20.095 20.078	Same remarks as for curve 1.

TABLE 76-G(D)S. SMOOTHED VISCOSITY VALUES AS A FUNCTION OF DENSITY FOR GASEOUS HELIUM-OXYGEN MIXTURES

				Mole Fractio	on of Oxygen			
Density (g cm ⁻³)	0.0578 (293.2 K) [Ref. 329]	0.1042 (293.2 K) (Ref. 329)	0.1801 (293.2 K) [Ref. 329]	0.3312 (293.2 K) [Ref. 329]	0.4597 (293.2 K) [Ref. 329]	0.5234 (293.2 K) [Ref. 329]	0.7291 (293.2 K) [Ref. 329]	1,0000 (293.2 K) [Ref. 329
0.00100	20, 368	20.778	21, 202					
0.00139								20.346
0.00200	20, 371	20.787	21,210	21.508				
0.00300	20, 373	20, 792	21.217		21.444			
0.00400	20,375	20, 795	21.224	21,523				
0.00500	20.377	20.797	21,229	21,530	21.463	21.385	20.987	
0.00600	20,378	20,797	21, 234	21.537	21.472		-;	
0.00667				•				20,406
0.00700		20.799			21.481			
0.00800			21, 242	21.549	21.490			
0.00900			21,246	21,555				
0.01000				21,561	21,509	21.432	21.043	
0.01100				21,567	21.518			
0.01200					21.527			
0.01300				21.578		,	•	•
0.01343								20.486
0.01400					21.545			
0.01500				21,590	21.554	21.473	21.098	
0.02000						21.509	21.153	
0.02023								20.572
0, 02500							21.208	
0.02565							•	20.645
0.03319								20.764

				Mole Fractio	n of Oxygen			
Density (g cm ⁻³)	0.0000 (303, 2 K) [Ref. 329]	0.0578 (303,2 K) [Ref. 329]	0.1042 (303.2 K) [Ref. 329]	0.1801 (303.2 K) [Ref. 329]	0.3312 (303.2 K) [Ref. 329]	0.5234 (303.2 K) [Ref. 329]	0.7291 (303.2 K) [Ref. 329]	1.0000 (303.2 K) [Ref. 329]
0,0000						21.878		
0,0005	20.091							
0,0010	20,095	20,856	21.280	21,728				
0,0020	20.097	20,861	21,289	21.734	22.058			
0.0025	20.098			21.736		21.900	21.531	20.935
0,0030	20.098	20,865	21, 295					
0,0040	20.097	20.868	21.300		22.068			
0,0050		20,869	21,302	21.750	22.075	21.940	21.559	20.970
0.0060		20,870	21,304					
0.0070		20,870	21,305					
0.0075				21,762	22.091	21.967	21.587	21.003
0.0080				21.764				
0.0100				21.772	22.104	21.991	21.616	21.046
0.0125					22.104	22.013	21.645	21.069
0,0150						22.033	21.677	21.102
0.0175						22.052	21.702	
0. 0200						22.069	21.730	21.167
0,0225							21.758	
0.0250							21.786	21.230
0.0300								21.294

VISCOSITY DATA AS A FUNCTION OF DENSITY FIGURE 76-G(D). FOR GASEOUS HELIUM - OXYGEN MIXTURES

TABLE 76-G(T)E. EXPERIMENTAL VISCOSITY DATA AS A FUNCTION OF TEMPERATURE FOR GASEOUS HELIUM-OXYGEN MIXTURES

Cur. No.	Fig. No.	Ref. No.	Author(s)	Mole Fraction of O ₂	Pressure (atm)	Temp. (K)	Viscosity (N s m ⁻² x 10 ⁻⁶)	Remarks
1	76-G(T)	332	Johnson, C.A.	0,000	69.88 70.22 87.71	580.2 577.2 578.2	32.0 31.8 32.0	He: better than 99.95 pure, O ₂ : better than 99.6 pure; steady flow capillary viscometer; uncertainty ± 1.0%.
2	76-G(T)	332	Johnson, C.A.	0.000	123.16 129.42	577.2 577.2	32.1 32.2	Same remarks as for curve 1.
					127.04 126.09 125.27 123.78	517.2 470.2 633.2 682.2	30.0 27.5 33.5 35.5	
3	76-G(T)	332	Johnson, C.A.	0.000	122.75 20.41	682.2 678.2	35.5 34.9	Same remarks as for curve 1.
	70 = (=,	552			20.41 20.62 20.41 20.89	672.2 626.2 625.2 654.2	35.0 31.8 31.8 33.7	
					21.16 21.23 21.03	599.2 564.2 540.2	32.1 30.8 30.1	
					21.03 21.03	494.2 451.2	28.6 26.4	•
4	76-G(T)	332	Johnson, C.A.	0.000	8.10 8.17 8.17	450.2 491.2 526.2	26.3 28.3 29.6	Same remarks as for curve 1.
5*	· 76-G(T)	332	Johnson, C.A.	0.000	21.23 21.23	828.2 352.2	21.3 22.2	Same remarks as for curve 1.
6	76-G(T)	332	Johnson, C.A.	0.000	70.09 74.03	460.2 559.2	30.5 30.6	Same remarks as for curve 1.
7	76-G(T)	332	Johnson, C.A.	0.000	38.72 38.31 36.88	539.2 554.2 582.2	30.1 30.7 32.2	Same remarks as for curve 1.
8	76-G(T)	332	Johnson, C.A.	0.180	132.49 131.94 131.46 131.40	683.2 642.2 614.2 583.2	39.0 38.6 36.4 34.8	Same remarks as for curve 1.
				~	131.19 130.24 129.63 129.22	550.2 518.2 485.2 463.2	33.6 32.0 30.8 29.7	
9	76-G(T)	332	Johnson, C.A.	0.180	87.30 86.96 86.62 84.85	463.2 493.2 529.2 476.2	29.6 31.8 32.4 34.1	Same remarks as for curve 1.
					84.17 83.15 80.97 80.43	611.2 707.2 643.2 679.2	36.0 39.6 37.1 38.8	
10	7';-G(T)	332	Johnson, C.A.	0.180	80.16 45.93 45.59	607.2 704.2 667.2	35.4 39.3 37.8	Same remarks as for curve 1.
					45.18 44.91 44.57 44.30 43.89 43.55	637.2 613.2 578.2 557.2 525.2 493.2	36.4 35.8 34.1 33.2 32.0 30.5	
11	76-G(T)	332	Johnson, C.A.	0.531	43.07 68.52 68.73 68.86 68.97 69.34 69.17	465.2 512.2 485.2 555.2 586.2 615.2 636.2	29.6 32.8 31.4 34.5 35.4 36.6 37.4	Same remarks as for curve 1.
12	76-G(T)	332	Johnson, C.A.	0.531	70.02 45.11	701.2 582.2	39.5 35.4	Same remarks as for curve 1.
•					44.84 44.71 44.50 44.23 43.85 43.21	696.2 664.2 628.2 602.2 555.2 527.2	39.4 38.6 36.5 36.2 33.7 32.4	

TABLE 76-G(T)E. EXPERIMENTAL VISCOSITY DATA AS A FUNCTION OF TEMPERATURE FOR GASEOUS HELIUM-OXYGEN MIXTURES (continued)

Cur. No.	Fig. No.	Ref. No.	Author(s)	Mole Fraction of O ₂	Pressure (atm)	Temp. (K)	Viscosity (N s m ⁻² x 10 ⁻⁶)	Remarks
13	76-G(T)	332	Johnson, C.A.	0.717	127.45	468.2	30.4	Same remarks as for curve 1.
					127.04	497.2	31.8	
					123.91	542.2	33.6	
					123.23	582.2	35. 3	
					123.16	625.2	36.9	
					122.41	652.2	38.0	
					122.01	717.2	39.6	
					121.57	688.2	39.3	
					120.92	658.2	37.9	
14	76-G(T)	332	Johnson, C.A.	0.717	87.78	656.2	37.8 36.6	Same remarks as for curve 1.
					87.51	624.2 598.2	35.4	
					87.17			
					86.96	570.2 545.2	34.4 33.6	
					86.42		40.0	
					86.15 85.47	719.2 687.2	38.9	
					84.58	533.2	32.8	
					84.17	494.2	31.4	
					83.63	475.2	30.6	
15	76-G(T)	332	Johnson, C.A.	0.717	44.91	471.2	29.6	Same remarks as for curve 1.
					44.91	498.2	31.3	
					44.64	542.2	32.8	
					44.23	566.2	33.9	
					44.09	594.2	34.8	
					43.69	618.2	36.0	
					43.28	718.2	39.2	
					42.66	681.2	38.1	
16	76-G(T)	332	Johnson, C.A.	1.000	99.42	570.2	35.0	Same remarks as for curve 1.
					99.42	569.2	35.1	
					98,33	519.2	32.8	
					97.92	470.2	30.5	
					97.92	494.2	31.6	
					98.73	547.2	33.4	
					98.39	598.2	35.6	
					99.07	625.2	36.7	
					99.48	648.2	37.6	
					99.48	672.2	38.7	
					100.57	699.2	39.7	
					102.18	724.2	40.5	
					95.88	567.2	34.4	
17	76-G(T)	332	Johnson, C.A.	1.000	50.15	566.2	34.1	Same remarks as for curve 1.
					49.81	597.2	34.8	
					51.17	570.2	33.6	
					51,44	596.2	34.6	
18	76-G(T)	332	Johnson, C.A.	1.000	100.16 99.76	329.2 353.2	26.4 27.2	Same remarks as for curve 1.
19	76-G(T)	332	Johnson, C.A.	1.000	52.5 3	475.2	29.6	Same remarks as for curve 1.
-	,-,			•	51.92	516.2	31.4	
					51.71	549.2	33.2	
					51.37	594.2	34.8	
20	76-G(T)	332	Johnson, C.A.	1.000	51.10	627.2	35.9	Same remarks as for curve 1.
					50. 90	722.2	39.8	
					50. 56	688.2	38.5	
21	76-G(T)	332	Johnson, C.A.	1.000	128.33	465.2	30.3	Same remarks as for curve 1.
_	/				128.06	503.2	33.5	
					127.65	531.2	33.1	
					127.31	571.2	34.3	
					124.39	703.2	36.7	
					123.57	648.2	37.1	

TABLE 76-G(T)S. SMOOTHED VISCOSITY VALUES AS A FUNCTION OF TEMPERATURE FOR GASEOUS HELIUM-OXYGEN MIXTURES

	Mole Fraction of Oxygen										
Temp. K	0.000 (69.88-87.71 atm) [Ref. 329]	0.000 (122.75-129.42 atm) [Ref. 329]	0.000 (20.41-21.23 atm) [Ref. 329]	0.000 (8.10-8.17 atm) [Ref. 329]	0.000 (21.23 atm) [Ref. 329]	0.000 (36.88-38.72 atm [Ref. 329]					
355					22.19						
375					22.15						
400					22.10						
425					22.06						
450			26.75	26.58	22.01						
460		27.59	27.11	26.95	21.99						
475		28.13	27.65	27.50	21.96						
500		29.06	28.57	28.41	21.91						
525		29.98	29.49	29.33	21.86	29.80					
550		30.90	30.41		21.82	30.72					
575	31.74	31.82	31.32		21.77	31.64					
600	32.64	32.73	32.23		21.72						
625		33.65	33,14		21.68						
650		34.57	34.07		21.63						
675		35.50	34.98		21.58						
700					21.54						
725					21.49						

T	Mole Fraction of Oxygen										
Temp. K	0.180	0.180	0.180	0.531	0.531	0.717					
	(129.22-132.49 atm) [Ref. 329]	(80.16-87.30 atm) [Ref. 329]	(43.07-45.93 atm) [Ref. 329]	(68.52-70.02 atm) [Ref. 329]	(43.01-45.11 atm) [Ref. 329]	(120.92-127.45 atm [Ref. 329]					
460	29.84	29.66									
475	30.44	30.26	29.88			30.81					
500	31,44	31.28	30,90	32, 14	31.92	31.80					
525	32.46	32,30	31.92	33, 14	32.93	32.80					
550	33,48	33.32	32.94	34, 14	33.93	33.80					
575	34.48	34,34	33.98	35 14	34.92	34.79					
600	35.48	35.34	34.99	36.12	35.90	35.78					
625	36.50	36.34	36.00	37.12	36.92	36.78					
650	37.52	37.38	37.04	38, 12	37.92	37.78					
675	38.54	38.40	38.07	39.14	38.92	38.78					
700	•	39.44	39,10			39.78					

_	Mole Fraction of Oxygen									
Temp. K	0.717 (83.63-87.78 atm) [Ref. 329]	0.717 (42.66-44.91 atm) [Ref. 329]	1.000 (95.88-102.18 atm) [Ref. 329]	1.000 49.81-51.49 atm) [Ref. 329]	1,000 51,37-52,53 atm) [Ref. 329]					
475	30.48	30.01	30.76		29.79					
500	31.48	31.02	31.74		30. 82					
525	32.50	32.05	32.74		31.84					
550	33.52	33.08	33.74		32,88					
575	34.52	34.10	34.73	33.87	33, 91					
600	35.53	35, 12	35.71	34,89	34. 93					
625	36.54	36.12	36.71							
650	37.56	37.15	37.71							
675	38.59	38.19	38.72							
700	39.61	39. 22	39.72							

FIGURE 76-G(T). VISCOSITY DATA AS A FUNCTION OF TEMPERATURE FOR GASEOUS HELIUM-OXYGEN MIXTURES

FIGURE 76 - G(T). VISCOSITY DATA AS A FUNCTION OF TEMPERATURE FOR GASEOUS HELIUM-CKYGEN MIXTURES (continued)

TABLE 77-G(D)E. EXPERIMENTAL VISCOSITY DATA AS A FUNCTION OF DENSITY FOR GASEOUS KRYPTON-CARBON DIOXIDE MIXTURES

Cur. No.	Fig.	Ref. No.	Author(s)	Mole Fraction of Kr	Temp. (K)	Density (g cm ⁻⁶)	Viscosity (N s m ⁻² x 10 ⁻⁶)	Remarks
1	77-G(D)	329	Kestin, J. and Yata, J.	1.0000	293. 2	0,07693 0,05416 0,01753 0,00367	25. 762 25. 488 25. 122 25. 000	Kr: 99.39 pure, CO ₂ : 99.8 pure; oscillating disk viscometer; error ±0.1%, precision ±0.0%.
2	77-G(D)	329	Kestin, J. and Yata, J.	0.7033	293. 2	0.06535 0.04624 0.01512 0.00313	23. 162 22. 934 22. 627 22. 503	Same remarks as for curve 1.
2	17-G(D)	329	Kestin, J. and Yata, J.	0.4870	293 . 2	0.05778 0.04080 0.01336 0.00279	20, 940 20, 723 20, 463 20, 379	Same remarks as for curve 1.
4	77~G(D)	329	Kestin, J. and Yata, J.	0.2617	293, 2	0.05139 0.03606 0.01152 0.00239	18. 333 18. 164 17. 956 17. 899	Same remarks as for curve I.
5	77~G(D)	329	Kestin, J. and Yata, J.	0.0000	293. 2	0.04393 0.03017 0.00941 0.00192	14. 934 14. 815 14. 693 14. 674	Same remarks as for curve 1.
6	77-G(D)	329	Kestin, J. and Yata, J.	1.0000	303, 2	0.07382 0.05237 0.01702 0.00350	26. 532 26. 284 25. 924 25. 785	Same remarks as for curve 1.
7	77~G(D)	329	Kestin, J. and Yata, J.	0.7033	303, 2	0. 06314 0. 04446 0. 01454 0. 00300	23. 876 23. 656 23. 347 23. 238	Same remarks as for curve 1.
8	77-G(D)	329	Kestin, J. and Yata, J.	0.4870	303. 2	0.05587 0.03930 0.01287 0.00267	21.590 21.391 21.134 21.040	Same remarks as for curve 1.
9	77-G(D)	329	Kestin, J. and Yata, J.	0. 2617	303. 2	0.04897 0.03451 0.01113 0.00230	18. 914 18. 740 18. 548 18. 472	Same remarks as for curve 1.
10	77-G(D)	329	Kestin, J. and Yata, J.	0.0000	303. 2	0.04178 0.02882 0.00906 0.00185	15. 449 15. 326 15. 194 15. 169	Same remarks as for curve 1.

TABLE 77-G(D)S. SMOOTHED VISCOSITY VALUES AS A FUNCTION OF DENSITY FOR GASEOUS KRYPTON-CARBON DIOXIDE MIXTURES

		Mol	e Fraction of Kry	pton	
Density (g cm ⁻³)	0.0000 (293.2 K) [Ref. 329]	0, 2617 (293, 2 K) [Ref. 329]	0.4870 (293.2 K) [Ref. 329]	0.7033 (293.2 K) [Ref. 329]	1,0000 (293,2 K) [Ref. 329
0.005	14.680	17.918	20.394	22.523	25.020
0.010	14.700	17.941	20.434	22.580	25.062
0.015	14.722	17.976	20.475		
0.020	14.750	18.018	20.520	22.684	25.148
0.025	14.782	18.062	20.562	22.738	
0.030	14.820	18.110	20,610	22.780	25.242
0.035	14.860	18.162			
0.040	14.900	18.218	20,716	22.878	25, 340
0.045	14.941	18.270			
0.050		18.322	20.838	22.982	25.442
0,055			20,900		
0.060				23,100	25.550
0.065				23,160	
0.070					25.678
0.075					25.740

		Mol	e Fraction of Kry	pton	
Density (g cm ⁻³)	0.0000 (303.2 K) [Ref. 329]	0, 2617 (303, 2 K) [Ref. 329]	0.4870 (303.2 K) [Ref. 329]	0.7033 (303.2 K) [Ref. 329]	1,0000 (303,2 K) [Ref. 329
0.005	15.180	18.494	21.068	23,262	25,790
0.010	15.198	18,528	21.108	23,300	25.840
0.015	15,220	18.564	21.150		25, 890
0.020	15.250	18.708	21.199	23, 390	25.940
0.025	15.286	18.750	21.244		25.96 8
0.030	15.329	18.798	21.300	23,490	26.044
0.035	15.380	18.746			
0.040	15.430	18.801	21.410	23.600	26.150
0.045		18.864			
0.050		18.930	21.534	23.720	26,260
0.055			21,596		
0.060				23.840	26.378
0.065				23.894	
0.070					26.482

VISCOSITY DATA AS A FUNCTION OF DENSITY FIGURE 77-G(D) FOR GASEOUS KRYPTON-CARBON DIOXIDE MIXTURES

TABLE 78-G(D)E. EXPERIMENTAL VISCOSITY DATA AS A FUNCTION OF DENSITY FOR GASEOUS NFON-CARBON DIOXIDE MIXTURES

Cur. No.	Fig.	Ref. No.	Author(s)	Mole Fraction of CO ₂	Temp. (K)	Density (g cm ⁻³)	Viscosity (N s $m^{-2} \times 10^{-6}$)	Remarks
1	78-G(D)	333	Breetveld, J.D., DiPippo, R., and Kestin, J.	1.0000	293. 2	0, 04877 0, 02988 0, 009435 0, 001865	15.004 14.820 14.697 14.687	CO ₂ : 99.80 pure, Ne: 99.9925 pure; oscillating disk viscometer; precision ± 0.1%.
2	1€ G (D)	333	Breetveld, J.D., et al.	0. 7 9 38	293. 2	0.04170 0.02577 0.008356 0.001653	17. 240 17. 069 16. 956 16. 919	Same remarks as for curve 1.
3	78-G(D)	333	Breetveld, J.D., et al.	0. 5650	293.2	0, 03233 0, 02134 0, 007090 0, 001420	20. 252 20. 136 20. 029 19. 987	Same remarks as for curve 1.
4	78-G(D)	333	Breetveld, J.D., et al.	0. 37 97	293. 2	0.02891 0.01833 0.006147 0.001233	23. 289 23. 191 23. 089 23. 049	Same remarks as for curve 1.
4	78-G(D)	333	Breetveld, J.D., et al.	0, 2897	293. 2	0. 02646 0. 01696 0. 005651 0. 001142	24. 930 24. 841 24. 755 24. 707	Same remarks as for curve 1.
6	78-G(D)	333	Breetveld, J.D., et al.	0, 1238	293. 2	0. 02258 0. 01450 0. 004866 0. 000964	28. 483 28. 420 28. 367 28. 315	Same remarks as for curve 1.
7	78-G(D)	333	Breetveld, J.D., et al.	1.0000	303, 2	0. 04590 0. 02857 0. 009066 0. 001080	15. 508 15. 314 15. 191 15. 161	Same remarks as for curve 1.
8	78-G(D)	333	Breetveld, J.D., et al.	0.7938	303.2	0.03855 0.02480 0.008046 0.001598	17. 756 17. 609 17. 472 17. 443	Same remarks as for curve 1.
9	78-G(D)	333	Breetveld, J.D., et al.	0. 5650	303. 2	0.03262 0.02067 0.006775 0.001373	20. 825 20. 698 20. 577 20. 543	Same remarks as for curve 1.
10	78-G(D)	333	Breetveld, J.D., et al.	0. 37 97	303, 2	0. 02773 0. 01794 0. 006002 0. 001192	23. 891 23. 814 23. 693 23. 646	Same remarks as for curve 1.
11	78-G(D)	333	Breetveld, J.D., et al.	0. 2897	303. 2	0.02518 0.01650 0.005359 0.001104	25. 549 25. 463 25. 380 25. 335	Same remarks as for curve 1.
12	78-G(D)	333	Breetveld, J.D., et al.	0. 1238	303, 2	0, 02122 0, 01409 0, 004750 0, 000942	29. 149 29. 101 29. 019 28. 971	Same remarks as for curve 1.
13	78-G(D)	333	Breetveld, J.D., et al.	0, 0000	303. 2	0. 01827 0. 01209 0. 004074 0. 000833	32, 255 32, 224 32, 188 32, 127	Same remarks as for curve 1.

TABLE 78-G(D)S. SMOOTHED VISCOSITY VALUES AS A FUNCTION OF DENSITY FOR GASEOUS NEON-CARBON DIOXIDE MIXTURES

	Mole Fraction of Carbon Dioxide										
Density (g cm ⁻³)	0, 1238 (293, 2 K) [Ref. 333]	0.2897 (293.2 K) [Ref. 333]	0.3797 (293.2 K) [Ref. 333]	0.5650 (293.2 K) [Ref. 333]	0,7938 (293.2 K) [Ref. 333]	1.0000 (293.2 K) [Ref. 333]					
0.0025	28,334	24.725									
0.0050	28,351	24,745	23,080	20,022	16.935	14.684					
0.0075	28,368										
0.0100	28,386	24.766	23, 120	20,054	16.965	14.696					
0.0125	28.406										
0.0150	28.424	24.825	23, 163	20.088	16.994	14.717					
0.0175	28.443										
0.0200	28.462	24.870	23, 205	20,125	17.025	14.743					
0.0225	28.480										
0.0250	28.502	24.920	23.248	20.170	17.061	14.778					
0.0300		24.972	23,300	20, 224	17,118	14.820					
0.0350		25.025	23, 365	20, 288	17.160	14.867					
0.0375			23,401	20.323							
0.0400		25.082			17.218	14.914					
0.0450					17.280	14.964					
0.0500						15.020					

	Mole Fraction of Carbon Dioxide											
Density (g cm ⁻³)	0,0000 (303,2 K) [Ref. 333]	0, 1238 (303, 2 K) [Ref. 333]	0.2897 (303.2 K) [Ref. 333]	0.3797 (303.2 K) [Ref. 333]	0.5650 (303.2 K) [Ref. 333]	0.7938 (303.2 K) [Ref. 333]	1.0000 (303.2 K) [Ref. 333]					
0.0025	32,158	28,989	25.348	23,658								
0.0050	32.184	29.011	25.370	23.677	20,565	17.453	15.175					
0.0075	32.204	29,032	25.390	23.698								
0.0100	32,219	29.054	25.411	23.718	20.598	17.478	15.197					
0.0125	32.231	29.075	25.430	23.741								
0.0150	32.242	29.096	25.450	23.766	20.642	17.515	15, 223					
0.0175	32.252	29,117	25.470									
0.0200	32.262	29.138	25.495	23.817	20.690	17.560	15.251					
0.0225		29.160	25.520									
0.0250			25.548	23.866	20.743	17.610	15.285					
0.0275				23.892								
0.0300					20.796	17.665	15.325					
0.0350					20.853	17.718	15.375					
0.0400					20, 917	17,770	15.432					
0.0425					20. 955							
0.0450							15.495					
0.0500							15, 565					

FIGURE 78-G(D). VISCOSITY DATA AS A FUNCTION OF DENSITY FOR GASEOUS NEON-CARB IN DIOXIDE MIXTURES

TABLE 79-G(C)E. EXPERIMENTAL VISCOSITY DATA AS A FUNCTION OF COMPOSITION FOR GASEOUS NEON-HYDROGEN MIXTURES

Cur. No.	Fig. No.	Ref. No.	Author(s)	Temp. (K)	Pressure (atm)	Mole Fraction of H ₂	Viscosity (N s m ⁻² x 10 ⁻⁶)	Remarks
1	79-G(C)	327	van Lierde, J.	290.4		0.000 0.161 0.347 0.505 0.657 0.795 1.000	8. 78 14. 67 20. 27 23. 00 26. 79 29. 01 31. 16	Oscillating disk viscometer; $L_1 = 0.729\%$, $L_2 = 1.263\%$, $L_3 = 2.418\%$.
2	79-G(C)	221	Trautz, M. and Binkele, H. E.	293.0		1.0000 0.7480 0.5391 0.2285 0.0000	30. 92 27. 82 24. 27 16. 84 8. 75	Ne: Linde Co., commercial grade 99-99.5 purity; capillary method, v = 0.2019 mm; accuracy $\pm 0.4\%$; L ₁ = 0.152%, L ₂ = 0.247%, L ₃ = 0.473%.
3	79-G(C)	221	Trautz, M. and Binkele, H.E.	373.0		1.0000 0.7480 0.5391 0.2285 0.0000	36. 23 32. 69 28. 45 19. 81 10. 29	Same as for curve 2 except $L_1=0.152\%,\ L_2=0.246\%,\ L_3=0.467\%.$
4	79-G(C)	221	Trautz, M. and Binkele, H.E.	473.0		1.0000 0.7480 0.5391 0.2285 0.0000	42. 20 38. 07 33. 27 23. 19 12. 11	Same as for curve 2 except $L_1 = 0.000\%$, $L_2 = 0.000\%$, $L_2 = 0.000\%$.
5	79-G(C)	221	Trautz, M. and Binkele, H.E.	523.0		1,0000 0,7480 0,5391 0,2285 0,0000	45. 01 40. 54 35. 40 24. 76 12. 96	Same as for curve 2 except $L_1=0.079\%,\ L_2=0.176\%,\ L_3=0.393\%.$

TABLE 79-G(C)S. SMOOTHED VISCOSITY VALUES AS A FUNCTION OF COMPOSITION FOR GASEOUS NEON-HYDROGEN MIXTURES

Mole Fraction of H ₂	290.4 K [Ref. 327]	293, 0 K [Ref. 221]	373.0 K [Ref. 221]	473.0 K [Ref. 221]	523.0 K [Ref. 221
0.00	8.78	8. 75	10.32	12. 11	12.96
0.05	10.78	10.07	12.70	14.64	15,78
0.10	12.60	12.61	14,90	17. 18	18.44
0.15	14.30	14.34	16.90	19. 61	21.00
0.20	15.88	16.00	18.80	21.90	23.42
0.25	17.32	17.60	20, 68	24.01 '	25.64
0.30	18.64	19.00	22.19	26.01	27.70
0.35	19.90	20.30	23.68	27.81	29.60
0.40	21, 10	21.45	25.05	29. 42	31.34
0.45	22.18	22.50	26, 38	30, 90	32.91
0.50	23.42	23. 51	27, 60	32.26	34.40
0.55	24.51	24.50	28.72	33.60	35. 75
0.60	25. 59	25. 44	29. 82	34.85	37.10
0.65	26.54	26, 34	30, 88	36. 01	38.35
0.70	27.47	27. 16	31.82	37. 11	39. 52
0.75	28.31	27. 94	32.71	38. 10	40.70
0.80	29.08	28. 65	33, 50	39.00	41.72
0.85	29.72	29. 30	34, 25	39.88	42.70
0.90	30. 30	29. 90	34.90	40.70	43, 60
0.95	30.78	30. 44	35, 56	41.48	44.40
1.00	31.16	30. 92	36, 40	42, 20	45.01

FIGURE 79-G(C). VISCOSITY DATA AS A FUNCTION OF COMPOSITION FOR GASEOUS NEON-HYDROGEN MIXTURES

T. ...

• Commonweal

TABLE 80-G(D)E. EXPERIMENTAL VISCOSITY DATA AS A FUNCTION OF DENSITY FOR GASEOUS NEON-NITROGEN MIXTURES

Cur. No.	Fig. No.	Ref. No.	Author(s)	Mole Fraction of N ₂	Temp.	Density (g cm ⁻³)	Viscosity (N s m ⁻² x 10 ⁻⁶)	Remarks
1	80-G(D)	328	DiPippo, R., Kestin, J., and Oguchi, K.	0.7339	293.2	0.02490 0.01621 0.005375 0.001134	20,463 20,358 20,234 20,186	Oscillating disk viscometer; uncertainties: error $\pm 0.1\%$ and preciaion $\pm 0.05\%$.
2	80-G(D)	328	DiPippo, R., et al.	0.4888	293.2	0.02293 0.01494 0.005006 0.001042	23, 365 23, 284 23, 196 23, 146	Same remarks as for curve 1.
3	80-G(D)	328	DiPippo, R., et al.	0.2479	293.2	0.02094 0.02094 0.01375 0.004606 0.000964	26.907 26.913 26.853 26.779 26.737	Same remarks as for curve 1.
4	80-G(D)	328	DiPippo, R., et al.	0.0000	293.2	0.01912 0.01666 0.01492 0.01251 0.004197 0.000879	31.539 31.531 31.523 31.506 31.441 31.400	Same remarks as for curve 1.
5	80-G(D)	328	DiPippo, R., et al.	1.0000	303.2	0.02605 0.02586 0.01697 0.005632 0.001178	18.366 18.362 18.234 18.077 18.025	Same remarks as for curve 1.
6	80-G(D)	328	DiPippo, R., et al.	0.7339	303.2	0.02403 0.02389 0.01566 0.005211 0.001090	20. 972 20. 967 20. 879 20. 762 20. 704	Same remarks as for curve 1.
7	80-G(D)	328	DiPippo, R., et al.	0.4888	303.2	0.02215 0.01448 0.004825 0.001000	23, 939 23, 869 23, 773 23, 733	Same remarks as for curve 1.
8	80-G(D)	328	DiPippo, R., et al.	0.2479	303,2	0.02034 0.01327 0.004382 0.000930	27.557 27.491 27.418 27.386	Same remarks as for curve 1.
9	80-G(D)	328	DiPippo, R., et al.	0.0000	303.2	0.01848 0.01612 0.01448 0.01209 0.004061 0.000852	32. 295 32. 267 32. 260 32. 239 32. 173 32. 133	Same remarks as for curve 1.

TABLE 80-G(D)S. SMOOTHED VISCOSITY VALUES AS A FUNCTION OF DENSITY FOR GASEOUS NEON-MITTOGEN MIXTURES

		Mole Fraction	of Nitrogen	
Density (g cm ⁻³)	0.0000 (293.2 K) (Ref. 328)	0.2479 (293.2 K) [Ref. 328]	0.4888 (293.2 K) [Ref. 328]	0.7339 (293.2 K) [Ref. 328]
0.0025 0.0050 0.0075 0.0100 0.0125	31.424 31.450 31.473 31.494 31.512	26.755 26.782 26.807 26.830 26.852	23.160 23.181 23.210 23.235 23.263	20, 205 20, 236 20, 266 20, 293 20, 322
0.0150 0.0175 0.0200 0.0225 0.0250	31.525 31.534 31.540	26.873 26.889 26.902 26.912 26.922	23.283 23.306 23.330 23.353 23.375	20.348 20.376 20.402 20.428 20.451

	Mole Fraction of Nitrogen								
Density (g cm ⁻³)	0.0000 (303.2 K) [Ref. 328]	0.2479 (303,2 K) (Ref. 328)	0.4888 (303.2 K) [Ref. 328]	0.7339 (303.2 K) [Ref. 328]	1,0000 (303,2 K) [Ref. 328]				
0.0025 0.0050 0.0075 0.0100 0.0125	32.154 32.180 32.207 32.228 32.248	27.400 27.425 27.448 27.470 27.492	23,742 23,775 23,800 23,826 23,850	20.726 20.763 20.797 20.827 20.855	18.035 18.080 18.120 18.161 18.200				
0.0150 0.0175 0.0200 0.0225	32.267 32.285 32.300	27.515 27.536 27.555 27.575 27.593	23.875 23.900 23.921 23.943 23.963	20.880 20.905 20.924 20.951 20.975	18. 238 18. 277 18. 313 18. 344 18. 366				

FIGURE 80 - G (D) VISCOSITY DATA AS A FUNCTION OF DENSITY FOR GASEOUS NEON - NITROGEN MIXTURES

....

- - ·

TABLE 81-G(C)E. EXPERIMENTAL VISCOSITY DATA AS A FUNCTION OF COMPOSITION FOR GASEOUS ARGON-AMMONIA MIXTURES

Cur. No.	Fig.	Ref. No.	Author(s)	Temp. (K)	Pressure (mm Hg)	Mole Fraction of Ar	Viscosity (N s m ⁻² x 10 ⁻⁶)	Remarks
1	81-G(C)	35	Chakraborti, P.K. and	298.2	243-142	1,000	22, 54	Tank gases purified by distillation:
_	,		Gray, P.			0.852	20, 72	capillary viscometer; relative mea-
						0.785	19.85	surements; accuracy ±1.0%; L1 =
						0.691	18, 74	0.434%, L ₂ = 0.592%, L ₂ = 1.386%.
						0.595	17.56	
						0.501	16, 44	
						0.386	15, 04	
						0.274	13. 52	
						0.172	12. 23	
						0.054	10.67	
						0.000	10.16	
2	81-G(C)	35	Chakraborti, P.K. and	308.2	243-142	1.000	23.10	Same remarks as for curve 1 except
	, ,		Gray, P.			0.860	21.53	$L_1 = 0.648\%$, $L_2 = 0.882\%$, $L_3 =$
			•			0.795	20.76	2.182%.
						0.702	19.59	
						0.619	18, 57	
						0.519	17. 22	
						0.399	15.58	
						0.295	14.20	
						0,168	12.51	
						0.038	10.76	
						0.000	10. 49	
3	81-G(C)	35	Chakraborti, P.K. and	353.2	243-142	1.000	25.71	Same remarks as for curve 1 except
			Gray, P.			0.860	23. 94	$L_1 = 0.388\%$, $L_2 = 0.474\%$, $L_3 =$
						0.684	21.62	0.864%.
						0.594	20.37	
						0. 491	18.90	
						0.381	17.28	
						0.278	15. 81	
			•			0.184	14.52	
						0.053	12.62	
						0.000	11.98	

TABLE 81-G(C)S. SMOOTHED VISCOSITY VALUES AS A FUNCTION OF COMPOSITION FOR GASEOUS ARGON-AMMONIA MIXTURES

Mole Fraction of Ar	298.2 K [Ref. 35]	308. 2 K [Ref. 35]	353. 2 K [Ref. 35
0.00	10.08	10.49	11.98
0.05	10.78	11.12	12.68
0.10	11.41	11.79	13. 39
0.15	12.04	12.41	14.08
0.20	12.68	13. 04	14. 78
0.25	13.30	13. 70	15.48
0.30	13.92	14.34	16.18
0.35	14.59	14.98	16.83
0.40	15. 22	15.60	17.58
0. 45	15. 84	16. 24	18. 22
0.50	16.48	16. 88	18. 91
0. 55	17.10	17. 51	19.60
0.60	17.70	18.16	20.30
0. 65	18. 31	18.78	21.00
0.70	18. 92	19. 40	21.68
0.75	19. 52	20.04	22.39
0.80	20.12	20.68	23.06
0.85	20. 72	21, 28	23. 72
0.90	21. 32	21.88	24. 41
0. 95	21. 90	22.48	25.08
1.00	22. 54	23. 10	25. 71

FIGURE 81-G(C). VISCOSITY DATA AS A FUNCTION OF COMPOSITION FOR GASEOUS ARGON-AMMONIA MIXTURES

TABLE 81-G(D)E. EXPERIMENTAL VISCOSITY DATA AS A FUNCTION OF DENSITY FOR GASEOUS ARGON-AMMONIA MIXTURES

Cur No.	Fig. No.	Ref. No.	Author(s)	Mole Fraction of Ar	Temp. (K)	Density (g cm ⁻³) (N	Viscosity s m ⁻² x 10 ⁻⁶	Remarks
1	81-G(D)	92	Iwasaki, H., Keatin, J., and Nagashima, A.	1.000	293. 2	0.001684 0.009403 0.017944 0.034916 0.052123 0.069120 0.088147	22. 275 22. 362 22. 462 22. 681 22. 954 23. 221 23. 572	Ar: 99.997 pure, NH_3 : stored in liquid state at room temperature; oscillating disk viscometer; error $\pm 1.5\%$ to $\pm 0.2\%$ depending upon the composition being close to pure ammonia or argon respectively.
2	81-G(D)	92	Iwasaki, H., et al.	0. 762	293. 2	0. 001459 0. 002177 0. 002872 0. 004327 0. 005806 0. 007254 0. 01016 0. 01436 0. 02206 0. 02946 0. 03592	20. 093 20. 103 20. 081 20. 106 20. 136 20. 128 20. 171 20. 240 20. 355 20. 442 20. 531	Same remarks as for curve 1.
3	81-G(D)	92	lwasaki, H., et al.	0.558	293. 2	0. 001266 0. 001882 0. 002515 0. 003758 0. 005044 0. 006265 0. 008847 0. 01277 0. 01862	17. 630 17. 672 17. 737 17. 737 17. 757 17. 800 17. 850 17. 892 17. 940	Same remarks as for curve 1.
4	81-G(D)	92	Iwasaki, H., et al.	0, 379	293. 2	0.001081 0.001632 0.002211 0.003292 0.004419 0.005655 0.007073 0.008952 0.01029	15. 473 15. 479 15. 492 15. 499 15. 504 15. 509 15. 524 15. 526 15. 518	Same remarks as for curve 1.
5	81-G(D)	92	Iwasaki, H., et al.	0. 220	293. 2	0.000939 0.001405 0.001903 0.003874 0.004860 0.005870 0.006795	13. 588 13. 598 13. 609 13. 616 13. 592 13. 613 13. 601	Same remarks as for curve 1.
6	81-G(D)	92	Iwasaki, H., et al.	0. 147	293. 2	0.000883 0.001314 0.001788 0.002646 0.003627 0.004663 0.005642	12. 155 12. 162 12. 170 12. 155 12. 169 12. 160 12. 114	Same remarks as for curve 1.
7	81-G(D)	92	Iwasaki, H., et al.	0.052	293. 2	0.000786 0.001174 0.001562 0.002354 0.003171 0.004049 0.005141	10. 910 10. 906 10. 906 10. 886 10. 884 10. 855 10. 771	Same remarks as for curve 1.
8	81-G(D)	92	Iwasaki, H., et al.	0.046	293. 2	0.0002413 0.0003621 0.0004825 0.0007318 0.0009860 0.001248 0.001484	10. 674 10. 658 10. 653 10. 620 10. 589 10. 555 10. 528	Same remarks as for curve 1.
9	81-G(D)	92	Iwasaki, H., et al.	0. 000	293.2	0.0007844 0.001102 0.001466 0.002223 0.003008 0.003787 0.004602	9. 882 9. 865 9. 847 9. 808 9. 774 9. 734 9. 695	Same remarks as for curve 1.

TABLE 81-G(D)E. EXPERIMENTAL VISCOSITY DATA AS A FUNCTION OF DENSITY FOR GASEOUS ARGON-AMMONIA MIXTURES (continued)

Cur. No.	Fig. No.	Ref. No.	Author(s)	Mole Fraction of Ar	Temp. (K)	Density (g c m ⁻⁵) (Viscosity (N s m ⁻² x 10 ⁻⁶)	Remarks
10	81-G(D)	92	Iwasaki, H., et al.	1.000	303. 2	0.001611 0.009849 0.01808 0.03495 0.05235 0.06893 0.08567	22. 944 23. 048 23. 136 23. 356 23. 628 23. 902 24. 206	Same remarks as for curve 1.
11	81-G(D)	92	lwasaki, H., et al.	0. 755	303.2	0.001439 0.002809 0.004253 0.008373 0.01554 0.02291 0.03046 0.03404	20. 981 21. 022 21. 038 21. 078 21. 168 21. 256 21. 361 21. 411	Same remarks as for curve 1.
12	81-G(D)	92	Iwasaki, H., et al.	0. 532	303. 2	0.005880 0.001258 0.002389 0.004004 0.007293 0.01030 0.01235	18. 564 18. 494 18. 530 18. 558 18. 618 18. 623 18. 670	Same remarks as for curve 1.
13	81-G(D)	92	fwasaki, H., et al.	0, 330	303. 2	0.001074 0.002052 0.003071 0.004139 0.006268 0.007374	15. 732 15. 740 15. 755 15. 763 15. 776 15. 778	Same remarks as for curve 1.
14	81-G(D)	92	Iwasaki, H., et al.	0.100	303.2	0.0008158 0.001593 0.002432 0.003282 0.005001 0.006248	12. 100 12. 102 12. 088 12. 072 12. 056 12. 021	Same remarks as for curve 1.
15	81-G(D)	92	lwasaki, H., et al.	0. 076	303.2	0.0007977 0.001149 0.001551 0.002358 0.003185 0.003820	11. 454 11. 441 11. 443 11. 423 11. 403 11. 388	Same remarks as for curve 1.
16	81-G(D)	92	Iwasaki, H., et al.	0.046	303. 2	0.0007390 0.0007440 0.001112 0.001496 0.002267 0.003065 0.004039		Same remarks as for curve 1.
17	81-G(D)	92	lwasaki, H., et al.	0.000	303. 2	0.0007669 0.0007195 0.001063 0.001390 0.002120 0.002120 0.004131 0.0007244 0.001390 0.002125 0.003604	10. 271 10. 280 10. 256 10. 244 10. 213 10. 190 10. 148 10. 127 10. 269 10. 242 10. 213 10. 147 10. 115	Same remarks as for curve 1.

TABLE 81-G(D)S. SMOOTHED VISCOSITY VALUES AS A FUNCTION OF DENSITY FOR GASEOUS ARGON-AMMONIA MIXTURES

••••				Mole	Fraction of A	lrgon			
Density	0.000	0.046	0.052	0.147	J. 220	0.379	0.558	0.762	1.000
(g cm ⁻³)	(293.2 K)	(293, 2 K)	(293, 2 K)	(293,2 K)	(293.2 K)	(293,2 K)	(293.2 K)	(293.2 K)	(293.2 K
	[Ref. 92]	[Ref. 92]	[Ref. 92]	[Ref. 92]	[Ref. 92]	[Ref. 92]	[Ref. 92]	[Ref. 92]	[Ref. 92
. 0005	9.893	10.646	10.912						
,0010	9.870	10.586	10,909	12.559	13.590	15.470			
.0012		10.561							
0.0015	9.847	10.525	10.906						
0.0018		10.490							
, 0020	9.823	10.466	10.900	12,158	13.600	15.482	17.658		
0.0025	9.799		10.892	12.159	13.601	15,490		20,092	
, 0030	9.775		10.878	12.159	13.605	15.495			
, 0035	9.749		10.860						
. 0040	9.723		10.838	12.155	13.610	15.505	17.740		
. 0045	9,692		10.812						
, 0050	9,670		10.782	12.138	13.613	15.510	17.772	20.122	
.0060				12.106	13.615	15.519	17.800		
.0070					13.610	15.520			
, 0080						15.523	17.842		
.0090						15.522			
0.0100						15.520	17.872	20.184	22, 368
.0120	•						17.888		
.0140							17.890		
.0150								20.248	
.0160							17.895		
.0180							17.895		
.0200								20.318	22,490
. 0250								20.390	22, 552
. 0300								20.466	22,618
. 0350								20.546	
. 0400									22.760
.0500									22.918
.0600									23,075
. 0700									23.240
J. U/ DU									23, 330
.0800									23, 330 23, 423
.0800									
), 0750), 0800), 0900									
), 0800), 0900			-		Fraction of A				23.423
0.0800 0.0900 Density	0,000	0,046	0.076	0.100	0.330	0.532	0.755	1,000	23.423
0.0800 0.0900 Density	(303.2 K)	(303.2 K)	(303. 2 K)	0.100 (303.2 K)	0.330 (303,2 K)	0.532 (303.2 K)	(303.2 K)	(303.2 K)	23.423
0.0800 0.0900 Density g cm ⁻³)				0.100	0.330	0.532			23.423
0.0800 0.0900 Density g cm ⁻³)	(303.2 K) [Ref. 92]	(303.2 K)	(303. 2 K)	0.100 (303.2 K)	0.330 (303,2 K)	0.532 (303.2 K)	(303.2 K)	(303.2 K)	23.423
0.0800 0.0900 Density g cm ⁻³)	(303.2 K)	(303.2 K) [Ref. 92]	(303. 2 K)	0.100 (303.2 K)	0.330 (303,2 K)	0.532 (303.2 K)	(303.2 K)	(303.2 K) [Ref. 92]	23.423
.0800 .0900 Density g cm ⁻³) .0000 .0005	(303.2 K) [Ref. 92]	(303.2 K) [Ref. 92]	(303.2 K) [Ref. 92]	0.100 (303.2 K) [Ref, 92]	0.330 (303.2 K) [Ref. 92]	0.532 (303.2 K) [Ref. 92]	(303.2 K)	(303.2 K) [Ref. 92]	23.423
.0800 .0900 Density g cm ⁻³) .0000 .0005 .0007	(303. 2 K) [Ref. 92] 10. 286 10. 262	(303.2 K) [Ref. 92] 11.089 11.080	(303. 2 K)	0.100 (303.2 K)	0.330 (303,2 K)	0.532 (303.2 K)	(303.2 K)	(303.2 K) [Ref. 92]	23.423
.0800 .0900 Density g cm ⁻³) .0000 .0005 .0007 .0010	(303.2 K) [Ref. 92] 10.286 10.262 10.240	(303.2 K) [Ref. 92] 11.089 11.080 11.064	(303.2 K) [Ref. 92] 11.452	0.100 (303.2 K) [Ref. 92]	0,330 (303,2 K) [Ref. 92]	0,532 (303,2 K) [Ref. 92]	(303.2 K)	(303.2 K) [Ref. 92]	23.423
.0800 .0900 ensity g cm ⁻³) .0000 .0005 .0007 .0010	(303.2 K) [Ref. 92] 10.286 10.262 10.240 10.218	(303.2 K) [Ref. 92] 11.089 11.080 11.064 11.050	(303.2 K) [Ref. 92] 11.452	0.100 (303.2 K) [Ref, 92] 12.100	0.330 (303.2 K) [Ref. 92] 15.732	0,532 (303,2 K) [Ref. 92] 18.490	(303.2 K) [Ref. 92]	(303.2 K) [Ref. 92]	23.423
ensity (cm ⁻³) .0000 .0005 .0007 .0010 .0020 .0025	(303.2 K) [Ref. 92] 10.286 10.262 10.240 10.218 10.196	(303.2 K) [Ref. 92] 11.089 11.080 11.064 11.050 11.034	(303.2 K) [Ref. 92] 11.452 11.434 11.423	0.100 (303.2 K) [Ref, 92] 12.100	0.330 (303.2 K) [Ref. 92] 15.732 15.745 15.750	0,532 (303,2 K) [Ref. 92]	(303.2 K)	(303.2 K) [Ref. 92]	23.423
.0800 .0900 ensity g cm ⁻³) .0000 .0005 .0007 .0015 .0020 .0020 .0020	(303. 2 K) [Ref. 92] 10. 286 10. 262 10. 240 10. 218 10. 196 10. 174	(303.2 K) [Ref. 92] 11.089 11.080 11.064 11.050 11.034 11.018	(303.2 K) [Ref. 92] 11.452 11.434 11.423 11.410	0.100 (303.2 K) [Ref, 92] 12.100	0.330 (303.2 K) [Ref. 92] 15.732	0,532 (303,2 K) [Ref. 92] 18.490	(303.2 K) [Ref. 92]	(303.2 K) [Ref. 92]	23.423
.0800 .0900 .0900 .0005 .0005 .0007 .0010 .0020 .0020 .0020 .0035	(303.2 K) [Ref. 92] 10.286 10.262 10.240 10.218 10.196	(303.2 K) [Ref. 92] 11.089 11.080 11.064 11.050 11.034	(303.2 K) [Ref. 92] 11.452 11.434 11.423	0.100 (303.2 K) [Ref, 92] 12.100	0.330 (303.2 K) [Ref. 92] 15.732 15.745 15.750	0,532 (303,2 K) [Ref. 92] 18.490	(303.2 K) [Ref. 92]	(303.2 K) [Ref. 92]	23.423
.0800 .0900 Density g cm ⁻³) .0000 .0005 .0007 .0015 .0020 .0025 .0030 .0035	(303. 2 K) [Ref. 92] 10. 286 10. 262 10. 240 10. 218 10. 196 10. 174 10. 154	(303.2 K) (Ref. 92) 11.089 11.080 11.064 11.050 11.034 11.018	(303.2 K) [Ref. 92] 11.452 11.434 11.423 11.410 11.397	0.100 (303.2 K) (Ref, 92) 12.100 12.094 1.2092 12.087	0,330 (303.2 K) [Ref. 92] 15.732 15.745 15.750 15.753	0.532 (303.2 K) [Ref. 92] 18.490 18.518 18.525	(303.2 K) [Ref. 92]	(303.2 K) [Ref. 92]	23.423
.0800 .0900 .0900 .0005 .0007 .0015 .0020 .0020 .0035 .0035	(303. 2 K) [Ref. 92] 10. 286 10. 262 10. 240 10. 218 10. 196 10. 174 10. 154	(303.2 K) (Ref. 92) 11.089 11.080 11.064 11.050 11.034 11.018	(303.2 K) [Ref. 92] 11.452 11.434 11.423 11.410 11.397	0.100 (303.2 K) (Ref. 92) 12.100 12.094 1.2092 12.087 12.075	0.330 (303.2 K) [Ref. 92] 15.732 15.745 15.750 15.753 15.763	0.532 (303.2 K) (Ref. 92) 18.490 18.518 18.525	(303.2 K) [Ref. 92] 21.006	(303.2 K) [Ref. 92]	23.423
.0800 .0900 Density g cm ⁻³) .0000 .0005 .0007 .0015 .0020 .0025 .0035 .0040	(303. 2 K) [Ref. 92] 10. 286 10. 262 10. 240 10. 218 10. 196 10. 174 10. 154	(303.2 K) (Ref. 92) 11.089 11.080 11.064 11.050 11.034 11.018	(303.2 K) [Ref. 92] 11.452 11.434 11.423 11.410 11.397	0.100 (303.2 K) [Ref, 92] 12.100 12.094 1.2092 12.087 12.075	0.330 (303.2 K) [Ref. 92] 15.732 15.745 15.750 15.753 15.763	0.532 (303.2 K) [Ref. 92] 18.490 18.518 18.525 18.570	(303.2 K) [Ref. 92]	(303.2 K) [Ref. 92]	23.423
.0800 .0900 .0900 .0900 .0000 .0005 .0007 .0015 .0020 .0035 .0007 .0040 .0045 .0050 .0050 .0060	(303. 2 K) [Ref. 92] 10. 286 10. 262 10. 240 10. 218 10. 196 10. 174 10. 154	(303.2 K) (Ref. 92) 11.089 11.080 11.064 11.050 11.034 11.018	(303.2 K) [Ref. 92] 11.452 11.434 11.423 11.410 11.397	0.100 (303.2 K) (Ref. 92) 12.100 12.094 1.2092 12.087 12.075	0.330 (303.2 K) [Ref. 92] 15.732 15.745 15.750 15.763 15.763	0.532 (303.2 K) (Ref. 92) 18.490 18.518 18.525 18.570 18.590 18.610	(303.2 K) [Ref. 92] 21.006	(303.2 K) [Ref. 92]	23.423
.0800 .0900 .0900 .0000 .0005 .0007 .0010 .0020 .0020 .0035 .0035 .0040 .0045 .0050 .0060 .0060	(303. 2 K) [Ref. 92] 10. 286 10. 262 10. 240 10. 218 10. 196 10. 174 10. 154	(303.2 K) (Ref. 92) 11.089 11.080 11.064 11.050 11.034 11.018	(303.2 K) [Ref. 92] 11.452 11.434 11.423 11.410 11.397	0.100 (303.2 K) [Ref, 92] 12.100 12.094 1.2092 12.087 12.075	0.330 (303.2 K) [Ref. 92] 15.732 15.745 15.750 15.753 15.763	0.532 (303.2 K) [Ref. 92] 18.490 18.518 18.525 18.570	(303.2 K) [Ref. 92] 21.006	(303.2 K) [Ref. 92]	23.423
0.0800 0.0900 Density g cm ⁻³) 0.0000 0.0005 0.0015 0.0020 0.0025 0.0030 0.0035 0.0040 0.0040 0.0050 0.0050 0.0050 0.0050 0.0050	(303. 2 K) [Ref. 92] 10. 286 10. 262 10. 240 10. 218 10. 196 10. 174 10. 154	(303.2 K) (Ref. 92) 11.089 11.080 11.064 11.050 11.034 11.018	(303.2 K) [Ref. 92] 11.452 11.434 11.423 11.410 11.397	0.100 (303.2 K) [Ref, 92] 12.100 12.094 1.2092 12.087 12.075	0.330 (303.2 K) [Ref. 92] 15.732 15.745 15.750 15.763 15.763	0.532 (303.2 K) (Ref. 92) 18.490 18.518 18.525 18.570 18.600 18.630 18.642	(303. 2 K) Ref. 92 21.006	(303.2 K) (Ref. 92) 22.940	23.423
0.0800 0.0900 0.0900 0.0005 0.0007 0.0010 0.0015 0.0020 0.0025 0.0030 0.0035 0.0040 0.0045 0.0060 0.0060 0.0060	(303. 2 K) [Ref. 92] 10. 286 10. 262 10. 240 10. 218 10. 196 10. 174 10. 154	(303.2 K) (Ref. 92) 11.089 11.080 11.064 11.050 11.034 11.018	(303.2 K) [Ref. 92] 11.452 11.434 11.423 11.410 11.397	0.100 (303.2 K) [Ref, 92] 12.100 12.094 1.2092 12.087 12.075	0.330 (303.2 K) [Ref. 92] 15.732 15.745 15.750 15.763 15.763	0.532 (303.2 K) (Ref. 92) 18.490 18.518 18.525 18.570 18.690 18.610 18.630 18.642	(303.2 K) [Ref. 92] 21.006	(303.2 K) [Ref. 92]	23.423
.0800 .0900 .0900 .0905 .0005 .0007 .0010 .0020 .0020 .0035 .0040 .0045 .0050 .0060 .0060 .0060	(303. 2 K) [Ref. 92] 10. 286 10. 262 10. 240 10. 218 10. 196 10. 174 10. 154	(303.2 K) (Ref. 92) 11.089 11.080 11.064 11.050 11.034 11.018	(303.2 K) [Ref. 92] 11.452 11.434 11.423 11.410 11.397	0.100 (303.2 K) [Ref, 92] 12.100 12.094 1.2092 12.087 12.075	0.330 (303.2 K) [Ref. 92] 15.732 15.745 15.750 15.763 15.763	0.532 (303.2 K) (Ref. 92) 18.490 18.518 18.525 18.570 18.600 18.630 18.642	(303.2 K) [Ref. 92] 21.006 21.034 21.092	(303.2 K) (Ref. 92) 22.940	23.423
.0800 .0900 .0900 .0900 .0005 .0007 .0010 .0015 .0020 .0035 .0030 .0035 .0040 .0045 .0050 .0060 .0070 .0080	(303. 2 K) [Ref. 92] 10. 286 10. 262 10. 240 10. 218 10. 196 10. 174 10. 154	(303.2 K) (Ref. 92) 11.089 11.080 11.064 11.050 11.034 11.018	(303.2 K) [Ref. 92] 11.452 11.434 11.423 11.410 11.397	0.100 (303.2 K) [Ref, 92] 12.100 12.094 1.2092 12.087 12.075	0.330 (303.2 K) [Ref. 92] 15.732 15.745 15.750 15.763 15.763	0.532 (303.2 K) (Ref. 92) 18.490 18.518 18.525 18.570 18.690 18.610 18.630 18.642	(303. 2 K) Ref. 92 21.006	(303.2 K) (Ref. 92) 22.940	23.423
0.0800 0.0900 0.0900 0.0005 0.0005 0.0005 0.0015 0.0025 0.0025 0.0025 0.0025 0.0025 0.0025 0.0020 0.0025 0.0020 0.0025 0.0020 0.0025 0.0020 0.0025 0.0020 0.0025 0.0025 0.0020 0.0025	(303. 2 K) [Ref. 92] 10. 286 10. 262 10. 240 10. 218 10. 196 10. 174 10. 154	(303.2 K) (Ref. 92) 11.089 11.080 11.064 11.050 11.034 11.018	(303.2 K) [Ref. 92] 11.452 11.434 11.423 11.410 11.397	0.100 (303.2 K) [Ref, 92] 12.100 12.094 1.2092 12.087 12.075	0.330 (303.2 K) [Ref. 92] 15.732 15.745 15.750 15.763 15.763	0.532 (303.2 K) (Ref. 92) 18.490 18.518 18.525 18.570 18.690 18.610 18.630 18.642	(303. 2 K) [Ref. 92] 21.006 21.034 21.092 21.153 21.215 21.282 21.354	(303.2 K) [Ref. 92] 22.940	23.423
0.0800 0.0900 0.0900 0.0005 0.0007 0.0015 0.0020 0.0020 0.0035 0.0030 0.0035 0.0040 0.0050	(303. 2 K) [Ref. 92] 10. 286 10. 262 10. 240 10. 218 10. 196 10. 174 10. 154	(303.2 K) (Ref. 92) 11.089 11.080 11.064 11.050 11.034 11.018	(303.2 K) [Ref. 92] 11.452 11.434 11.423 11.410 11.397	0.100 (303.2 K) [Ref, 92] 12.100 12.094 1.2092 12.087 12.075	0.330 (303.2 K) [Ref. 92] 15.732 15.745 15.750 15.763 15.763	0.532 (303.2 K) (Ref. 92) 18.490 18.518 18.525 18.570 18.690 18.610 18.630 18.642	(303.2 K) [Ref. 92] 21.006 21.034 21.092 21.153 21.215 21.282	(303.2 K) [Ref. 92] 22.940 23.045 23.151 23.272	23.423
0.0800 0.0900 0.0900 0.0005 0.0005 0.0007 0.0010 0.0025 0.0035 0.0040 0.0045 0.0050	(303. 2 K) [Ref. 92] 10. 286 10. 262 10. 240 10. 218 10. 196 10. 174 10. 154	(303.2 K) (Ref. 92) 11.089 11.080 11.064 11.050 11.034 11.018	(303.2 K) [Ref. 92] 11.452 11.434 11.423 11.410 11.397	0.100 (303.2 K) [Ref, 92] 12.100 12.094 1.2092 12.087 12.075	0.330 (303.2 K) [Ref. 92] 15.732 15.745 15.750 15.763 15.763	0.532 (303.2 K) (Ref. 92) 18.490 18.518 18.525 18.570 18.690 18.610 18.630 18.642	(303. 2 K) [Ref. 92] 21.006 21.034 21.092 21.153 21.215 21.282 21.354	(303.2 K) [Ref. 92] 22.940 23.045 23.151 23.272 23.415	23.423
.0800 .0900 .0900 .0900 .0005 .0007 .0010 .0020 .0025 .0035 .0040 .0050 .0050 .0060 .0070 .0080 .0100 .0120 .0150 .0250 .0250	(303. 2 K) [Ref. 92] 10. 286 10. 262 10. 240 10. 218 10. 196 10. 174 10. 154	(303.2 K) (Ref. 92) 11.089 11.080 11.064 11.050 11.034 11.018	(303.2 K) [Ref. 92] 11.452 11.434 11.423 11.410 11.397	0.100 (303.2 K) [Ref, 92] 12.100 12.094 1.2092 12.087 12.075	0.330 (303.2 K) [Ref. 92] 15.732 15.745 15.750 15.763 15.763	0.532 (303.2 K) (Ref. 92) 18.490 18.518 18.525 18.570 18.690 18.610 18.630 18.642	(303. 2 K) [Ref. 92] 21.006 21.034 21.092 21.153 21.215 21.282 21.354	(303.2 K) [Ref. 92] 22.940 23.045 23.151 23.272	23.423
.0800 .0900 .0900 .0000 .0005 .0007 .0015 .0020 .0035 .0040 .0050 .0060 .0060 .0200 .0250 .0350 .0250 .0350 .0250 .0350 .0350 .0400 .0250 .0500	(303. 2 K) [Ref. 92] 10. 286 10. 262 10. 240 10. 218 10. 196 10. 174 10. 154	(303.2 K) (Ref. 92) 11.089 11.080 11.064 11.050 11.034 11.018	(303.2 K) [Ref. 92] 11.452 11.434 11.423 11.410 11.397	0.100 (303.2 K) [Ref, 92] 12.100 12.094 1.2092 12.087 12.075	0.330 (303.2 K) [Ref. 92] 15.732 15.745 15.750 15.763 15.763	0.532 (303.2 K) (Ref. 92) 18.490 18.518 18.525 18.570 18.690 18.610 18.630 18.642	(303. 2 K) [Ref. 92] 21.006 21.034 21.092 21.153 21.215 21.282 21.354	(303.2 K) (Ref. 92) 22.940 23.045 23.161 23.272 23.415 23.580 23.753	23.423
.0800 .0900 .0900 .0900 .0900 .0000 .0005 .0007 .0015 .0025 .0030 .0035 .0040 .0050	(303. 2 K) [Ref. 92] 10. 286 10. 262 10. 240 10. 218 10. 196 10. 174 10. 154	(303.2 K) (Ref. 92) 11.089 11.080 11.064 11.050 11.034 11.018	(303.2 K) [Ref. 92] 11.452 11.434 11.423 11.410 11.397	0.100 (303.2 K) [Ref, 92] 12.100 12.094 1.2092 12.087 12.075	0.330 (303.2 K) [Ref. 92] 15.732 15.745 15.750 15.763 15.763	0.532 (303.2 K) (Ref. 92) 18.490 18.518 18.525 18.570 18.690 18.610 18.630 18.642	(303. 2 K) [Ref. 92] 21.006 21.034 21.092 21.153 21.215 21.282 21.354	(303.2 K) (Ref. 92) 22.940 23.045 23.151 23.272 23.415 23.580	23.423

FIGURE 81-G(D). VISCOSITY DATA AS A FUNCTION OF DENSITY FOR GASEOUS ARGON - AMMONIA MIXTURES

The state of the state of the

TABLE 82-G(C)E. EXPERIMENTAL VISCOSITY DATA AS A FUNCTION OF COMPOSITION FOR GASEOUS ARGON-SULFUR DIOXIDE MIXTURES

Cur. No.	Fig. No.	Ref. No.	Author (s)	Temp.	Pressure (atm)	Mole Fraction of SO ₂	Viscosity (N s m ⁻² x 10 ⁻⁶)	Remarks
1	82-G C	35	Chakraborti, P.K. and	298.2	243-142	0,000	22.54	Gases purified by distillation;
			Gray, P.			0.191	20.07	capillary viscometer, relative
			-			0.250	19.44	measurements; accuracy ± 1.0%;
						0.314	18.68	$L_1 = 0.142\%$, $L_2 = 0.256\%$, $L_3 =$
						0.404	17.74	0.672%.
						0.500	16,85	
						0.612	15.81	
						0.720	14.97	
						0.830	14.13	
						0.954	13.31	
						1.000	13.17	
2	82-G(C)	35	Chakraborti, P.K. and	308, 2	243-142	0.000	23.10	Same remarks as for curve 1 except
			Gray, P.			0.024	22.86	$L_1 = 0.194\%$, $L_2 = 0.285\%$, $L_3 =$
						0, 150	21.77	0.676%.
						0,254	20.84	
						0.362	19.66	
						0.464	18.73	
						0,581	17.70	
						0.666	16.90	
						0.762	15.97	
						0.872	14.96	
						0.893	14.77	
						1.000	13.28	
3	82-G(C)	35	Chakraborti, P.K. and	353, 2	243-142	0.000	25.71	Same remarks as for curve 1 except
			Gray, P.			0.043	25.50	$L_1 = 0.153\%$, $L_2 = 0.244\%$, $L_3 =$
						0.163	24.34	0.512%.
						0.264	23.37	
						0.387	22.13	
						0.483	21.13	
						0.586	20.11	
						0.687	19.03	
						0.781	17.86	
						0.885	16.65	
						0.920	16.29	
						1.000	15.23	

TABLE 82-G(C)S. SMOOTHED VISCOSITY VALUES AS A FUNCTION OF COMPOSITION FOR GASEOUS ARGON-SULFUR DIOXIDE MIXTURES

Mole Fraction of SO ₂	298.2 K [Ref. 35]	308.2 K [Ref. 35]	353.2 K [Ref. 35
0,00	22.45	23,10	25.71
0.05	21.88	22.64	25.32
0.10	21.22	22.16	24.91
0.15	20.58	21.69	24.46
0, 20	19.96	21.22	24.00
0.25	19.39	20.74	23.52
0.30	18.82	20.28	23.04
0.35	18.28	19.82	22.53
0.40	17.77	19.36	22.00
0.45	17.27	18.90	21.49
0.50	16.80	18.44	20.97
0.55	16.34	17.98	20.45
0.60	15.95	17.52	19.92
0.65	15.48	17.05	19.36
0.70	15.08	16.60	18.80
0.75	14.70	16.16	18.24
0.80	14.34	15.70	17.67
0.85	14.01	15.22	17.07
0.90	13.70	14.80	16.46
0.95	13.42	14.20	15.85
1 00	13 17	13 28	15.23

FIGURE 82-G(C). VISCOSITY DATA AS A FUNCTION OF COMPOSITION FOR GASEOUS ARGON-SULFUR DIOXIDE MIXTURES

," **f**

. . . .

....

TABLE 83-L(C)E. EXPERIMENTAL VISCOSITY DATA AS A FUNCTION OF COMPOSITION FOR LIQUID BENZENE-CYCLOHEXANE MIXTURES

Cur. No.	Fig. No.	Ref. No.	Author(s)	Temp. (K)	Pressure (atm)	Mole Fraction of C ₆ H ₁₂	Viscosity (N s m ⁻² x 10 ⁻⁶)	Remarks
1	83-L(C)	355	Ridgway, K. and	298.2		1,0000	869.0	Liquids supplied by British Drug
_			Butler, P. A.			0.8718	762.2	Houses Ltd.; Ostwald viscometer;
						0.7826	712.2	precision 0.1%; L, = 0.017%, L, =
						0,6636	659.9	0.039%, L ₂ = 0.105%.
						0.5126	612.4	• •
						0.3530	587.9	
						0.2186	583.0	
						0.0967	592.6	
						0.0000	605.9	

TABLE 83-L(C)S. SMOOTHED VISCOSITY VALUES AS A FUNCTION OF COMPOSITION FOR LIQUID BENZENE-CYCLOHEXANE MIXTURES

Mole Fraction of C ₆ H ₁₂	298.2 K [Ref. 355
0.00	605.9
0.05	598.4
0.10	592.4
0.15	587.5
0.20	584.0
0.25	581.4
0.30	580.6
0.35	582.3
0.40	588.7
0.45	598.1
0.50	609.5
0.55	622.5
0.60	637.8
0.65	655.0
0.70	776.0
0.75	697.5
0.80	721.0
0.85	746.5
0.90	776.5
0.95	822.6
1.00	869.0

FIGURE 83 - L(C). VISCOSITY DATA AS A FUNCTION OF COMPOSITION FOR LIQUID BENZENE-CYCLOHEXANE MIXTURES

TABLE 84-L (C)E. EXPERIMENTAL VISCOSITY DATA AS A FUNCTION OF COMPOSITION FOR LIQUID BENZENE-n-HEXANE MIXTURES

Cur. No.	Fig. No.	Ref. No.	Author(s)	Temp.	Pressure (atm)	Mole Fraction of n-C ₆ H ₁₄	Viscosity (N s m ⁻² x 10 ⁻⁶)	Remarks
1	84-L(C)	355	Ridgway, K. and Butler, P.A.	298. 2		1.0000 0.8719 0.7335 0.5950 0.4296 0.2784 0.1189 0.0000	300.8 313.4 327.0 347.1 382.2 425.4 513.9 605.9	Benzene: supplied by B. D. H. Ltd, n-Hexane: supplied by Phillips Petroleum Co.; Ostwald viscometer; precision 0.1%; $L_1 = 0.094\%$ $L_2 = 0.177\%$, $L_3 = 0.384\%$.

TABLE 84-L(C)S, SMOOTHED VISCOSITY VALUES AS A FUNCTION OF COMPOSITION FOR LIQUID BENZENE-n-HEXANE MIXTURES

Mole Fraction of n-C ₆ H ₁₄	298.2 K [Ref. 355]
0.00	605.9
0.05	565.8
0.10	527.0
0.15	492.5
0.20	462.5
0.25	438.0
0.30	417.5
0.35	401.6
0.40	388.6
0.45	377.2
0.50	366.4
0.55	356.4
0.60	347.2
0.65	339.0
0.70	331.5
0.75	325.0
0.80	319.2
0.85	314.2
0.90	309.5
0.95	305.2
1.00	300.8

FIGURE 84-L(C). VISCOSITY DATA AS A FUNCTION OF COMPOSITION FOR LIQUID BENZENE - n-HEXANE MIXTURES

,

TABLE 85-L(C)E. EXPERIMENTAL VISCOSITY DATA AS A FUNCTION OF COMPOSITION FOR LIQUID BENZENE-OCTAMETHYLCYCLOTETRASILOXANE MIXTURES

Cur. No.	Fig. No.	Ref. No.	Author (8)	Temp. (K)	Pressure (atm)	Mole Fraction of [OSi(CH ₂) ₂] ₄	Viscosity (N s m ⁻² x 10 ⁻⁴)	Remarks
1	85-L(C)	360	Marsh, K.N.	291.2		0.0000	670.3	Benzene: A.R. grade shaken with
	• •					0.0881	734.6	H ₂ SO ₄ and washed with water, dried
						0.3511	1059.0	over CaCl ₂ and Na, and then dis-
						0.5997	1493.0	tilled; Ostwald viscometer, relative
						0.7738	1885.0	measurements; $L_1 = 0.032\%$, $L_2 =$
						0.8529	2091.0	0.091%, L ₃ = 0.257%.
						0.9369	2328.0	
						1.0000	2520.0	
2	85-L(C)	360	Marsh, K.N.	298, 2		0.0000	602.4	Same remarks as for curve 1 except
	•					0.0341	622.4	$L_1 = 0.167\%$, $L_2 = 0.279\%$, $L_3 =$
						0.0699	648.6	0.625%.
						0.1407	709.9	
						0.2235	794.4	
						0.2938	875.0	
						0.3751	981.4	
						0.4689	1113.0	
						0.6211	1363.0	
						0.6777	1466.0	
						0.7510	1608.0	
						0.8434	1804.0	
						0.8753	1880.0	
						0.9028	1939.0	
						0.9291	2010.0	
						1.0000	2190.0	
3	85-L(C)	360	Marsh, K. N.	308.2		0.0000	523.5	Same remarks as for curve 1 except
	• • •					0.0886	576.8	$L_1 = 0.093\%$, $L_2 = 0.173\%$, $L_3 =$
					•	0.3517	818.0	0.432%.
						0.6020	1127.0	
						0.7741	1390.0	
						0.8544	1527.0	
						0.9373	1682.0	
						1.0000	1806.0	
4	85-L(C)	360	Marsh, K.N.	318.2		0,0000	460.3	Same remarks as for curve 1 except
-	,-,		•			0.0888	507.0	$L_1 = 0.205\%$, $L_2 = 0.311\%$, $L_3 =$
						0,3526	714.0	0.578%.
						0,6036	971.0	
						0.7763	1186.0	
						0,8562	1298.0	
				*		0.9134	1393.0	
						1.0000	1514.0	

TABLE 85-L(C)S. SMOOTHED VISCOSITY VALUES AS A FUNCTION OF COMPOSITION FOR LIQUID BENZENE-OCTAMETHYLCYCLOTETRASILOXANE MIXTURES

Mole Fraction of [OSi(CH ₃) ₂] ₄	(291.2 K) [Ref. 360]	(298.2 K) [Ref. 360]	(308.2 K) [Ref. 360]	(318.2 K) [Ref. 360]
0.00	670.3	602.4	523.5	460.3
0.05	698, 2	632.5	552.5	488.0
0.10	747.0	671.5	584.8	516.0
0.15	796.0	719.8	621.5	548.0
0.20	850.0	770.0	664.0	\$84.0
0.25	917.0	828.0	711.0	624.0
0.30	984.0	888.0	761.0	666. 0
0.35	1059.0	950.0	816.0	712.5
0.40	1140.0	1018.8	871.0	760.0
0.45	1224.0	1090.0	930.0	810.0
0.50	1310.0	1164.0	992.0	830.0
0.55	1400.0	1244.0	1058.0	916.0
0.60	1500.0	1328.0	1124.0	971.0
0.65	1604.0	1417.5	1198.0	1030.0
0.70	1712.5	1511.0	1271.0	1090.0
0.75	1830.0	1609.0	1352.0	1156.0
0.80	1952.5	1718.0	1436.0	1221,0
0.85	2088.0	1824.5	1521.0	1291.5
0,90	2234.0	1942.0	1612.0	1364.0
0.95	2376.0	2062.0	1704.0	1438.0
1.00	2520.0	2190.0	1806.0	1514.0

FIGURE 85 - L (C) VISCOSITY DATA AS A FUNCTION OF COMPOSITION FOR LIQUID BENZENE - OCTAMETHYLCYCLOTETRASILOXANE MIXTURES

TABLE 86-G(D)E. EXPERIMENTAL VISCOSITY DATA AS A FUNCTION OF DENSITY FOR GASEOUS $_{\rm n-BUTANE-METHANE}$ MIXTURES

Cur. No.	Fig. No.	Ref. No.	Author(s)	Mole Fraction of C ₄ H ₁₀	Temp. (K)	Density (g cm ⁻³)	Viscosity (N s m ⁻² x 10 ⁻⁶)	Remarks
1	86-G(D)	329	Kestin, J. and Yata, J.	1,0000	293. 2	0.004445 0.003808 0.003239 0.002657	7. 252 7. 260 7. 267 7. 274	C ₄ H ₁₀ -CH ₄ : 99. 99 pure; oscillating disk viscometer; calibrated with He and N ₂ at 20 C; error ±0. 1% and precision ±0. 05%.
2	86-G(D)	329	Kestin, J. and Yata, J.	0.6447	293. 2	0.002716 0.002452 0.002183 0.001903	8. 128 8. 133 8. 131 8. 131	Same remarks as for curve 1.
3	86-G(D)	329	Kestin, J. and Yata, J.	0.4579	293.2	0.003141 0.002578 0.002093 0.001541	8. 726 8. 726 8. 723 8. 722	Same remarks as for curve 1.
4	86-G(D)	329	Kestin, J. and Yata, J.	0.3026	293. 2	0.004050 0.003045 0.002156 0.001251	9. 352 9. 348 9. 339 9. 335	Same remarks as for curve 1.
5	86-G(D)	329	Kestin, J. and Yata, J.	0.1568	293. 2	0.006295 0.004455 0.002727 0.000983	10. 092 10. 064 10. 042 10. 026	Same remarks as for curve 1.
6	86-G(D)	329	Kestin, J. and Yata, J.	0.0000	293.2	0.01761 0.01384 0.01030 0.006809 0.003381 0.000701	11. 32 I* 11. 217* 11. 137* 11. 054 10. 986 10. 986	Same remarks as for curve 1.
7	86-G(D)	342	Dolan, J.P., Ellington, R.T., and Lee, A.L.	0.100	294.3	0.147 0.186 0.219	18. 97 22. 60 25. 85	Capillary viscometer; maximum uncertainty of measurements $\pm 0.5\%$ original data reported as a function of pressure, density calculated from pressure using volumetric data of Reamer et al. [369].
8	86-G(D)	329	Kestin, J. and Yata, J.	1.0000	303. 2	0.005656 0.004027 0.002578	7. 481 7. 506 7. 524	Same remarks as for curve 1.
9	86-G(D)	329	Kestin, J. and Yata, J.	0.6447	303.2	0.003032 0.002553 0.002197 0.001841	8. 405 8. 411 8. 412 8. 415	Same remarks as for curve 1.
10	86-G(D)	329	Kestin, J. and Yata, J.	0.4579	3 03. 2	0.003490 0.002979 0.002206 0.001484	9. 012 9. 015 9. 012 9. 013	Same remarks as for curve 1.
11	86-G(D)	329	Kestin, J. and Yata, J.	0.3026	303. 2	0.004335 0.004335 0.003986 0.003001 0.002122 0.001222	9. 659 9. 663 9. 658 9. 651 9. 644 9. 636	Same remarks as for curve 1.
12	86-G(D)	329	Kestin, J. and Yata, J.	0. 1568	303. 2	0.005153 0.003785 0.002238 0.000959	10. 394 10. 380 10. 358 10. 334	Same remarks as for curve 1.
13	86-G(D)	329	Kestin, J. and Yata, J.	0.0000	303. 2	0.01506 0.003785 0.002238 0.000959	11.590* 10.380 10.358 10.334	Same remarks as for curve 1.
14	86-G(D)	342	Dolan, J.P., et al.	0.100	310.9	0. 0351 0. 0479 0. 0612 0. 0785 0. 0962 0. 114 0. 132 0. 197	11.89 12.37 13.00 13.91 15.07 16.26 17.75 23.87	Same remarks as for curve 7.
15	86-G(D)		Dolan, J.P., et al.	0. 300	310. 9	0. 210 0. 265 0. 307	28. 17 43. 80 48. 49	Same remarks as for curve 7.
16	86-G(D)	342	Dolan, J.P., et al.	0. 500	310.9	0. 326 0. 397 0. 441	48. 81 70. 95 76. 74	Same remarks as for curve 7.

*Not shown in figure.

TABLE 86-G(D)E. EXPERIMENTAL VISCOSITY DATA AS A FUNCTION OF DENSITY FOR GASEOUS n-BUTANE-METHANE MIXTURES (continued)

Cur. No.	Fig. No.	Ref. No.	Author(s)	Mole Fraction of C ₄ H ₁₆	Temp. (K)	Density (g cm ⁻³)	Viscosity (N s m ⁻² x 10 ⁻⁶)	Remarks
17	86-G(D)	343	Carmichael, L.T., Virginia, B., and Sage, B.H.	0.6060	310. 9	0. 433 0. 433 0. 433 0. 438 0. 438 0. 438 0. 455 0. 455 0. 457 0. 461 0. 461 0. 462 0. 462 0. 476 0. 476 0. 476 0. 476 0. 476 0. 476 0. 494 0. 506 0. 506 0. 506 0. 506	75. 757 77. 328 77. 708 77. 968 76. 866 76. 869 77. 231 77. 279 77. 633 78. 467 80. 642 80. 914 81. 112 79. 795 79. 500 79. 885* 87. 932 87. 714 87. 802* 86. 986 87. 154 87. 044* 98. 864* 98. 824* 98. 867* 98. 823* 107. 393* 107. 520* 107. 911* 113. 280*	Rotating cylinder viscometer; original data reported as a function of pressure, density calculated from pressure using volumetric data of Reamer et al. [369].
						0.515 0.519 0.519 0.519 0.519	112. 712* 116. 890* 116. 855* 116. 601* 117. 219*	
18	86-G(D)	342	Dolan, J.P., et al.	0.100	344.3	0. 0309 0. 0418 0. 0530 0. 0672 0. 0817 0. 0962 0. 111 0. 165	12. 88 13. 20 13. 73 14. 42 15. 15 16. 02 16. 86 21. 29	Same remarks as for curve 7.
19	86-G(D)	342	Dolan, J.P., et al.	0. 300	344. 3	0. 147 0. 170 0. 213 0. 252	23. 82 26. 56 32. 74 46. 25	Same remarks as for curve 7.
20	86-G(D)	342	Dolan, J.P., et al.	0. 500	344.3	0. 253 0. 317 0. 365	46. 50 53. 49 58. 44	Same remarks as for curve 7.
21	86-G(D)	342	Dolan, J.P., et al.	0.100	377.6	0. 0373 0. 0470 0. 0592 0. 0715 0. 0838 0. 0961 0. 140 0. 184 0. 228	14. 21 14. 52 15. 02 16. 60 16. 25 17. 07 20. 43 24. 32 27. 74	Same remarks as for curve 7.
22	86-G(D)	342	Dolan, J.P., et al.	0.300	377.6	0. 0130 0. 0265 0. 0405 0. 0548 0. 0694 0. 0879 0. 107 0. 125 0. 144 0. 181	12. 05 12. 30 12. 94 13. 48 14. 38 15. 81 17. 50 19. 61 21. 53 26. 14	Same remarks as for curve 7.
23	86-G(D)	342	Dolan, J.P., et al.	0. 500	377.6	0. 208 0. 235 0. 261 0. 306	33. 39 36. 96 39. 66 45. 59	Same remarks as for curve 7.

Not shown in figure.

TABLE 86-G(D)E, EXPERIMENTAL VISCOSITY DATA AS A FUNCTION OF DENSITY FOR GASEOUS n-BUTANE-METHANE MIXTURES (continued)

Cur. No.	Fig.	Ref. No.	Author(s)	Mole Fraction of C ₄ H ₁₀	Temp. (K)	Density (g cm ⁻³)	Viscosity (N s m ⁻² x 10 ⁻⁶)	Remarks
24	86-G(D)	343	Carmichael, L.T., et al.	0.6060	377.6	0.00220 0.00220	10. 926 10. 924*	Same remarks as for curve 17.
						0,00220	10.946	
						0.0458 0.0458	11, 940* 11, 942*	
						0.0458	11. 950*	
						0.330	39. 311	
						0.330	39. 227*	
						0.330	39, 065 45, 463	
						0. 363 0. 363	45. 830	
						0.363	46.078	
						0.363	46.110*	
						0.408	59. 108	
						0.408	59. 195*	
						0.408	59. 285*	
						0. 434 0. 434	68. 428 68. 247	
						0.434	68. 476*	
						0.446	73. 541	
						0.446	73. 68 9 *	
						0.446	73. 381	
						0.455	77. 760 77. 672*	
						0. 455 0. 455	77. 774*	
5	86-G(D)	343	Carmichael, L.T., et al.	0.6060	444.3	0. 00222	13. 106	Same remarks as for curve 17.
,	00-U(D)	040	Carmenaci, b. I., et al.	0.0000	111.0	0.00222	13.113*	came remarks as for carre 11.
						0.00222	13. 124*	
						0.00222	13. 184*	
						0.106	16. 943	
						0, 106	17.024*	
						0, 106 0, 240	17. 146 28. 782	
						0. 240	28. 606*	
						0.240	28. 781*	
						0, 283	34. 455	
						0. 283	34. 590*	
						0.317	38.881	
						0.317 0.360	38. 979* 47. 684	
						0.360	47. 722*	
						0.360	47.818	
						0.377	51.989	
						0.377	51. 979*	
						0.377	52. 213	
						0. 389 0. 389	53. 731 53. 963	
						0.389	53. 962*	
	86-G(D)	342	Dolan, J.P., et al.	0.750	444.3	0. 204	17. 70	Same remarks as for curv. 7.
	00 -(-,	•				0. 249	22. 72	
						0.283	28. 10	
						0.309	33. 44	
						0.346	37. 62	
	343	Carn	nichael, L.T., et al.	0.6060	477.6	0.106	16.698	Same remarks as for curve 17.
						0.106	16.738*	
						0. 106 0. 198	16, 732* 24, 284	
						0.198	25. 072	
						0.198	25, 986	
						0.278	33.810	
						0.278	33. 919*	
						0.278	33. 959*	
						0. 3 23 0. 323	41. 919 41. 771	
						0. 323 0. 323	41. 771 42. 010*	
						0.346	47.048	
						0.347	47.373	
						0.347	47.450*	
						0.355	48.772	
						0. 358 0. 360	49. 867 50. 350	
						u. anu	au. aau	

"Not shown in figure.

TABLE 86-G(D)8. SMOOTHED VISCOSITY VALUES AS A FUNCTION OF DENSITY FOR GASEOUS n-BUTANE-METHANE MIXTURES

.			Mole Frac	tion of n-Butan	e	
Density (g cm ⁻³)	0.0000 (293.2 K) [Ref. 329]	0, 1568 (293, 2 K) [Ref. 329]	0.3026 (293.2 K) [Ref. 329]	0.4579 (293.2 K) [Ref. 329]	0, 6447 (293, 2 K) [Ref. 329]	1.0000 (293.2 K [Ref. 329
0.00075		10.012				
0.00125	10. 951	10.020	9.330	8.720		
0.00150			9.332	8.721		
0.00175		10.029	9, 339	8.724	8.135	
0.00200			9.340	8.726	8. 131	
0.00225		10.037	9. 341	8.728	8.130	7. 272
0.00250	10.968		9.343	8.727	8.128	7.270
0.00275		10.046	9, 346	8.726	8.125	7.268
0.00300			9.349	8, 725		7.267
0.00325		10. 952	9.350	8.723		7. 262
0.00350			9.350	8. 721		7.261
0.00375	10.985	10.060	9.350			7.260
0.00400						7.258
0.00425		10.068				7.253
0.00450						7.250
0.00475		10.072				
0.00500	11.001					
0.00550		10,080				
0.00625	11.024					
0.00750	11.040					,
0.00875	11.062				•	
0.01000	11.078					
0.01125	11. 100					
0.01250	11. 125					

Density			Mole Frac	tion of n-Butan	e	
(g c m ⁻³)	0. 0000 (303. 2 K) [Ref. 329]	0. 1568 (303. 2 K) [Ref. 329]	0, 3026 (303, 2 K) [Ref. 329]	0.4579 (303.2 K) [Ref. 329]	0. 6447 (303. 2 K) [Ref. 329]	1.0000 (303.2 K) [Ref. 329
0.00075			9.618			
0.00125	11.285	10.342	9.631	9.015		
0.00150				9.015	8.415	
0.00175		10.352	9.641	9.020	8.416	
0.00200				9.020	8.418	
0.00225		10. 362	9.650	9. 020	8.415	
0.00250	11.310			9.019	8.413	7.520
0.00275		10.370	9, 654	9.018	8.410	
0.00300				9.016	8.409	7.519
0.00325		10.378	9.660		8.406	
0.00350				9.010	8.400	7. 512
0.00375	11. 329	10.386	9.660	9.009		7.510
0.00400						7.506
0.00425		10.390	9.660			
0.00450			9.658			7.499
0.00475		10.394				
0.00500	11.360					
0.00525		10.400				7.492
0.00600						7.482
0.00625	11.382					7.474
0.00750	11.410					
0.00875	11.435					
0.01000	11.460					
0.01125	11.490					
0.01250	11. 535					

TABLE 86-G(D)S. SMOOTHED VISCOSITY VALUES AS A FUNCTION OF DENSITY FOR GASEOUS n-BUTANE-METHANE MIXTURES (continued)

.	Mole Fraction of n-Butane												
Density (g cm ⁻³)	0, 100 (294, 3 K) [Ref. 342]	0.100 (310.9 K) [Ref. 342]	0.300 (310.9 K) [Ref. 342]	0.500 (310.9 K) [Ref. 342]	0.606 (310.9 K) [Ref. 342]	0. 100 (344. 3 K) [Ref. 342]	0, 300 (344, 3 K) [Ref. 342]	0.500 (344.3 K) Ref. 342]					
0.04		12.09				13. 21	•						
0.06		12.95				14.05	•						
0.08		13. 97				15.07							
0. 1 0		15. 26				16.23							
0.12		16.75				17.59							
0. 14	18.35	18.45	•			19.15							
0.16	20.08	20.24				20.83	25.39						
0.18	21.98	22.15					27.83						
0.20	23, 94	24.19					30.47						
0.22	25. 92		39.25				33.33						
0. 24			41.23				36.25						
0. 26			43.26					47.16					
0. 28			45.42					49.16					
0.30			47.65					51, 28					
0. 32								53, 44					
0.34				66, 10				55, 64					
0. 36				67.98				58, 03					
0.38				69.87									
0.40				71.90									
0.42				74. 10									
0.44				76, 53									
0.46					79, 20								
0.48					89.40								
0.50					102.8								
0. 52					117.4								

D				Mole Fra	ction of n-Buta	ne	
Density (g cm ⁻³)	0. 100 (377.6 K) [Ref. 342]	0.300 (377.6 K) [Ref. 342]	0.500 (377.6 K) [Ref. 342]	0, 606 (377, 6 K) [Ref. 342]	0.606 (444.3 K) [Ref. 342]	0.750 (444.3 K) [Ref. 342]	0.606 (477.6 K) [Ref. 342]
0. 02		12.16		11.21	13.42		
0.04	14.44	12.88		11.77	14.02		
0.06	15.04	13.84		12.50	14.80		
0.08	16.02	15.08		13.43	15.73		
0.10	17.24	16.78		14.55	16.82		18, 20
0. 12	18.76	18.79		15.82	17.99		19. 32
0. 14	20.20	21.04		17.18	19.24		20, 50
0.16	22.12	23.48		18, 58	20.58		21.83
0.18	23.88	25. 96		20.08	22.01		23.35
0.20	25.70			21.77	23.64		25.00
0. 22	27.56		34.72	23.65	25.52	19.60	26.80
0. 24			37.20	25.79	27.68	22.20	28.80
0. 26			39.74	28, 23	30.18	24.96	31.33
0. 28			42.30	30, 97	32.98	27, 68	34.20
0. 30			44.87	33. 98	36.02	30.50	37. 52
0. 32				37, 25	39. 4 3	33.48	41, 21
0.34				40.85	43. 26	36. 56	45.48
0. 36				45.10	47.70		50.30
0. 38				50. 22	52.92		
0.40				56.39			
0. 42				63.15			
0.44				70.72			

FIGURE 86 - G(D). VISCOSITY DATA AS A FUNCTION OF DENSITY FOR GASEOUS n-BUTANE - METHANE MIXTURES

J

FIGURE 86-G(D) VISCOSITY DATA AS A FUNCTION OF DENSITY FOR GASEOUS n-BUTANE-METHANE MIXTURES (continued)

FIGURE 86 - G (D). VISCOSITY DATA AS A FUNCTION OF DENSITY FOR GASEOUS n-BUTANE-METHANE MIXTURES (continued)

•

· ·

FIGURE 86-G(D). VISCOSITY DATA AS A FUNCTION OF DENSITY FOR GASEOUS n-BUTANE-METHANE MIXTURES (continued)

TABLE 87-G(C)E. EXPERIMENTAL VISCOSITY DATA AS A FUNCTION OF COMPOSITION FOR GASEOUS CARBON DIOXIDE-HYDROGEN MIXTURES

Cur. No.	Fig. No.	Ref. No.	Author(s)	Temp. (K)	Pressure (atm)	Mole Fraction of CO ₂	Viscosity (N s m ⁻² x 10 ⁻⁶)	Remarks
1	87-G(C)	234	Trautz, M. and Kurz, F.	300.0		1.0000 0.8821 0.8006 0.5871 0.4054 0.2150 0.1112 0.0000	14.93 15.02 15.01 15.06 14.78 13.76 12.32 8.91	CO ₂ : 98.966 pure, H ₂ : made by electrolysis; capillary method, $d = 0.018$ cm; L ₁ = 0.033%, L ₂ = 0.075%, L ₃ = 0.200%.
2	87~G(C)	234	Trautz, M. and Kurz, F.	400.0		1.0000 0.8821 0.8006 0.5871 0.4054 0.2150 0.1112 0.0000	19.44 19.51 19.45 19.33 18.78 17.13 15.26 10.81	Same remarks as for curve 1 except $L_1 = 0.045\%$, $L_2 = 0.075\%$, $L_3 = 0.154\%$.
3	87 -G(C)	234	Trautz, M. and Kurz, F.	500.0		1.0000 0.8821 0.8006 0.5871 0.4054 0.2150 0.1112 0.0000	23.53 23.60 23.58 23.21 22.39 20.26 17.83 12.56	Same remarks as for curve 1 except $L_1 = 0.017\%$, $L_2 = 0.037\%$, $L_3 = 0.099\%$.
4	87-G(C)	234	Trautz, M. and Kurz, F.	550.0		1.0000 0.8821 0.8006 0.5871 0.4054 0.2150 0.1112 0.0000	25.56 25.54 25.42 25.06 24.71 21.73 19.04 13.41	Same remarks as for curve 1 except $L_1 = 0.275\%$, $L_2 = 0.454\%$, $L_3 = 1.097\%$.
5	87-G(C)	337	Gururaja, G.J., Tirumarayanan, M.A., and Ramchandran, A.	300.7 297.0 297.2 297.0 297.5 297.4		1.000 0.900 0.780 0.560 0.384 0.370	14.990 14.852 15.042 15.070 15.000 14.900	Oscillating disk viscometer, calibrated to N_2 ; the viscosity of air, CO_2 , and O_2 were measured at ambient temperature and pressure, the resulting precision was $\pm 1.0\%$ of previous data.

SMOOTHED VISCOSITY VALUES AS A FUNCTION OF COMPOSITION FOR GASEOUS CARBON DIOXIDE-HYDROGEN MIXTURES TABLE 87-G(C)S.

Mole Fraction of CO ₂	300 K [Ref. 234]	400 K [Ref. 234]	500 K [Ref. 234]	550 K [Ref, 234]
0.00	8.91	10.81	12,56	13.41
0.05	10.86	13.40	15.38	16.86
0.10	12.09	14.96	17.44	18.70
0.15	12.94	16.08	18.95	20.13
0,20	13.55	16.92	20.00	21.40
0.25	14.00	17.57	20.82	21.59
0.30	14.33	18.07	21.46	23.40
0.35	14.58	18.46	21.96	23.97
0.40	14.76	18.76	22.35	24.39
0.45	14.90	18.99	22.66	24.71
0.50	14.99	19.16	22.90	24.94
0.55	15.04	19.28	23.10	25.12
0.60	15.08	19.38	23.26	25, 24
0.65	15.08	19.44	23.39	25, 32
0.70	15.07	19.49	23.49	25.37
0.75	15.05	19.52	23.55	25.40
0.80	15.02	19.52	23.58	25.43
0.85	14.00	19.52	23,60	25.46
0.90	14.98	19.49	23.59	25.49
0.95	14.96	19.46	23,56	25,52
1.00	14.93	19.44	23.53	25.56

FIGURE 87-G(C). VISCOSITY DATA AS A FUNCTION OF COMPOSITION FOR GASEOUS CARBON DIOXIDE-HYDROGEN MIXTURES

The second section with the

TABLE 88-G(D)E. EXPERIMENTAL VISCOSITY DATA AS A FUNCTION OF DENSITY FOR GASEOUS CARBON DIOXIDE-METHANE MIXTURES

Cur. No.	Fig.	Ref. No.	Author(s)	Mole Fraction of CO ₂	Temp.	Density (g cm ⁻³)	Viscosity (N s m ⁻² x 10 ⁻⁴)	Remarks
1	88- G (D)	335	DeWitt, K.J. and Thodos, G.	0.7570	50.1	0.0543 0.1254 0.3370 0.5126 0.6055 0.6609 0.7000 0.7298 0.7562 0.7763 0.7908	16. 26 18. 01 27. 91 41. 98 53. 23 61. 36 67. 58 72. 61 78. 11 82. 16 85. 56	Gas purities not given as also an estimate of the accuracy; unsteady state transpiration type capillary viscometer.
2	88-G(D)	335	DeWitt, K.J. and Thodos, G.	0.5360	50.3	0.0444 0.0987 0.2309 0.3519 0.4348 0.4891 0.5292 0.5586 0.5816 0.6030 0.6200	15.53 16.96 22.66 31.16 39.24 46.08 51.78 55.93 59.65 63.13 65.94	Same remarks as for curve 1.
3	88-G(D)	335	DeWitt, K.J. and Thodos, G.	0.2450	50.3	0.0315 0.0655 0.1472 0.2193 0.2773 0.3198 0.3510 0.3748 0.3748 0.4138 0.4293	14.11 15.07 18.72 23.41 28.50 33.19 37.03 40.31 43.21 46.14 48.59	Same remarks as for curve 1.
4	88-G(D)	335	DeWitt, K.J. and Thodos, G.	0.7570	100.4	0.0447 0.0930 0.2145 0.3416 0.4436 0.5173 0.5731 0.6152 0.6483 0.6788 0.7022	18.24 19.22 23.67 30.30 37.55 44.47 50.95 56.59 61.49 66.25 70.13	Same remarks as for curve 1.
5	88-G(D)	335	DeWitt, K.J. and Thodos, G.	0.5360	100.3	0.0363 0.0770 0.1653 0.2520 0.3280 0.3898 0.4368 0.4720 0.5020 0.5279 0.5518	17. 38 18. 25 21. 48 25. 80 31. 02 36. 27 41. 23 45. 68 49. 66 53. 35 56. 74	Same remarks as for curve 1.
	88-G(D)	335	DeWitt, K.J. and Thodos, G.	0.2450	100.5	0.0263 0.0547 0.1139 0.1697 0.2198 0.2599 0.2944 0.3217 0.3462 9.3665 0.3833		Same remarks as for curve 1.
7	88- G (D)	335	DeWitt, K.J. and Thodos, G.	0.7570 _]	50.7	0.0409 0.0789 0.1686 0.2586 0.3424 0.4127 0.4715 0.5188 0.5582 0.5926 0.6219	20. 27 20. 97 23. 77 27. 77 32. 25 37. 04 41. 90 46. 59 51. 12 55. 60 59. 64	Same remarks as for curve 1.

TABLE 88-G(D)E. EXPERIMENTAL VISCOSITY DATA AS A FUNCTION OF DENSITY FOR GASEOUS CARBON DIOXIDE-METHANE MIXTURES (continued)

Cur.	Fig. No.	Ref.	Author(s)	Mole Fraction of CO ₂	Temp.	Density (g cm ⁻³)	Viscosity (N s m ⁻² x 10 ⁻⁶)	Remarks
8	88-G(D)	335	DeWitt, K.J. and Thodos, G.	0.5360	149.6	0.0317 0.0646 0.1331 0.2014 0.2646 0.3200 0.3653 0.4027 0.4370 0.4643 0.4900	19. 25 19. 88 22. 05 25. 11 28. 52 32. 20 35. 82 39. 38 43. 14 46. 55 49. 93	Same remarks as for curve 1.
9	88-C(D)	335	DeWitt, K.J. and Thodos, G.	0.2450	150, 2	0.0227 0.0467 0.0946 0.1402 0.1926 0.2200 0.2512 0.2789 0.3020 0.3234 0.3417	17.39 17.95 19.64 21.73 24.08 26.65 29.26 31.96 34.54 36.97	Same remarks as for curve 1.
10	88~G(D)	335	DeWitt, K.J. and Thodos, G.	0.7570	200.4	0.0328 0.0700 0.1425 0.2140 0.2828 0.3465 0.3993 0.4432 0.4830 0.5199 0.5508	22. 10 22. 70 24. 74 27. 61 30. 81 34. 38 37. 92 41. 37 44. 94 48. 59 52. 10	Same remarks as for curve 1.
11	88~G(D)	335	DeWitt, K.J. and Thodos, G.	0.5360	200.6	0.0273 0.0555 0.1114 0.1691 0.2228 0.2728 0.3144 0.3501 0.3845 0.4149	21.01 21.51 23.15 25.39 28.03 30.81 33.57 36.37 39.35 42.43	Same remarks as for curve 1.
12	88-G(D)	335	DeWitt, K.J. and Thodos, G.	0.2450	199.6	0.0197 0.0410 0.0813 0.1200 0.1573 0.1905 0.2202 0.2461 0.2692 0.2898 0.3079	18. 92 19. 46 20. 69 22. 37 24. 21 26. 08 28. 23 30. 36 32. 52 34. 70 36. 70	Same remarks as for curve 1.
13	88- G (D)	329	Kestin, J. and Yata, J.	0,8565	303.2	0.04465 0.02570 0.00822 0.00170	15.308 15.088 14.957 14.920	CO_2 : 99.8 pure, CH_4 : 99.99 pure; oscillating disk viscometer; error \pm 0.1% and precision \pm 0.05%.
14	88-G(D)	329	Kestin, J. and Yata, J.	0.6624	303.2	0.03712 0.02164 0.00705 0.00146	14.866 14.649 14.507 14.466	Same remarks as for curve 13.
15	88-G(D)	329	Kes'in, J. and Yata, J.	0.4806	303.2	0.03115 0.01823 0.00598 0.00124	14.282 14.072 13.925 13.881	Same remarks as for curve 13.
16	88-G(D)	329	Kestin, J. and Yata, J.	0.3257	303, 2	0,02612 0,01544 0,00509 0,00106	13, 628 13, 434 13, 281 13, 237	Same remarks as for curve 13,

TABLE 88-G(D)E. EXPERIMENTAL VISCOSITY DATA AS A FUNCTION OF DENSITY FOR GASEOUS CARBON DIOXIDE-METHANE MIXTURES

Cur. No.	Fig. No.	Ref. No.	Author(s)	Mole Fraction of CO ₂	Temp.	Density (g cm ⁻³)	Viscosity (N s m ⁻² x 10 ⁻⁶)	Remarks
17	88-G(D)	329	Kestin, J. and Yata, J.	0.0000	303.2	0.01506 0.01262 0.009971 0.006518 0.003302 0.003294 0.003248 0.000733 0.000718 0.000669	11.318 11.322 11.276 11.268	Same remarks as for curve 13.
18	88-G(D)	329	Kestin, J. and Yata, J.	1.0000	303.2	0.04178 0.02882 0.00906 0.00185	15.449 15.326 15.194 15.169	Same remarks as for curve 13.
19	88-G(D)	329	Kestin, J. and Yata, J.	0.8565	293.2	0.04705 0.02665 0.00852 0.00176	14.819 14.585 14.469 14.433	Same remarks as for curve 13.
20	88-G(D)	329	Kestin, J. and Yata, J.	0.6624	293.2	0.03918 0.02246 0.00727 0.00149	14.406 14.177 14.036 14.003	Same remarks as for curve 13.
21	88- G(D)	329	Kestin, J. and Yata, J.	0.4806	293.2	0.03256 0.01890 0.00619 0.00128	13.851 13.636 13.484 13.448	Same remarks as for curve 13.
22	88-G(D)	329	Kestin, J. and Yata, J.	0.3257	293.2	0.02477 0.01605 0.00529 0.00110	13.183 13.026 12.873 12.826	Same remarks as for curve 13.
23	88-G(D)	329	Kestin, J. and Yata, J.	0.0000	293.2	0.01761 0.01384 0.01030 0.006809 0.003381 0.000701	11.321 11.217 11.137 11.054 10.986 10.936	Same remarks as for curve 13.
24	88-G(D)	329	Kestin, J. and Yata, J.	1.0000	293.2	0.04393 0.03017 0.00941 0.00192	14.939 14.815 14.693 14.674	Same remarks as for curve 13.

TABLE 88-G(D)S. SMOOTHED VISCORITY VALUES AS A FUNCTION OF DENSITY FOR GASEOUS CARBON DIOXIDE-METHANE MIXTURES

			Mole Fraction of	Carbon Dioxide		
Density (g cm ⁻³)	0.0000 (293.2 K) [Ref. 329]	0.3257 (293.2 K) [Ref. 329]	0.4806 (293.2 K) [Ref. 329]	0.6624 (293.2 K) (Ref. 329)	0,8565 (293.2 K) [Ref. 329]	1.0000 (293.2 K) [Ref. 329]
0.0025	10,970	12.840	13.460	14.010		14.678
0.0050	11,012	12.870	13.470	14.020	14.450	14.680
0.0075	11.060	12.900	13.505	14.034		14.690
0.0100	11,112	12.930	13.530	14.050	14.478	14,700
0.0125	11.172	12.968				
0.0150	11,240	13,002	13.586	14.094	14.505	14.725
0.0175	11,320	13, 046				
0.0200		13,090	13.650	14.140	14.535	14.752
0.0225		13, 132				
0.0250		13, 180	13.720	14.205	14.572	14.280
0,0300			13.810	14.280	14.620	14.812
0.0325			13.850			
0.0350				14.350	14.670	14.853
0.0375				14.397		
0.0400					14.730	14.900
0.0425						14.923
0.0450					14.800	

_	Mole Fraction of Carbon Dioxide												
Density (g cm ⁻³)	0,0000 (303,2 K) [Ref. 329]	0.3257 (303,2 K) [Ref. 329]	0.4806 (303.2 K) [Ref. 329]	0.6624 (303.2 K) [Ref. 329]	0.8565 (303.2 K) [Ref. 329]	1,0000 (303.2 K) [Ref. 329]							
0.0020	11.294												
0.0025		13, 252	13.890	14.476	14.925	15.170							
0.0040	11.330												
0.0050	11.350	13,282	13.910	14.490	14.938	15.180							
0.0075		13,318	13.935	14.508									
0.0080	11.420												
0.0100	11.460	13,350	13.962	14,530	14.967	15.190							
0.0120	11.508												
0.0125		13,385	13.992										
0.0140	11,560												
0.0150	11.589	13,421	14.025	14,570	14.998	15.228							
0.0175		13,461	14.060										
0.0200		13,502	14.099	14.622	15.034	15.258							
0.0225		13,549											
0.0250		13.599	14.172	14.690	15.075	15.290							
0.0300			14.260	14,760	15.128	15.330							
0,0350				14.830	15.180	15.375							
0.0375				14.865									
0,0400					15,243	15.420							
0.0425						15.450							
0.0450					15,310								

TABLE 88-G(D)S. SMOOTHED VISCOSITY VALUES AS A FUNCTION OF DENSITY FOR GASEOUS CARBON DIOXIDE-METHANE MIXTURES (continued)

_			Mole Fraction of	Carbon Dioxide		
Density (g cm ⁻³)	0.7570 (323.3 K) [Ref , 335]	0.2450 (323.5 K) [Ref. 335]	0.5360 (323.5 K) [Ref. 335]	0.5360 (373.5 K) [Ref. 335]	0,7570 (373.6 K) [Ref, 335]	0,2450 (373,7 K) [Ref. 335]
0.020						15.67
0.050		14.60	15.70	17.60	18.32	16.40
0.100	17.39	16.48	17.08	18.95	19.45	18.06
0.120						18.95
0.150		19.00	18.85	20.80	21.00	20.50
0.175		20, 50				
0.200	20.60	22.18	21.00	23.00	22.90	23,70
0. 250		26.15	23,70	25.70	25.25	27.65
0.300	25.10	31.04	27,00	28.95	27.78	32. 5
0.330						36,00
0.350		38, 10	30, 90	32.80		38,60
0.400	31.55	43.85	35,46	37.40	34.20	
0.420		47.00			-	
0.450		,	40,90	42.85		
0.500	40.50		47.40	49.30	42.70	
0.550			54,70	56.40		
0.600	52.50		62,50		54.50	
0.700	67.50				69.50	
0.750	76,50				•	
0.800	87.50					

D	Mole Fraction of Carbon Dioxide										
Density (g cm ⁻³)	0.5360 (422.8 K)	0.2450 (423.4 K)	0.7570 (423.9 K)	0.2450 (472.8 K)	0.7570 (473.6 K)	0,5360 (473,8 K)					
	[Ref. 335]	[Ref. 335]	[Ref. 335]	[Ref. 335]	[Ref. 335]	[Ref. 335]					
0.020		17.20									
0.040		17.74									
0,050	19.60	18.04	20.40		22,34	21.50					
0,100	20.09	19.90	21.53		24.41	22.78					
0, 150	22.82	22.26			25.00	24.60					
0,200	25.03	26.70	24.89	19.00	27.00	26,80					
0, 250	28.08	30.60	27.22		29.28	29.50					
0, 280		33.70									
0,300	30.09	35.90	29.70		31.70	32,50					
0.320		38.10									
0,350	34.58				34.60	36,30					
0.400	39.10		36.02	19.45	37.95	40.08					
0.420						42.90					
0,440						45.02					
0.450	44.70				42.00						
0,500			44.48	19.70	46.60						
0.550			50.00		51.82						
0.600			56.50								
0.800				20.06							
1,000				20.14							
1.200				20,24							
1.400				22.33							
1.500				23.80							
1.600				24.30							
1.800				25.84							
2.000				26.70							
2.300				28.95							
2,500				30.60							
2.800				33.70							
3,000				35.90							

FIGURE 88-G(D). VISCOSITY DATA AS A FUNCTION OF DENSITY FOR GASEOUS CARBON DIOXIDE-METHANE MIXTURES

· ___

3

FIGURE 88-G(D). VISCOSITY DATA AS A FUNCTION OF DENSITY FOR GASEOUS CARBON DIOXIDE-METHANE MIXTURES (continued)

TABLE 89-G(C)E. EXPERIMENTAL VISCOSITY DATA AS A FUNCTION OF COMPOSITION FOR GASEOUS CARBON DIOXIDE-NITROGEN MIXTURES

Cur. No.	Fig. No.	Ref. No.	Author(s)	Temp. (K)	Pressure (atm)	Mole Fraction of CO ₂	Viscosity (N s m ⁻² x 10 ⁻⁶)	Remarks
1	89-G(C)	337	Gururaja, G.J.,	300.7		1.000	14, 990	Oscillating disk viscometer, cali-
			Tirunarayanan, M.A.,	297.0		0.800	15,270	brated with nitrogen; estimated
			and Ramchandran, A.	297.9		0.750	15.690	accuracy 1.0%; L ₁ = 0.389%, L ₂ =
				297.2		0.580	16.100	0.564% , $L_3 = 1.216\%$.
				296.6		0.326	16,720	·
				297.2		0.277	16, 920	
				297.0		0.226	17.010	
				298.2		0.000	17.796	

TABLE 89-G(C)S. SMOOTHED VISCOSITY VALUES AS A FUNCTION OF COMPOSITION FOR GASEOUS CARBON DIOXIDE-NITROGEN MIXTURES

Mole Fraction of CO ₂	(297, 2 K) [Ref. 337
0.00	17,80
0,05	17.63
0,10	17.46
0.15	17.30
0.20	17.13
0.25	16.97
0.30	16.81
0.35	16.65
0.40	16.50
0.45	16.35
0.50	16.21
0.55	16.03
0.60	15.95
0.65	15.82
0.70	15.70
0.75	15.58
0.80	15.46
0.85	15.34
0.90	15.22
0.95	15.10
1.00	15.00

FIGURE 89-G(C). VISCOSITY DATA AS A FUNCTION OF COMPOSITION FOR GASEOUS CARBON DIOXIDE-NITROGEN MIXTURES

TABLE 89-G(D)E. EXPERIMENTAL VISCOSITY DATA AS A FUNCTION OF DENSITY FOR GASEOUS CARBON DIOXIDE-NITROGEN MIXTURES

Cur. No.		Ref. No.	Author(s)	Mole Fraction of CO ₂	Temp.	Density (g cm ⁻³)	Viscosity (N s m ⁻² x 10 ⁻⁶)	Remarks
1	89-G(D)	336	Kestin, J. and Leidenfrost, W.	0.9044	293.2	0.04244 0.03499 0.02786 0.02094 0.01435 0.007940 0.001773	15.290 15.181 15.095 15.041 14.993 14.960 14.937	CO ₂ : 99.695 pure, N ₂ : 99.999 pure; oscillating disk viscometer; uncertainties; mixture composition ± 1%, viscosity ± 0.05%.
2	89-G(D)	336	Kestin, J. and Leidenfrost, W.	0.7870	293.2	0.03966 0.03284 1.02622 0.01979 0.01358 0.007561 0.001659	15.697 15.596 15.534 15.467 15.424 15.378 15.350	Same remarks as for curve 1.
3	89-G(D)	336	Kestin, J. and Leidenfrost, W.	0.6568	293.2	0.03681 0.03062 0.02455 0.01860 0.01278 0.007111	16.130 16.046 15.969 15.897 15.841 15.764 15.712	Same remarks as for curve 1.
4	89-G(D)	336	Kestin, J. and Leidenfrost, W.	0.5054	293.2	0.03383 0.02827 0.02270 0.01728 0.01190 0.006680 0.001510	16.623 16.543 16.465 16.392 16.302 16.243 16.184	Same remarks as for curve 1.
5	89-G(D)	336	Kestin, J. and Leidenfrost, W.	0.3752	293.2	0.03141 0.02624 0.02115 0.01614 0.01115 0.006251 0.001426	17.016 16.948 16.883 16.825 16.777 16.729 16.696	Same remarks as for curve 1.
6	89-G(D)	336	Kestin, J. and Leidenfrost, W.	0.2333	293.2	0.02898 0.01958 0.01038 0.001336	17.425 17.314 17.226 17.211	Same remarks as for curve 1.
7	89-G(D)	336	Kestin, J. and Leidenfrost, W.	0.1060	293.2	0.02674 0.02248 0.01819 0.01394 0.009681 0.005451 0.001249	17.708 17.662 17.638 17.582 17.535 17.496 17.440	Same remarks as for curve 1.
8	89-G(D)	326	Kestin, J., Kobayashi, Y., and Wood, R.T.	1.0000	293.2	0.05252 0.04810 0.04183 0.04167 0.03568 0.02973 0.02403 0.01942 0.01425 0.009412 0.005584 0.001908	15.071 15.019 14.937 14.946 14.874 14.821 14.772 14.752 14.716 14.680 14.680 14.673	CO ₂ : 99.8 pure, N ₂ : 99.999 pure; oscillating disk viscometer; uncertainties: mixture composition $\pm0.002\%$ viscosity $\pm0.1\%$, viscosity ratio $\pm0.04\%$.
9	89-G(D)	326	Kestin, J., et al.	0.8131	293.2	0.04933 0.02714 0.008714 0.001757	15.768 15.471 15.313 15.278	Same remarks as for curve 8.
10	89-G(D)	326	Kestin, J., et al.	0.6882	293.2	0.03997 0.02490 0.008152 0.001638	16.077 15.888 15.727 15.681	Same remarks as for curve 8.
11	89-G(D)	326	Kestin, J., et al.	0.5057	293.2	0.03766 0.02316 0.007567 0.001526	16.728 16.543 16.313 16.264	Same remarks as for curve 8.

TABLE 89-G(D)E. EXPERIMENTAL VISCOSITY DATA AS A FUNCTION OF DENSITY FOR GASEOUS CARBON DIOXIDE-NITROGEN MIXTURES (continued)

Cur. No.	Fig.	Ref. No.	Author(s)	Mole Fraction of CO ₂	Temp.	Density (g cm ⁻³)	Viscosity (N s m ⁻² x 10 ⁻⁶)	Remarks
12	89-G(D)	326	Kestin, J., Kobayashi, Y., and Wood, R.T.	0.3101	293.2	0.03480 0.02088 0.006891 0.001392	17.300 17.085 16.891 16.825	Same remarks as for curve 8.
13	89~G(D)	326	Kestin, J., et al.	0.1607	293.2	0.01473 0.006411 0.001272	17.380 17.266 17.213	Same remarks as for curve 8.
14	89~G(D)	326	Kestin, J., et al.	0.0738	293.2	0.03050 0.01844 0.006614 0.001279		Same remarks as for curve 8.
15	89-G(D)	326	Kestin, J., et al.	1.0000	304.2	0.05079 0.04342 0.03933 0.03331 0.02486 0.01854 0.01380 0.009012 0.005331 0.001832	15,223	Same remarks as for curve 8.
16	89-G(D)	326	Kestin, J., et al.	0.8131	304.2	0.04466 0.02591 0.008352 0.001691	16.275 16.033 15.874 15.826	Same remarks as for curve 8.
17	89-G(D)	326	Kestin, J., et al.	0.3101	304.2	0.03311 0.02009 0.006568 0.001344	17.820 17.633 17.423 17.360	Same remarks as for curve 8.
18	89-G(D)	326	Kestin, J., et al.	0.0738	304.2	0.02997 0.01760 0.005870 0.001201		Same remarks as for curve 8.
19	89~G(D)	326	Kestin, J., et al.	0.0000	304.2	0.02852 0.01681 0.005617 0.001153		Same remarks as for curve 8.

TABLE 89-G(D)S. SMOOTHED VISCOSITY VALUES AS A FUNCTION OF DENSITY FOR GASEOUS CARBON DIOXIDE-NITROGEN MIXTURES

	Mole Fraction of Carbon Dioxide								
Density (g cm ⁻³)	0.0738 (293.2 K) [Ref. 326]	0, 1060 (293, 2 K) [Ref. 336]	0.1607 (293.2 K) [Ref. 326]	0,2333 (293,2 K) [Ref. 336]	0.3101 (293.2 K) [Ref. 326]	0,3752 (293.2 K) [Ref. 336]	0.5054 (293,2 K) [Ref. 336]		
0.0020			17.222						
0.0025	17.440	17.460	- · ·	17.215	16.840	16.708	16.192		
0.0040			17.240						
0.0050 0.0060	17.470	17.491	17.250 17.260	17.210	16.870	16.722	16. 22 1		
0.0075	17.500	17.520		17.213		16.740	16. 252		
0.0080			17.285						
0.0100	17.532	17.546	17.311	17,225	16.930	16.760	16.286		
0.0120			17.340						
0.0125		17.570		17.242					
0.0140			17.372						
0.0150	17.608	17.600	17.390	17.260	16.990	16.812	16.351		
0.0200	17.670	17,644		17.318	17.070	16.870	16.420		
0.0250	17.748	17.682		17.375	17.150	16.930	16.490		
0,0275		17.710		17.408					
0.0300	17.820			17.437	17.230	16,990	16.560		
0.0325	17.860					17.022			
0.0350					17.310		16.630		

	Mole Fraction of Carbon Dioxide								
Density (g cm ⁻³)	0.5057 (293.2 K) [Ref. 326]	0.6568 (293.2 K) [Ref. 336]	0.6882 (293.2 K) [Ref. 326]	0.7870 (293.2 K) [Ref. 336]	0.8131 (293.2 K) [Ref. 326]	0.9044 (293.2 K) [Ref. 336]	1.0000 (293.2 K) [Ref. 326]		
0.0025	16.280	15.726	15,692	15,355		14.938			
0.0050	16,309	15.749	15.710	15.365	15, 296	14.950	14,682		
0.0075	16.338	15.773	15.728						
0.0100	16.362	15.800	15.746	15.380	15,324	14.972	14.701		
0.0150	16.423	15.858	15.790	15.390	15.360	15.000	14.725		
0.0200	16.485	15.918	15.835	15,430	15,400	15.033	14.755		
0.0250	16.550	15.975	15.884	15.700	15.450	15.072	14.790		
0.0300	16.618	16.040	15,949	15.520	15.502	15,120	14.821		
0.0350	16.898	16.108	16.011	15.570	15.564	15.182	14.868		
0.0375	16.725	16.140							
0.0400			16.078	15.630	15.628	15.258	14.920		
0.0425						15, 296			
0.0450					15.699		14.968		
0.0500					15.770		15.040		

ELECTRICAL TO A ...

.

The second second

TABLE 89-G(D)S. SMOOTHED VISCOSITY VALUES AS A FUNCTION OF DENSITY FOR GASEOUS CARBON DIOXIDE-NITROGEN MIXTURES (continued)

	Mole Fraction of Carbon Dioxide							
Density (g cm ⁻³)	0,0000 (304.2 K) [Ref. 326]	0,0738 (304,2 K) [Ref. 326]	0.3101 (304.2 K) [Ref. 326]	0.8131 (304.2 K) [Ref. 326]	1,0000 (304,2 K) [Ref. 326			
0.0025	18.078	17.965	17.370					
0.0050	18.110	17.992	17.391	15.852	15.220			
0.0075	18,139							
0.0100	18.170	18.060	17.466	15.892	15.242			
0.0125		18.092						
0.0150	18.232	18.130	17.548	15.938	15.275			
0.0200	18.310	18,190	17.620	15.980	15.315			
0.0225		18,225						
0.0250	18,260	18.260	17.699	16.029	15.355			
0.0275			17.732					
0.0300	18.348	18.340	17.774	16.087	15.399			
0.0325			17.812					
0.0350				16.149	15.446			
0.0400				16,212	15,502			
0.0450			•	16.280	15.562			
0.0500					15.627			

FIGURE 89-G(D). VISCOSITY DATA AS A FUNCTION OF DENSITY FOR GASEOUS CARBON DIOXIDE-NITROGEN MIXTURES

.

7

TABLE 90-G(C)E. EXPERIMENTAL VISCOSITY DATA AS A FUNCTION OF COMPOSITION FOR GASEOUS CARBON DIOXIDE-NITROUS OXIDE MIXTURES

Cur. No.	Fig. No.	Ref. No.	Author(s)	Temp.	Pressure (atm)	Mole Fraction of CO ₂	Viscosity (N s m ⁻² x 10 ⁻⁶)	Remarks			
1	90-G(C)	C(C) 234	C) 234	Trautz, M. and	300		1.0000	14.88	CO ₂ : 99.966 pure, N ₂ O: 1.3 parts		
			Kurz, F.			0.5976	14.94	per 1000; capillary method, d -			
						0.3967	14.95	0.018 cm ; $L_1 = 0.023\%$, $L_2 = 0.041\%$			
						0.1903	14.90	$L_3 = 0.074\%$			
						0.1087	14.95				
						0.0000	14.93				
2	90-G(C)	234	Trautz, M. and	400		1.0000	19.93	Same remarks as for curve 1 except			
			Kurz, F,	Kurz, F. 0.5976 19.50	19.50	$L_1 = 0.103\%$, $L_2 = 0.148\%$, $L_3 =$					
						0.3967	19.50	0.308%.			
				0.8003	19.48						
						0.1903	19.41				
						0.1087	19.45				
						0.0000	19.44				
3	90-G(C)	234	Trautz, M. and	500		1.0000	23.55	Same remarks as for curve 1 except			
		Kurz. F. 0.8003 2	23.57	$L_1 = 0.051\%$, $L_2 = 0.114\%$, $L_3 =$							
						0.5976	23.65	0.296%.			
						0.3967	23.65				
									0.1903	23.58	
				0.1087	23.58						
						0.0000	23.53				
4	90-G(C)	234	Trautz, M. and	550		1.0000	25.55	Same remarks as for curve 1 except			
	•	Kurz, F.			0.8003	25.55	$L_1 = 0.206\%$, $L_2 = 0.259\%$, $L_3 =$				
						0.5976	25.62	0.353%.			
						0.3967	25.64				
						0.1903	25.51				
						0.1087	25.55				
						0.0000	25.65				

TABLE 90-G(C)S. SMOOTHED VISCOSITY VALUES AS A FUNCTION OF COMPOSITION FOR GASEOUS CARBON DIOXIDE-NITROUS OXIDE MIXTURES

Mole Fraction of CO ₂	300, 0 K [Ref. 234]	400, 0 K [Ref. 234]	500.0 K [Ref. 234]	550,0 K [Ref. 234]
0.00	14.93	19,44	23.53	25,65
0.05	14.94	19,45	23.55	25.64
0.10	14.94	19.46	23.56	25,63
0.15	14.94	19.46	23.58	25,62
0,20	14.94	19.47	23.59	25.60
0.25	14.94	19.48	23.61	25.58
0.30	14.94	19.47	23.62	25.57
0.35	14.94	19.46	23.64	25.56
0.40	14.94	19.46	23.66	25.55
0.45	14.94	19.46	23.66	25.54
0.50	14.95	19.46	23.70	25.54
0.55	14.95	19,46	23.70	25.53
0.60	14.95	19.46	23.66	25.53
0.65	15.95	19.46	23.66	25, 53
0.70	14.94	19.46	23.66	25.53
0.75	14.94	19.46	23.65	25.53
0.80	14.92	19.45	23.64	25.53
0.85	14.92	19.45	23.62	25.54
0.90	14.91	19.44	23.60	25.54
0.95	14.90	19.43	23.58	25.54
1.00	14.88	19.43	23.55	25,55

FIGURE 90-G(C). VISCOSITY DATA AS A FUNCTION OF COMPOSITION FOR GASEOUS CARBON DIOXIDE-NITROUS OXIDE MIXTURES

e de la composition della comp

-

...

TABLE 91-G(C)E. EXPERIMENTAL VISCOSITY DATA AS A FUNCTION OF COMPOSITION FOR GASEOUS CARBON DIOXIDE-OXYGEN MIXTURES

Cur. No.	Fig. No.	Ref. No.	Author(s)	Temp.	Pressure (atm)	Mole Fraction of CO ₂	Viscosity (N s m ⁻² x 10 ⁻⁶)	Remarks
1	91-G(C)	337	Gururaja, G.J., Tirumarayanan, M.A., and Ramchandran, A.	300.7 297.6 297.6 298.2 298.2 298.2 298.2 297.4 302.6	0.966	1.000 0.917 0.800 0.710 0.560 0.339 0.306 0.195 0.000	14.990 15.420 15.950 16.600 17.710 18.450 18.600 18.950 20.800	Oscillating disk viscometer, relative measurements; accuracy about 1.0%; $L_1 = 0.911\%$, $L_2 = 1.320\%$, $L_3 = 2.714\%$.

TABLE 91-G(C)S. SMOOTHED VISCOSITY VALUES AS A FUNCTION OF COMPOSITION FOR GASEOUS CARBON DIOXIDE-OXYGEN MIXTURES

Mole Fraction	300 K
of CO ₂	[Ref. 337]
0.00	20.80
0.05	20.44
0.10	20.09
0.15	19.74
0.20	19,41
0.25	19.08
0.30	18.76
0.35	18.45
0.40	18, 15
0.45	17,86
0.50	17,68
0.55	17,30
0.60	17.02
0.65	16.75
0.70	16.50
0.75	16.23
0.80	15,98
0.85	15.73
0.90	15.48
0.95	15.23
1,00	14.90

FIGURE 91-G(C). VISCOSITY DATA AS A FUNCTION OF COMPOSITION FOR GASEOUS CARBON DIOXIDE-OXYGEN MIXTURES

TABLE 92-G(C)E. EXPERIMENTAL VISCOSITY DATA AS A FUNCTION OF COMPOSITION FOR GASEOUS CARBON DIOXIDE-PROPANE MIXTURES

Cur. No.	Fig. No.	Ref. No.	Author (s)	Temp.	Pressure (atm)	Mole Fraction of C ₃ H ₈	Viscosity (N s m ⁻² x 10 ⁻⁶)	Remarks
1	92-G(C)	234	Trautz, M. and	300		1,0000	8,17	C ₃ H ₈ : 100 pure, CO ₂ : 99.966 pure;
_	,		Kurz, F.			0.8106	9.26	capillary method, d = 0.018 cm;
			,			0.5975	10.58	$L_1 = 0.027\%$, $L_2 = 0.051\%$, $L_3 =$
						0.4224	11.74	0.122%.
						0.2117	13.26	
						0.0000	14.93	
2	92-G(C)	234	Trautz, M, and	400		1,0000	10.70	Same remarks as for curve 1 except
_			Kurz, F.			0.8106	12.13	$L_1 = 0.063^{\sigma_0}$, $L_2 = 0.096^{\sigma_0}$, $L_3 =$
			,			0.5975	13.83	0.174%.
						0.4224	15.33	
						0.2117	17.30	
						0.0000	19.44	
3	92-G(C)	234	Trautz, M. and	500		1,0000	13.08	Same remarks as for curve 1 except
	,		Kurz, F.			0.8106	14.61	$L_1 = 0.014\%$, $L_2 = 0.027\%$, $L_3 =$
			•			0.5975	16.70	0.060%.
						0.4224	18.56	
						0.2117	20.93	
						0.0000	23.53	
4	92-G(C)	234	Trautz, M. and	550		1.0000	14.22	Same remarks as for curve 1 except
	,		Kurz, F.			0.8106	16.01	$L_1 = 0.007\%$, $L_2 = 0.018\%$, $L_3 =$
			• • •			0.5975	18.15	0.044%.
						0.4224	20.10	
						0,2117	22.67	
						0,0000	25.56	

TABLE 92-G(C)S. SMOOTHED VISCOSITY VALUES AS A FUNCTION OF COMPOSITION FOR GASEOUS CARBON DIOXIDE-PROPANE MIXTURES

Mole Fraction of C ₃ H ₈	300.0 K [Ref. 234]	400.0 K [Ref. 234]	500.0 K [Ref. 234]	550,0 K Ref. 234
O1 C3118	[161, 204]		[101, 201]	THEI. 204
0.00	14.93	19.44	23.54	25.56
0.05	14.52	18.89	22.90	24.81
0.10	14.11	18,38	22.28	24.12
0.15	13,72	17.88	21.67	23.46
0.20	13.34	17.38	21.07	22.81
0, 25	12.98	16.9i	20,48	22.19
0.30	12.62	16.42	19.91	21.58
0.35	12.26	15.98	19.35	20.98
0.40	11.91	15.53	18.80	20.36
0.45	11.56	15 09	18.28	19.80
0.50	11.22	14.66	17.74	19.24
0.55	10,89	14.23	17.21	18.68
0.60	10.57	13.80	16.64	18.14
0.65	10.25	13.39	16.08	17.62
0.70	9.94	13.00	15.68	17.12
0.75	9.63	12.61	15.20	16.62
0.80	9.33	12.22	14.83	16.13
0.85	9.04	11.84	14.29	15.64
0.90	8.75	11.46	13.87	15.16
0.95	8.47	11.09	13.47	14.70
1.00	8.18	10.72	13.08	14.22

FIGURE 92-G(C). VISCOSITY DATA AS A FUNCTION OF COMPOSITION FOR GASEOUS CARBON DIOXIDE-PROPANE MIXTURES

.. مراجع در درسیو در د

TABLE 93-G(C)E. EXPERIMENTAL VISCOSITY DATA AS A FUNCTION OF COMPOSITION FOR GASEOUS CARBON MONOXIDE-ETHYLENE MIXTURES

Cur. No.	Fig.	Ref. No.	Author(s)	Temp.	Pressure (atm)	Mole Fraction of C ₂ H ₄	Viscosity (N s m ⁻² x 10 ⁻⁶)	Remarks
1	93-G(C)	227	Trautz, M. and Melster, A.	300		0.0000 0.2632 0.4354 0.8062 1.0000	17.76 15.53 14.02 11.35 10.33	Capillary method, $r = 0.2019$ mm; $L_1 = 0.346\%$, $L_2 = 0.561\%$, $L_3 = 1.041\%$.
2	93-G(C)	227	Trautz, M. and Melster, A.	400		0.0000 0.2632 0.4354 0.8062 1.0000	21.83 19.43 17.63 14.60 13.42	Same remarks as for curve 1 excep $L_1=0.191\%,\ L_2=0.327\%,\ L_3=0.674\%.$
3	93-G(C)	227	Trautz, M. and Melster, A.	500		0.0000 0.2632 0.4354 0.8062 1.0000	25.48 22.79 20.98 17.60 16.22	Same remarks as for curve 1 except $L_1 = 0.081\%$, $L_2 = 0.144\%$, $L_3 = 0.308\%$.
4	93-G(C)	227	Trautz, M. and Meister, A.	550		0.0000 0.2632 0.4354 0.8062 1.0000	27.14 24.33 22.40 19.00 17.53	Same remarks as for curve 1 excep $L_1=0.127\%,\ L_2=0.210\%,\ L_3=0.413\%.$

TABLE 93-G(C)S. SMOOTHED VISCOSITY VALUES AS A FUNCTION OF COMPOSITION FOR GASEOUS CARBON MONOXIDE-ETHYLENE MIXTURES

Mole Fraction of C ₂ H ₄	300.0 K [Ref. 227]	400.0 K [Ref. 227]	500.0 K [Ref. 227]	550.0 K [Ref. 227]
0.00	17.76	21.83	25.48	27.14
0.05	17.28	21.34	24.97	26.58
0.10	16.80	20,85	24.44	26.00
0.15	16.35	20.38	23,91	25,47
0.20	15.91	19.90	23.40	24.90
0,25	15.48	19.41	22.96	24.38
0.30	15.08	18.94	22.35	23.82
0.35	14,69	18.45	21.83	22.80
0.40	14, 29	18,00	21.35	22.30
0.45	13.92	17.53	20.85	21.80
0,50	13.51	17.09	20.38	21.80
0.55	13.18	16.65	19.91	21.30
0.60	12.80	16.20	19.45	20.86
0.65	12.46	15.80	18.99	20.46
0,70	12.12	15.40	18.51	19.92
0.75	11.80	15.02	18,07	19.52
0.80	11.48	14.66	17.65	19.08
0.85	11.17	14.32	17.28	18.66
0,90	10.87	14.00	16,90	18.28
0.95	10.80	13.70	16.55	17.90
1.00	10.33	13.42	16,22	17.53

FIGURE 93-G(C). VISCOSITY DATA AS A FUNCTION OF COMPOSITION FOR GASEOUS CARBON MONOXIDE-ETHYLENE MIXTURES

TABLE 94-G(C)E. EXPERIMENTAL VISCOSITY DATA AS A FUNCTION OF COMPOSITION FOR GASEOUS CARBON MONOXIDE-HYDROGEN MIXTURES

Cur. No.	Fig. No.	Ref. No.	Author(s)	Temp.	Pressure (atm)	Mole Fraction of CO	Viscosity (N s $m^{-2} \times 10^{-6}$)	Remarks
1	94-G(C)	327	Van Lierde, J.	293.3		0,000	8.84	Oscillating disk viscometer; L ₁ =
						0.119		0.070% , $L_2 = 0.106\%$, $L_3 = 0.225\%$
						0.191	13.28	•
						0.274	14.46	
						0.386	15.62	
						0.494	16.30	
						0.613	16.86	
						1.000	17.68	

TABLE 94-C(C)S. SMOOTHED VISCOSITY VALUES AS A FUNCTION OF COMPOSITION FOR GASEOUS CARBON MONOXIDE-HYDROGEN MIXTURES

Mole Fraction	293.3 K		
of CO	{Ref. 327		
0,00	8.84		
0,05	10.42		
0.10	11.66		
0, 15	12,64		
0.20	13.46		
0.25	14.16		
0.30	14.78		
0.35	15.28		
0.40	15.70		
0.45	16.06		
0,50	16.36		
0.55	16.61		
0.60	16.82		
0.65	17.00		
0.70	17.15		
0.75	17.28		
0.80	17,39		
0.85	17.48		
0.90	17.56		
0.95	17.63		
1.00	17.68		

FIGURE 94-G(C). VISCOSITY DATA AS A FUNCTION OF COMPOSITION FOR GASEOUS CARBON MONOXIDE-HYDROGEN MIXTURES

...

.

.

TABLE 95-L(T)E. EXPERIMENTAL VISCOSITY DATA AS A FUNCTION OF TEMPERATURE FOR LIQUID CARBON MONOXIDE-NITROGEN MIXTURES

Cur. No.	Fig. No.	Ref. No.	Author(s)	Temp. (K)	Pressure	Mole Fraction of N ₂	Viscosity (N s m ⁻² x 10 ⁻⁶)	Remarks
1	95-L(C)	344	Gerf, S. F. and Galkov, G. I.	73. 2 75. 2 77. 8 82. 8 90. 1 99. 6 111. 6 129. 6		0.000	224.0 203.0 186.0 165.0 146.0 116.0 100.0 66.0	Mixture analysis ±0,2%; oscillating cylinder viscometer; n accuracy ±3%.
2	95-L(C)	344	Gerf, S.F. and Galkov, G.I.	76.4 82.0 90.1 100.8 111.6		0. 252	183. 0 151. 0 132. 0 109. 0 89. 0	Same remarks as for curve 1.
3	95-L(C)	344	Gerf, S.F. and Galkov, G.I.	77. 2 83. 0 90. 1 100. 0 111. 6		0.453	171.0 147.0 127.0 108.0 86.0	Same remarks as for curve 1.
4	95-L(C)	344	Gerf, S. F. and Galkov, G. I.	81.0 90.1 111.6		0.687	153.0 123.0 84.0	Same remarks as for curve 1.

TABLE 95-L(T)S. SMOOTHED VISCOSITY VALUES AS A FUNCTION OF TEMPERATURE FOR LIQUID CARBON MONOXIDE-NITROGEN MIXTURES

l'emp.	Mole Fraction of Nitrogen								
(K)	0,000 [Ref. 344]	0.252 [Ref. 344]	0.453 [Ref. 344]	0.687 [Ref. 344					
75	203								
80	178	162	15C						
85	160	145	140	137					
90	145.5	132	128	123					
95	132.5	121	117	112.5					
100	121	111	107.5	103					
105	111	101	98	95					
110	101	92	89	87					
115	92								
120	83								
125	75								
130	67								

FIGURE 95-L(T), VISCOSITY DATA AS A FUNCTION OF TEMPERATURE FOR LIQUID CARBON MONOXIDE-NITROGEN MIXTURES

TABLE 95-G(C)E. EXPERIMENTAL VISCOSITY DATA AS A FUNCTION OF COMPOSITION FOR GASEOUS CARBON MONOXIDE-NITROGEN MIXTURES

Cur. No.	Fig.	Ref. No.	Author(s)	Temp. (K)	Pressure	Mole Fraction of N ₂	Viscosity (N s m ⁻² x 10 ⁻⁶)	Remarks
<u> </u>	95-G(C)	227	Trautz, M. and	300		1.0000	17. 81	Capillary method, r = 0.2019 mm;
-			Melster, A.			0.8154	17.82	$L_1 = 0.080\%$, $L_2 = 0.103\%$, $L_3 =$
			•			0.6030	17. 81	0.169%.
						0.3432	17.75	
						0.1629	17.74	
						0.0000	17.76	
2	95-G(C)	227	Trautz, M. and	400		1.0000	21.90	Same remarks as for curve 1 except
_	(-,		Melster, A.			0.8154	21.86	$L_1 \approx 0.069\%$, $L_2 = 0.125\%$, $L_3 =$
			•			0.6030	21.83	0.275%,
						0,3432	21.91	•
						0.1629	21.84	
						0.0000	21.83	
3	95-G(C)	227	Trautz, M. and	500		1,0000	25, 60	Same remarks as for curve 1 except
	, ,		Melster, A.			0,8154	25.60	$L_1 = 0.054\%$, $L_2 = 0.080\%$, $L_3 =$
			•			0,6030	25. 58	0.157%.
						0.3432	25. 49	
						0, 1629	25. 51	
						0.0000	25, 48	
4	95-G(C)	227	Trautz, M. and	550		1,0000	27, 27	Same remarks as for curve 1 except
-	(- /		Melster, A.			0.8154	27, 21	$L_1 = 0.079\%$, $L_2 = 0.100\%$, $L_3 =$
			•			0.6030	27.19	0.147%.
						0.3432	27. 22	•
						0.1629	27. 19	
						0,0000	27.14	

Table 95-G(c)s. $\begin{array}{l} \text{SMOOTHED VISCOSITY VALUES AS A FUNCTION OF COMPOSITION FOR GASEOUS} \\ \text{CARBON MONOXIDE-NITROGEN MIXTURES} \end{array}$

Mole Fraction of N ₂	300 K [Ref. 227]	400 K [Ref. 227]	500 K [Ref. 227]	550 K (Ref. 227)
0.00	17. 76	21. 83	25. 48	27, 14
0.05	17.76	21.84	25.50	27.15
0.10	17. 76	21.84	25.50	27.15
0.15	17.76	21.84	25. 51	27.15
0.20	17.76	21.84	25. 52	27. 16
0.25	17. 76	21.85	25. 52	27.16
0.30	17.76	21.85	25.53	27. 16
0, 35	17.76	21.85	25.53	27.16
0.40	17.76	21.85	25. 54	27.17
0.45	17.77	21.86	25. 54	27. 18
0.50	17.77	21.86	25. 54	27.18
0.55	17.78	21.86	25.55	27. 19
0, 60	17.78	21.86	25.55	27. 20
0.65	17.78	21.86	25. 56	27.21
0.70	17. 79	21.87	25. 56	27.22
0.75	17.79	21.88	25. 56	27.23
0.80	17, 79	21.88	25. 57	27. 24
0, 85	17.80	21.88	25. 58	27. 24
0.90	17, 80	21.88	25. 58	27. 25
0.95	17.80	21.89	25.59	27. 26
1.00	17. 81	21.90	25.60	27. 27

FIGURE 95-G(C). VISCOSITY DATA AS A FUNCTION OF COMPOSITION FOR GASEOUS CARBON MONOXIDE-NITROGEN MIXTURES

TABLE 96-G(C)E. EXPERIMENTAL VISCOSITY DATA AS A FUNCTION OF COMPOSITION FOR GASEOUS CARBON MONOXIDE-OXYGEN MIXTURES

Cur. No.	Fig. No.	Ref. No.	Author(s)	Temp. (K)	Pressure (atm)	Mole Fraction of O ₂	Viscosity (N s m ⁻² x 10 ⁻⁶)	Remarks
1	96-G(C)	227	Trautz, M. and Melster, A.	300		0.0000 0.2337 0.4201 0.7733 1.0000	17.76 18.41 19.00 19.98 20.57	Capillary method, $r = 0.2019$ mm; $L_1 = 0.045\%$, $L_2 = 0.077\%$, $L_3 = 0.158\%$.
3	96-G(C)	227	Trautz, M. and Melster, A.	400		0.0000 0.2337 0.4201 0.7733 1.0000	21. 83 22. 68 23. 43 24. 82 25. 68	Same remarks as for curve 1 except $L_1=0.065\%,\ L_2=0.103\%,\ L_3=0.167\%.$
. 3	96-G(C)	227	Trautz, M. and Melster, A.	500		0.0000 0.2337 0.4201 0.7733 1.0000	25, 48 26, 50 27, 41 29, 08 30, 17	Same remarks as for curve 1 except $L_1=0.036\%,\ L_2=0.058\%,\ L_3=0.110\%.$

TABLE 96-G(C)S. SMOOTHED VISCOSITY VALUES AS A FUNCTION OF COMPOSITION FOR GASEOUS CARBON MONOXIDE-OXYGEN MEXTURES

Mole Fraction of O ₂	300 K (Ref. 227)	400 K [Ref. 227]	500 K Ref. 227
0,00	17.76	21.83	25, 48
0.05	17.90	22.01	25, 69
0.10	18.05	22. 20	25.90
0.15	18.19	22.40	26. 12
0.13	18.33	22.58	26. 34
0.20	16.33	22.30	26, 34
0, 25	18.48	22. 78	26. 58
0,30	18,62	22.96	26. 81
0,35	18, 76	23, 16	27, 05
0,40	18. 91	23.34	27.28
0,45	19.06	23.54	27.52
0, 50	19. 21	23. 72	27.76
0.55	19.35	23. 92	28, 00
0,60	19, 50	24. 12	28, 24
0, 65	19.64	24.30	28, 47
0.70	19.78	24.50	28.71
0.75	19, 92	24, 69	28.95
0.80	20.07	24.88	29.20
0.85	20. 19	25.08	29.44
0.90	20.32	25, 28	29.68
0.95	20.45	25.47	29. 92
1,00	20, 57	25, 68	30.17

FIGURE 96-G(C). VISCOSITY DATA AS A FUNCTION OF COMPOSITION FOR GASEOUS CARBON MONOXIDE-OXYGEN MIXTURES

TABLE 97-L(C)E. EXPERIMENTAL VISCOSITY DATA AS A FUNCTION OF COMPOSITION FOR LIQUID CARBON TETRACHLORIDE-OCTAMETHYLCYCLOTETRASILOXANE MIXTURES

Cur. No.	Fig.	Ref. No.		Author(s)	Temp. (K)	Pressure (atm)	Mole Fraction of [OSi(CH ₃) ₂] ₄	Viscosity (N s $m^{-2} \times 10^{-6}$)	Remarks
1	97-L(C)	360	Marsh,	K.N.	291. 2		0, 0000	1001.0	Ostwald viscometer, relative mea-
							0.1780	1256.0	surements; $L_1 = 0.497\%$, $L_2 = 0.809\%$
							0, 3227	1448.0	$L_3 = 1.783\%$.
							0.5718	1798.0	-
							0.7258	2036.0	
							0.8618	2268.0	
							0.9815	2488.0	
							1.0000	2520.0	
2	97~L(C)	360	Marsh,	K.N.	298. 2		0.0000	901.0	Same remarks as for curve 1 except
							0.1089	1044.0	$L_1 = 0.331\%$, $L_2 = 0.501\%$, $L_3 =$
							0.1965	1140.0	1.359%.
							0, 2890	1245.0	
							0.4288	1407.0	
							0.5841	1595.0	
							0.6590	1694.0	
							0.8443	1950. 0	
							0.9264	2073.0	
							0.9773	2147.0	
	•						1.0000	2190.0	
3	97-L(C)	360	Marsh,	K.N.	308.2		0.0000	781.0	Same remarks as for curve 1 except
							0.1756	964.0	$L_1 = 0.316\%$, $L_2 = 0.169\%$, $L_3 =$
							0.3239	1101.0	0.942%.
							0,5732	1339.0	
							0.7290	1493.0	
							0.8636	1646.0	
							0.9817	1786.0	
							1.0000	1806.0	
4	97-L(C)	360	Marsh,	K.N.	318.2		0.0000	686.6	Same remarks as for curve 1 except
	, ,		-				0.1779	844.0	$L_1 = 0.433\%$, $L_2 = 0.699\%$, $L_3 =$
							0.3249	956.0	1. 687%.
							0.5816	1148.0	• •
							0.7307	1270.0	
							0.8652	1388.0	
							0.9821	1498.0	
							1.0000	1514.0	

TABLE 97-L(C)S. SMOOTHED VISCOSITY VALUES AS A FUNCTION OF COMPOSITION FOR LIQUID CARBON TETRACHLORIDE-OCTAMETHYLCYCLOTETRASILOXANE MIXTURES

Mole Fraction of [OSi(CH ₃) ₂] ₄	291,2 K [Ref. 360]	298.2 K [Ref. 360]	308, 2 K [Ref. 360]	318.2 K (Ref. 360
0.00	1001.0	901.0	781.0	686.6
0.05	1068.0	963.2	834.0	726.5
0.10	1131.5	1020.0	880.0	768.0
0.15	1196.0	1078.8	930.0	808.0
0.20	1261.5	1135. 0	979. 0	828.0
0. 25	1330.0	1194.0	1036, 0	888.0
0.30	1400.0	1252, 0	1076, 0	928, 0
0.35	1479.0	1312.5	1124.0	968, 5
0.40	1540, 0	1371.5	1172.5	1008, 0
0.45	1612.0	1432.5	1222, 0	1048.0
0.50	1690.0	1496.0	1274. 0	1088.0
0.55	1764.0	1559.5	1322.5	1129.0
0.60	1844.0	1622.0	1372.0	1169.0
0.65	1924. 5	1688.0	1422.0	1211.0
0.70	2004.8	1757.0	1475, 0	1252.0
0.75	2088. 0	1821.5	1526, 0	1293, 0
0.80	2172.0	1891.0	1580, 0	1334.0
0.85	2260.0	1964.0	1638. 0	1379.0
0.90	2347.5	2039.0	1692.0	1424.0
0.95	2436.0	2112.5	1751, 0	1470.0
1.00	2520.0	2190.0	1806.0	1514.0

FIGURE 97-L(C). VISCOSITY DATA AS A FUNCTION OF COMPOSITION FOR LIQUID CARBON TETRACHLORIDE - OCTAMETHYLCYCLOTETRASILOXANE MIXTURES

TABLE 98-G(D)E. EXPERIMENTAL VISCOSITY DATA AS A FUNCTION OF DENSITY FOR GASEOUS CARBON TETRAFLUORIDE-METHANE MIXTURES

Cur. No.	Fig.	Ref. No.	Author(s)	Mole Fraction of CF ₄	Temp.	Density (g cm ⁻³)	Viscosity (N s m ⁻² x 10 ⁻⁶)	Remarks
1	98-G(D)	338	DeWitt, K.J. and Thodos, G.	1,0000	323.3	0.1259 0.2803 0.4312 0.5743 0.6891 0.7870 0.8572 0.9162 0.9628 1.0042 1.0394 1.0702	20.57 23.93 28.49 34.14 40.08 46.12 51.30 56.24 60.68 64.95 68.95 72.68	Unsteady state transpiration type capillary viscometer; purity of the gases and accuracy of the data not specified.
2	98-G(D)	538	DeWitt, K.J. and Thodos, G.	0.7330	323.5	0.0977 0.2040 0.3140 0.4252 0.5194 0.5975 0.6609 0.7126 0.7552 0.7929 0.8281 0.8568	19.57 22.01 25.13 29.29 33.63 38.02 42.21 46.13 49.61 53.01 56.61 60.60	Same remarks as for curve 1.
3	98-G(D)	338	DeWitt, K.J. and Thodos, G.	0,5390	323.4	0.0765 0.1553 0.2457 0.3290 0.4003 0.4693 0.5255 <i>0.5714</i> 0.6083 0.6432 0.6731 0.6991	18.66 20.45 23.15 26.32 29.55 33.33 36.96 40.27 43.12 46.10 49.11 51.96	Same remarks as for curve 1,
4	98-G(D)	338	DeWitt, K.J. and Thodos, G.	0.2500	323.3	0.0463 0.0956 0.1481 0.1993 0.2459 0.2903 0.3291 0.3626 0.3892 0.4139 0.4363 0.4566	16. 35 17. 79 19. 49 21. 63 23. 98 26. 61 29. 29 31. 95 34. 32 36. 51 38. 73 41. 09	Same remarks as for curve 1.
5	98-G(D)	338	DeWitt, K.J. and Thodos, G.	1,0000	373.4	0.1003 0.2125 0.3239 0.4339 0.5289 0.6161 0.6878 0.7516 0.8040 0.8510 0.8898 0.9298	22.55 24.71 27.52 30.96 34.77 38.69 42.47 46.26 49.81 53.29 56.46 59.74	Same remarks as for curve 1,
6	98-G(D)	338	DeWitt, K.J. and Thodos, G.	0.7330	373.8	0.0808 0.1611 0.2504 0.3261 0.4038 0.4737 0.5336 0.5854 0.6315 0.6699 0.7065 0.7380	21.74 23.18 25.48 27.85 30.65 33.70 36.68 39.59 42.39 45.04 47.82 50.43	Same remarks as for curve 1.

TABLE 98-G(D)E. EXPERIMENTAL VISCOSITY DATA AS A FUNCTION OF DENSITY FOR GASEOUS CARBON TETRAFLUORIDE-METHANE MIXTURES (continued)

Cur. No.	Fig. No.	Ref. No.	Author(s)	Mole Fraction of CF ₄	Temp. (K)	Density (g cm ⁻¹)	Viscosity (N s m ⁻² x 10 ⁻⁶)	Remarks
7	98-G(D)	338	DeWitt, K.J. and Thodos, G.	0,5390	373.9	0.0556 0.1275 0.1941 0.2598 0.3197 0.3749 0.4236 0.4682 0.5079 0.5435 0.5735 0.6018	20.50 21.98 23.75 25.88 28.09 30.55 32.97 35.39 37.89 40.37 42.65 45.00	Same remarks as for curve 1.
8	98-G(D)	338	DeWitt, K.J. and Thodos, G.	0.2500	373.5	0.0383 0.0793 0.1207 0.1586 0.1998 0.2326 0.2660 0.2964 0.3218 0.3466 0.3688 0.3900	18. 27 19. 14 20. 49 21. 87 23. 64 25. 25 27, 09 28. 99 30. 73 32. 62 34. 46 36. 39	Same remarks as for curve 1.
9	98-G(D)	338	DeWitt, K. J. and Thodos, G.	1,0000	422.9	0.0878 0.1782 0.2667 0.3520 0.4339 0.5096 0.5747 0.6323 0.6856 0.7331 0.7727 0.8141	24.43 26.12 28.20 30.55 33.36 36.20 39.00 41.74 44.61 47.37 49.92 52.77	Same remarks as for curve 1.
10	98-G(D)	338	DeWitt, K.J. and Thodos, G.	0.7330	422.3	0.0676 0.1359 0.2102 0.2706 0.3346 0.3949 0.4480 0.4974 0.5409 0.5768 0.6163 0.6505	23, 61 24, 77 26, 51 28, 20 30, 21 32, 43 34, 67 36, 95 39, 09 41, 30 43, 51 45, 78	Same remarks as for curve 1.
11	98-G(D)	339	DeWitt, K.J. and Thodos, G.	0.5390	422.3	0.0555 0.1105 0.1645 0.2169 0.2674 0.3142 0.3578 0.3984 0.4353 0.4680 0.4973 0.5254	22.66 23.58 24.97 26.50 28.13 29.93 31.78 33.62 35.52 37.41 39.24 41.12	Same remarks as for curve 1.
12	98-G(D)	338	DeWitt, K.J. and Thodos, G.	0.25 0 0	423.8	0.0301 0.0681 0.1028 0.1353 0.1676 0.1972 0.2255 0.2517 0.2760 0.2990 0.3211 0.3391	19. 94 20. 71 21. 74 22. 83 24. 07 25. 35 26. 71 28. 11 29. 52 30. 98 32. 51 33. 85	Same remarks as for curve 1.

TABLE 98-G(D)E. EXPERIMENTAL VISCOSITY DATA AS A FUNCTION OF DENSITY FOR GASEOUS CARBON TETRAFLUORIDE-METHANE MIXTURES (continued)

Cur. No.	Fig.	Ref. No.	Author(s)	Mole Fraction of CF ₄	Temp.	Density (g cm ⁻³)	Viscosity (N s m ⁻² x 10 ⁻⁴)	Remarks
13	98-G(D)	338	DeWitt, K.J. and Thodos, G.	1.0000	473.9	0.0775 0.1531 0.2310 0.3041 0.3736 0.4383 0.4964 0.5511 0.6007 0.6420 0.6830 0.7252	26.39 27.68 29.26 31.17 33.37 35.52 37.72 39.97 42.25 44.30 46.49 48.93	Same remarks as for curve 1.
14	98-G(D)	338	DeWitt, K.J. and Thodos, G.	0.7330	473.4	0.0597 0.1182 0.1814 0.2348 0.2369 0.3418 0.3901 0.4327 0.4733 0.5074 0.5451	25.50 26.55 27.73 29.11 30.67 32.39 34.19 35.92 37.63 39.27 41.25 42.99	Same remarks as for curve 1.
15	98-G(D)	338	DeWitt, K.J. and Thodos, G.	0,5390	474.1	0.0488 0.0965 0.1446 0.1878 0.2318 0.2725 0.3115 0.3482 0.3807 0.4129 0.4414	24, 44 25, 35 26, 28 27, 51 28, 69 30, 21 31, 68 33, 15 34, 63 36, 23 37, 76 39, 45	Same remarks as for curve 1.
16	98-G(D)	338	DeWitt, K.J. and Thodos, G.	0,2500	472.6	0.0296 0.0597 0.0890 0.1181 0.1457 0.1714 0.1964 0.2204 0.2425 0.2627 0.2830 0.3007	21.54 22.31 23.04 23.94 24.92 25.93 27.02 28.16 29.31 31.66 32.81	Same remarka as for curve 1.

TABLE 98-G(D)S. SMOOTHED VISCOSITY VALUES AS A FUNCTION OF DENSITY FOR GASEOUS CARBON TETRAFLUORIDE-METHANE MIXTURES

			Mole Fra	ction of Carbon	Tetrafluoride			
Density (g cm ⁻³)	0.2500 (323.3 K) [Ref. 338]	1.0000 (323.3 K) [Ref. 338]	0,5390 (323.4 K) [Ref. 338]	0.7330 (323.5 K) [Ref. 338]	1.0000 (373.4 K) [Ref. 338]	0,2500 (373.5 K) [Ref. 338]	0.7330 (373.8 K) [Ref. 338]	0.5390 (373.9 K) [Ref. 338]
0.050	16.43		18,10			18.55		20.40
0.100	17.90		19.13		22.60	19.90	22.09	21.35
0,150	19.62	22.08		19.64		21.55		
0.200	21.72	24.02	21.72	22.00	24.45	23.55	24.07	23.90
0.250	24.20					26.05	25.40	25.52
0.300	27.23	24,45	25,08	24.75	26.90	29.10	26.90	27.40
0.350	30,90					32.75		
0.400	35.23	27.42	29.42	28.26	29.88	37.50	30.44	31.70
0.450	40.44							
0.500		32.09	35.03	32.65	33.48		34.90	37.30
0.600		35.05	42,32	37.20	37.85		40.32	40.30
0.700		40.08	51,18	45.00	43.00		47.10	
0.750							51.47	
0.800		47.10		53, 80	49.28			
0.850				59.72				
0.900		54.75			57.13			
0.950		59.35						

			Mole Frac	tion of Carbon	Tetrafluoride	•		
Density	0.5390	0.7330	1.0000	0, 2500	0.2500	0,7330	1,0000	0.5390
(g cm ⁻³)	(422.3 K)	(422.3 K)	(422.9 K)	(423, 8 K)	(472.6 K)	(473.4 K)	(473.9 K)	(474.1 K)
	[Ref. 338]	[Ref. 338]	[Ref. 338]	[Ref. 338]	[Ref. 338]	[Ref. 338]	[Ref. 338]	[Ref. 338]
0,025				19,80	21.48			
0.050	22.58	23.48	23.92	20,32	22.05	25.38		24.43
0.075					22.66			
0.100	23,40	24.15	24.72	21.60	23.40	26,20	26.75	25.37
0.125					24.22			
0.150	24.30			23.30	25,10	27.14		26.50
0.175					26.08			
0,200	25,92	26.20	26,62	25.44	27.17	28.25	28.60	27.80
0.225				26.70	28.33			
0.250	28.00	27.58		28.00	29.65	29.55	29.70	29.39
0,275					31,10			
0.300	29.32	29,10	29.10	31.00	32.80	31.08	31.05	31.20
0.350				33.88		32.70		33, 25
0.400	33.70	32.65	32.08			34.53	34.20	35.58
0.450	35.77					36.58		38,24
0.500	39.38	37.00	35.80			38.87	37.80	
0.550						41.50		
0.600		42.48	40.20				42.17	
0.650		45.72	_					
0.700		-	45.25				47.50	
0.725							4× 92	
0.800			51.48					

FIGURE 98-G(D). VISCOSITY DATA AS A FUNCTION OF DENSITY FOR GASEOUS CARBON TETRAFLUORIDE-METHANE MIXTURES

TABLE 99-G(C)E. EXPERIMENTAL VISCOSITY DATA AS A FUNCTION OF COMPOSITION FOR GASEOUS CARBON TETRAFLUORIDE-SULFUR HEXAFLUORIDE MIXTURES

Cur. No.	Fig. No.	Ref. No.	Author(s)	Temp.	Pressure (mm Hg)	Mole Fraction of SF ₆	Viscosity (N s m ⁻² x 10 ⁻⁶)	Remarks
1	99-G(C)	339	Raw, C.J.G. and Tang, H.	303.1		1.000 0.743 0.509 0.246 0.000	15.90 15.99 16.15 16.43 17.67	SF_8 : 95 pure, CF_4 : 99 pure, gases further purified by vacuum distillation; transpiration type capillary flow constant volume gas viscometer, relative measurements; accuracy $\pm 1.0\%$; $L_1 = 0.152\%$, $L_2 = 0.260\%$, $L_3 = 0.560\%$.
2	99-G/ C)	339	Raw, C.J.G. and Tang, H.	313.1		1.000 0.743 0.509 0.246 0.000	16.36 16.46 16.59 16.89 18.17	Same remarks as for curve 1 except $L_1 = 0.187\%$, $L_2 = 0.304\%$, $L_3 = 0.576\%$.
3	99-G(C)	339	Raw, C.J.G. and Tang, H.	329.1		1,000 0.743 0.509 0.246 0.000	17.06 17.17 17.30 17.59 18.94	Same remarks as for curve 1 except $L_1 = 0.093\%$, $L_2 = 0.165\%$, $L_3 = 0.351\%$,
4	99-G(C)	339	Raw, C.J.G. and Tang, H.	342.0		1.000 0.743 0.509 0.246 0.000	17.59 17.71 17.89 18.16 19.57	Same remarks as for curve 1 except L_1 = 0.249%, L_2 = 0.420%, L_3 = 0.857%,

TABLE 99-G/C)S. SMOOTHED VISCOSITY VALUES AS A FUNCTION OF COMPOSITION FOR GASEOUS CARBON TETRAFLUORIDE-SULFUR HEXAFLUORIDE MIXTURES

Mole Fraction of SF ₆	303.1 K [Ref. 339]	313.1 K [Ref. 339]	329.1 K [Ref. 339]	342.0 K [Ref. 339
0.00	17.67	18.17	18.94	19.57
0.05	17.33	17.83	18.57	19, 16
0.10	17.05	17.54	18.25	18.81
0.15	16.80	17.27	17.98	18,54
0.20	16.60	17.05	17.76	18.32
0.25	16.43	16.85	17.58	18.15
0.30	16.31	16.75	17.44	18.02
0.35	16.23	16.66	17.35	17.92
0.40	16.16	16.59	17.27	17.84
0.45	16.11	16.54	17.22	17.79
0.50	16.07	16.50	17.19	17.74
0.55	16.03	16.47	17.16	17.73
0.60	16.01	16.45	17.15	17.69
0.65	16,00	16.43	17.13	17.67
0.70	15.98	16.41	17.12	17.66
0.75	15.96	16.46	17.11	17.64
0.80	15.95	16.39	17.10	17.63
0.85	15.93	16.38	17.09	17.62
0.90	15.92	16.37	17.07	17.61
0.95	15.91	16.36	17.07	17.60
1.00	15.90	16.36	17.06	17.59

FIGURE 99-G(C). VISCOSITY DATA AS A FUNCTION OF COMPOSITION FOR GASEOUS CARBON TETRAFLUORIDE-SULFUR HEXAFLUORIDE MIXTURES

Table 100-L(c)e. Experimental viscosity data as a function of composition for Liquid cyclohexane – $_{n}$ -hexane mixtures

Cur. No.	Fig. No.	Ref. No.	Author(s)	Temp. (K)	Pressure (atm)	Mole Fraction of C ₆ H ₁₄	Viscosity (N s m ⁻² x 10 ⁻⁶)	Remarks
1	100-L(C)	355	Ridgway, K. and Butler, P.A.	298.2		1.0000 0.8286 0.7258 0.5502 0.4127 0.2480 0.0966 0.0000	300.8 340.5 367.0 423.4 484.6 588.7 734.7 869.0	Cyclohexane: supplied by B. D. H. and n-Hexane by Phillips Petroleum Co.; Ostwald viscometer; precision 0.1% ; $L_1=0.000\%$, $L_2=0.000\%$. $L_3=0.000\%$.

TABLE 100-L(C)S. SMOOTHED VISCOSITY VALUES AS A FUNCTION OF COMPOSITION FOR LIQUID CYCLOHEXANE - n-HEXANE MIXTURES

Mole Fraction	298, 2 K
of C ₆ H ₁₄	[Ref. 355]
0.00	869.0
0.05	797.0
0.10	731.0
0.15	673.8
0.20	625,4
0.25	585.0
0.30	550.0
0.35	519.6
0.40	491.8
0.45	467.2
0.50	445.0
0.55	425.0
0.60	406.5
0.65	389.9
0.70	374.6
0.75	360.8
0.80	347.8
0.85	335.8
0.90	323.8
0.95	312.5
1.00	300,8

FIGURE 100 - L(C). VISCOSITY DATA AS A FUNCTION OF COMPOSITION FOR LIQUID CYCLOHEXANE - n-HEXANE MIXTURES

TABLE 101-L(D)E. EXPERIMENTAL VISCOSITY DATA AS A FUNCTION OF DENSITY FOR LIQUID n-DECANE-METHANE MIXTURES

Cur. No.	Fig.	Ref.	Author(s)	Mole Fraction of n-C ₁₀ H ₂₂	Temp. (K)	Density (g cm ⁻³)	Viscosity (N s m ⁻² x 10 ⁻⁶)	Remarks
1	101-L(D)	353	Lee, A. L., Gonzalez, M. H., and Eakin, B. E.	0. 700	311.0	0. 6838 0. 6874 0. 6911 0. 6943 0. 6975 0. 7501 0. 7031 0. 7052	544. 49 560. 71 578. 91 589. 28 611. 01 631. 55 659. 72 673. 01	n-Decane: 99 pure, methane: 99.6 pure, 0.1 nitrogen and remainder as ethane, propane, n-butane, and carbon dioxide.
2	101-L(D)	353	Lee, A.L., et al.	0. 500	311.0	0.6453 0.6483 0.6520 0.6560 0.6616	435.17 453.02 470.17 483.04 513.47	Same remarks as for curve 1.
3	101-L(D)	353	Lee, A. L., et al.	0, 300	311.0	0.5712 0.5808 0.5887	268. 34 279. 33 323. 59	Same remarks as for curve 1.
4	101-L(D)	353	Lee, A. L., et al.	0. 700	344.0	0.6556 0.6584 0.6616 0.6671 0.6719 0.6788 0.6855	369. 44 374. 32 380. 07 401. 88 418. 23 446. 48 479. 80	Same remarks as for curve 1.
5	101-L(D)	353	Lee, A.L., et al.	0, 500	344.0	0, 6240 0, 6296 0, 6353 0, 6420	330.75 342.60 356.86 378.83	Same remarks as for curve 1.
6	101-L(D)	353	Lee, A.L., et al.	0, 300	344.0	0.5384 0.5459 0.5575 0.5674	197. 75 213. 25 227. 54 231. 88	Same remarks as for curve 1.
7	101-L(D)	353	Lee, A. L., et al.	0. 700	378.0	0. 6258 0. 6289 0. 6313 0. 6339 0. 6368 0. 6388 0. 6420 0. 6459 0. 6492 0. 6535 0. 6579	281. 97 286. 14 290. 89 295. 95 304. 25 309. 01 316. 26 326. 56 338. 89 350. 18	Same remarks as for curve 1.
8	101-L(D)	353	Lee, A.L., et al.	0. 500	378.0	0. 5952 0. 6000 0. 6055 0. 6137	260.38 270.00 274.33 295.91	Same remarks as for curve 1.
9	101-L(D)	353	Lee, A. L., et al.	0.300	378.0	0, 5092 0, 5231 0, 5351	168. 48 182. 94 197. 12	Same remarks as for curve 1.
10	101-L(D)	353	Lee, A. L., et al.	0. 700	411.0	0, 5963 0, 6008 0, 6048 0, 6074 0, 6098 0, 6123 0, 6150 0, 6200 0, 6251	214, 84 221, 82 226, 50 231, 41 238, 69 241, 75 247, 33 256, 77 267, 69	Same remarks as for curve 1.
11	101-L(D)	353	Lee, A. L., et al.	0.500	411.0	0.5614 0.5682 0.5744 0.5802 0.5894	195. 13 204. 29 210. 69 218. 11 231. 79	Same remarks as for curve 1.
12	101-L(D)	353	Lee, A.L., et al.	0.300	411.0	0, 4691 0, 4790 0, 4960 0, 5098	129. 56 137. 54 149. 56 155. 43	Same remarks as for curve 1.
13	101-L(D)	353	Lee, A.L., et al.	0.500	444.0	0, 5119 0, 5193 0, 5346 0, 5426	141.16 144.95 152.64 159.70	Same remarks as for curve 1.

TABLE 101-L(D)S. SMOOTHED VISCOSITY VALUES AS A FUNCTION OF DENSITY FOR LIQUID n-DECANE-METHANE MIXTURES

	Mole Fraction of n-Decane											
Density (g cm ⁻³)	0.700 (311.0 K) [Ref. 353]	0.500 (311.0 K) [Ref. 353]	0.300 (311.0 K) [Ref. 353]	0.700 (344.0 K) [Ref. 353]	0.500 (344.0 K) [Ref. 353]	0, 300 (344, 0 K) {Ref. 353}	0.700 (378.0 K) [Ref. 353]					
0, 540						205. 5						
0.545						212.0						
0.550						219.0						
0. 555						226.5						
0.560												
0. 565												
0.570			264. 5									
0.575			276.0									
0. 580			288.5									
0.585			301.5									
0. 590			316.0									
0.625		•			331.5							
0.630					344.0		288.0					
0. 635					357.0		300.5					
0.640					371.5		314.0					
0.645		434.5					328.0					
0.650		456.5					342.5					
0.655		481.0		365.0			358.0					
0.660		506.5		381.0								
0.665				398.0								
0. 670				416.0								
0.675				435.5								
0.680				456.0								
0, 685	545.0			477.0								
0.690	572.5											
0. 695	599.5											
0.700	630.4											
0.705	664.0											

5 14		1	Mole Fraction	of n-Decane		
Density (g cm ⁻³)	0.500 (378, 0 K) [Ref. 353]	0.300 (378.0 K) [Ref. 353]	0.700 (411.0 K) [Ref. 353]	0.500 (411.0 K) [Ref. 353]	0.300 (411.0 K) [Ref. 353]	0.500 (444.0 K) [Ref. 353]
0.470				_	129.5	
0.475					132.5	
0.480					135.5	
0.485					139.0	
0. 490					142.5	
0. 495					146.5	
0. 500					150.5	
0.505					155.0	
0.510		169.0				140.0
0.515		173. 5				142,5
0. 520		178.5				145.0
0.525		184.5				148, 0
0.530		190.5				151.0
0, 535		197.0				154, 5
0.540						158, 0
0. 545						161.5
0.560				193. 5		
0. 565				199.0		
0. 570				205.0		
0. 575				211.0		
0. 580				217.5		
0. 585				224.5		
0. 590				232.0		
0. 595	259.5		212.0			
0.600	268.0		219.5			
0. 605	277.5		228. 5			
0.610	287.5		232.0			
0.615	298.0		246.0			
0. 620			256.0			
0. 625			266.5			

FIGURE 101-L(D). VISCOSITY DATA AS A FUNCTION OF DENSITY FOR LIQUID n-DECANE - METHANE MIXTURES

TABLE 102-C(C)E. EXPERIMENTAL VISCOSITY DATA AS A FUNCTION OF COMPOSITION FOR GASEOUS DEUTERIUM-HYDROGEN MIXTURES

Cur. No.	Fig. No.	Ref. No.	Author(s)	Temp. (K)	Pressure (mm Hg)	Mole Fraction of D ₂	$Viscosity (N s m^{-2} x 10^{-6})$	Remarks
1	102-G(C)	179	Rietveld, A.O., Van Itterbeek, A., and Velds, C.A.	14.4	4-11	0.000 0.269 0.504 0.760 1.000	0. 79 0. 85 0. 90 0. 94 1. 00	Hydrogen obtained from vapors over liquid hydrogen and then purified by condensation; oscillating disk viscometer; relative measurements; error: ±3% at low temperatures and ±2% at high temperatures; L ₁ = 0.000%, L ₂ = 0.000%.
2	102-G(C)	179	Rietveld, A.O., et al.	20. 4	4-11	0.000 0.334 0.677 1.000	1.08 1.19 1.29 1.37	Same remarks as for curve 1 except $L_1=0.000\%,\ L_2=0.000\%,\ L_3=0.000\%.$
3	102-G(C)	179	Rietveld, A.O., et al.	71.5	14-40	0.000 0.248 0.502 0.749 1.000	3. 24 3. 58 3. 90 4. 16 4. 44	Same remarks as for curve 1 except $L_1 = 0.208\%$, $L_2 = 0.330\%$, $L_3 = 0.562\%$.
4	102-G(C)	179	Rietveld, A.O., et al.	90.1	14-40	0.000 0.262 0.502 0.745 1.000	3. 86 4. 31 4. 68 5. 00 5. 33	Same remarks as for curve 1 except $L_1 = 0.114\%$, $L_2 = 0.184\%$, $L_3 = 0.339\%$.
5	102-G(C)	179	Rietveld, A.O., et al.	196.0	14-40	0.000 0.251 0.497 0.753 1.000	6.75 7.51 8.17 8.80 9.36	Same remarks as for curve 1 except $L_1 = 0.165\%$, $L_2 = 0.263\%$, $L_3 = 0.453\%$.
6	102-G(C)	179	Rietveld, A.O., et al.	229.0	14-40	0.000 0.248 0.505 0.755 1.000	7.57 8.38 9.15 9.78 10.43	Same remarks as for curve 1 except $L_1 = 0.063\%$, $L_2 = 0.102\%$, $L_3 = 0.194\%$.
7	102-G(C)	179	Rietveld, A.O., et al.	293.1	14-40	0.000 0.246 0.507 0.753 1.000	8.86 9.84 10.78 11.56 12.30	Same remarks as for curve 1 except $L_1 = 0.019\%$, $L_2 = 0.035\%$, $L_3 = 0.074\%$.

TABLE 102-G(C)S. SMOOTHED VISCOSITY VALUES AS A FUNCTION OF COMPOSITION FOR GASEOUS DEUTERIUM-HYDROGEN MIXTURES

Mole Fraction of D ₂	14.4 K [Ref. 179]	20.4 K [Ref. 179]	71.5 K [Ref. 179]	90, 1 K [Ref. 179]	196.0 K [Ref. 179]	229, 0 K [Ref. 179]	293.1 K [Ref. 179]
0.00	0.79	1.08	3,24	3, 86	6. 75	7.57	8, 86
0.05	0.80	1.10	3.31	3.96	6.90	7.74	9.08
0, 10	0, 82	1.12	3, 38	4.05	7.05	7. 90	9. 28
0.15	0.83	1.14	3, 43	4.14	7.20	8. 06	9. 44
0. 20	0.84	1.16	3, 50	4. 22	7.34	8. 22	9.68
0.25	0.85	1.18	3.56	4.31	7. 49	8, 37	9, 86
0. 30	0.86	1.19	3,63	4.38	7.64	8. 53	10.05
0. 35	0.87	1.20	3, 70	4.46	7.78	8, 69	10.23
0.40	0.88	1.22	3.87	4.54	7.92	8.84	10, 41
0.45	0.89	1.24	3.84	4.61	8.05	8. 99	10.58
0.50	0.90	1.24	3.90	4.68	8. 18	9, 24	10, 75
0.55	0.91	1.26	3, 96	4.75	8. 32	9, 28	10, 92
0. 60	0.92	1.27	4.01	4, 82	8. 44	9, 40	11.08
0.65	0.93	1.28	4. 07	4. 89	8, 52	9. 54	11, 25
0. 70	0.94	1.30	4. 14	4, 96	8. 70	9.64	11.41
0.75	0.95	1.31	4.18	5, 02	8. 83	9, 79	11.56
0.80	0,96	1.32	4. 24	5. 20	8. 95	9. 92	11.71
0.85	0.97	1.34	4, 29	5.16	9.06	10.04	11.86
0. 90	0.98	1.35	4.35	5. 22	9.18	10.28	12. 02
0. 95	1.00	1.36	4.40	5.28	9. 28	10.30	12.18
1.00	1.00	1.37	4, 44	5.33	9. 36	10, 43	12. 30

FIGURE 102-G(C). VISCOSITY DATA AS A FUNCTION OF COMPOSITION FOR GASEOUS DEUTERIUM-HYDROGEN MIXTURES

TABLE 103-G(C)E. EXPERIMENTAL VISCOSITY DATA AS A FUNCTION OF COMPOSITION FOR GASEOUS DEUTERIUM-HYDROGEN DEUTERIDE MIXTURES

Cur. No.	Fig. No.	Ref. No.	Author(s)	Temp. (K)	Pressure (mm Hg)	Mole Fraction of D ₂	Viscosity (N s m ⁻² x 10 ⁻⁶)	Remarks
1	103-G(C)	179	Rietveld, A.O.,	14.4	4-11	0.000	0. 91	D ₂ : purity not specified, HD: 95
			Van Itterbeek, A., and			0.261	0.94	purity, rest being H2 and D2; oscil-
			Velds, C.A.			0.497	0. 97	lating disk viscometer; error in
						0.716	0. 99	relative measurements ±3% at low
						1.000	1.00	temperatures and $\pm 2\%$ at high temperatures; $L_1 = 0.000\%$, $L_2 = 0.000\%$, $L_3 = 0.000\%$.
2	103-G(C)	179	Rietveld, A.O., et al.	20.4	4-11	0.000	1.27	Same remarks as for curve 1 except
	` '					0, 242	1.31	$L_1 = 0.000\%$, $L_2 = 0.000\%$, $L_3 =$
						0.503	1.34	0.000%.
						0.751	1.38	
						1.000	1.41	
3	103-G(C)	179	Rietveld, A.O., € al.	71.5	14-40	0.000	3. 93	Same remarks as for curve 1 except
						0.254	4.06	$L_1 = 0.000\%$, $L_2 = 0.000\%$, $L_3 =$
						0.507	4. 20	0.000%,
						0.755	4.34	
						1.000	4. 48	
4	103-G(C)	179	Rietveld, A.O., et al.	90.1	14-40	0.000	4.74	Same remarks as for curve 1 except
						0.238	4.90	$L_1 = 0.280\%$, $L_2 = 0.626\%$, $L_3 =$
						0.492	5. 07	1.400%.
						0.749	5. 25	
						1.000	5. 40	
5	103-G(C)	179	Rietveld, A.O., et al.	196.0	14-40	0.000	8. 22	Same remarks as for curve 1 except
						0.249	8. 52	$L_1 = 0.000\%$, $L_2 = 0.000\%$, $L_3 =$
						0.500	8. 83	0.000%.
						0.750	9. 12	
						1.000	9. 40	
6	103-G(C)	179	Rietveld, A.O., et al.	229.0	14-40	0.000	9. 10	Same remarks as for curve 1 except
						0.249	9. 4 6	$L_1 = 0.000\%$, $L_2 = 0.000\%$, $L_3 =$
						0.495	9. 80	0. 000%.
						0.755	10.16	
						1.000	10.48	
7	103-G(C)	179	Rietveld, A.O., et al.	293.1	14-40	0.000	10.75	Same remarks as for curve 1 except
						0.258	11. 17	$L_1 = 0.000\%$, $L_2 = 0.000\%$, $L_3 =$
						0.509	11, 60	0.000%.
						0.736	11.99	
						1,000	12, 40	

TABLE 103-G(C)S. SMOOTHED VISCOSITY VALUES AS A FUNCTION OF COMPOSITION FOR GASEOUS DEUTERIUM-HYDROGEN DEUTERIDE MIXTURES

Mole Fraction of D ₂	14.4 K [Ref. 179]	20, 4 K [Ref. 179]	71.5 K [Ref. 179]	90.1 K [Ref. 179]	196.0 K [Ref. 179]	229.0 K [Ref. 179]	293.1 K (Ref. 179
0,00	0, 91	1.27	3.93	4.74	8. 22	9. 10	10.75
0.05	0.92	1.28	3.96	4.78	8.28	9. 18	10, 82
0.10	0, 92	1.30	3,98	4, 82	8, 34	9. 26	10.90
0.15	0.92	1.30	4.00	4.86	8. 40	9. 33	10.98
0.20	0.92	1.30	4. 04	4.88	8.46	9.40	11.07
0. 25	0. 93	1.32	4.06	4.92	8.53	9. 48	11.18
0.30	0,94	1.32	4.10	4. 95	8.50	9. 55	11.24
0.35	0.95	1.32	4.12	4.98	8.65	9. 62	11.33
0.40	0.96	1.33	· 15	5. 01	8.72	9. 68	11.42
0.45	0,98	1.34	4.18	5. 04	8. 78	9. 75	11.50
0. 50	0.98	1.34	4.20	5.08	8.82	9.87	11.60
0. 55	0.98	1.35	4. 24	5.12	8.90	9. 90	11.68
0.60	0.99	1.36	4.26	5. 15	8.96	9. 96	11.77
0.65	1.00	1.37	4.29	5. 18	9. 02	10.04	11, 85
0 70	1.00	1.38	4. 32	5. 22	9.07	10.10	11.94
0.75	1.00	1.38	4.34	5. 25	9. 12	10.16	12, 02
0.80	1.00	1.39	4.37	5. 2 9	9.18	10. 22	12.10
0. 85	1.00	1.39	4.40	5. 32	9.24	10.29	12.18
0.90	1.00	1.40	4.43	5.35	9. 30	10.36	12.25
0. 95	1.00	1.40	4. 46	5.38	9. 35	10.42	12. 32
1.00	1,00	1.41	4, 48	5. 40	9. 40	10, 48	12. 40

FIGURE 103 - G(C). VISCOSITY DATA AS A FUNCTION OF COMPOSITION FOR GASEOUS DEUTERIUM - HYDROGEN DEUTERIDE MIXTURES

TABLE 104-L(T)E. EXPERIMENTAL VISCOSITY DATA AS A FUNCTION OF TEMPERATURE FOR LIQUID ETHANE-ETHYLENE MIXTURES

Cur. No.	Fig.	Ref. No.	Author(s)	Mole Fraction Pressu of C ₂ H ₆	re Temp. (K)	Viscosity (N s m ⁻² x 10 ⁻⁶)	Remarks
1	104-L(T)	70	Gerf, S.F. and	0.000	105.0	66.0	Gas purity 99.8%; capillary method
			Galkov, G.I.		105.3	65.2	accuracy ±1%.
					108.0	60.0	
					110. 4	55. 3	
					129.8	33.4	
					138. 4	28.2	
					148.8	23.1	
					156.8	19.7	
					168.2	10.4	
2	104-L(T)	70	Gerf, S.F. and	0.180	102.6	73.9	Same remarks as for curve 1.
			Galkov, G. I.		104.8	66.5	
			·		107.8	60.4	
					109.7	56.0	
					110.0	55.2	
					111.2	53.7	
					146.7	23.4	
					152. 7	21.1	
					157.4	19.6	
					160.8	18.5	
3	104-L(T)	70	Gerf, S. F. and	0.576	102.0	73.4	Same remarks as for curve 1.
_	(-,		Galkov, G.I.		104.8	65.4	
					107.8	59.4	
					109.7	55.7	
					111.2	54.1	
					145.0	25.3	
					154.3	21.6	
					156.7	20.9	
4	104-I.(T)	70	Gerf, S.F. and	1,000	101.2	87.8	Same remarks as for curve 1.
			Galkov, G.I.		103.3	78.7	
					105.7	72.9	
					108.0	67.5	
					111.1	63.4	
					111.4	61.5	
					149.5	27. 7	
					150, 3	27. 1	
					150.8	27.0	
					159.8	23.6	
					160.1	22.5	
					166.8	20.7	
					167.3	20.3	

TABLE 104-L(T)S. SMOOTHED VISCOSITY VALUES AS A FUNCTION OF TEMPERATURE FOR LIQUID ETHANE-ETHYLENE MIXTURES

	Mo			
Temp. (K)	0.000 [Ref. 70]	0.180 [Ref. 70]	0, 576 [Ref. 70]	1.000 [Ref. 70]
105	65.7	66. 1	64.6	74.8
110	55.7	54.7	55.7	64.5
120	42.8	47.5	43.2	49.5
130	33, 2	41.9	34.2	39. 6
140	27.1	33. 3	27.8	32, 6
150	22.5	26. 7	23.3	27, 3
160	18.5	22. 1	19.8	23. 1
170	14.8	18.8	16.8	19.4

FIGURE 104-L(T). VISCOSITY DATA AS A FUNCTION OF TEMPERATURE FOR LIQUID ETHANE - ETHYLENE MIXTURES

TABLE 105-G(C)E. EXPERIMENTAL VISCOSITY DATA AS A FUNCTION OF COMPOSITION FOR GASEOUS ETHANE-HYDROGEN MIXTURES

Cur. No.	Fig. No.	Ref. No.	Author(s)	Temp. Pressu (K)	e Mole Fraction of C ₂ H ₆	Viscosity (N s m ⁻² x 10 ⁻⁶)	Remarks
1	105-G(C)	229	Trautz, M. and Sorg, K.G.	293.0	1.0000 0.5500 0.1485 0.0000	9. 09 9. 87 9. 93 8. 76	Capillary method; precision $\pm 0.05\%$, $L_1 = 0.910\%$, $L_2 = 1.761\%$, $L_3 = 3.519\%$.
2	105-G(C)	229	Trautz, M. and Sorg, K.G.	373. 0	1.0000 0.5500 0.1485 0.0000	11. 42 12. 08 11. 89 10. 33	Same remarks as for curve 1 except $L_1 = 0.281\%$, $L_2 = 0.408\%$, $L_3 = 0.694\%$.
3	105-G(C)	229	Trautz, M. and Sorg, K.G.	473.0	1.0000 0.5500 0.1485 0.0000	14. 09 14. 67 14. 12 12. 13	Same remarks as for curve 1 except $L_1 = 0.603\%$, $L_2 = 1.105\%$, $L_3 = 2.200\%$.
4	105-G(C)	229	Trautz, M. and Sorg, K.G.	523. 0	1.0000 0.5500 0.1485 0.0000	15. 26 15. 83 15. 11 12. 96	Same remarks as for curve 1 except $L_1=0.235\%$, $L_2=0.469\%$, $L_3=0.939\%$.

TABLE 105-G(C)S. SMOOTHED VISCOSITY VALUES AS A FUNCTION OF COMPOSITION FOR GASEOUS ETHANE-HYDROGEN MIXTURES

Mole Fraction of C ₂ H ₈	293.0 K [Ref. 229]	373.0 K [Ref. 229]	473.0 K [Ref. 229]	523. 0 K [Ref. 229
0,00	8. 76	10.33	12.13	12.96
0.05	9.25	10.96	13.06	13.96
0.10	9.61	11.46	13. 70	14.64
0.15	9. 92	11.81	14, 12	15.12
0.20	10.09	12.04	14.34	15. 44
0. 25	10.20	12.18	14.66	15.65
0. 30	10.26	12.26	14.82	15.79
0.35	10.30	12.30	14.94	15.88
0.40	10.30	12.29	15.00	15.94
0.45	10.30	12. 25	15.04	15.98
0.50	10.28	12.20	15.04	15. 9 8
0.55	10, 23	12.14	15.00	15, 98
0.60	10.18	12.08	14.94	15.96
0.65	10.08	12.02	14.88	15. 92
0.70	9.96	11.96	14.82	15.86
0.75	9.85	11.90	14.72	15.78
0.80	9.72	11.83	14.62	15. 70
0, 85	9. 58	11.75	14.51	15.60
0.90	9.42	11.66	14.38	15.50
0. 95	9. 25	11.55	14.23	15.38
1.00	9.09	11.42	14.06	15, 26

FIGURE 105 - G(C). VISCOSITY DATA AS A FUNCTION OF COMPOSITION FOR GASEOUS ETHANE - HYDROGEN MIXTURES

TABLE 106-G(C)E. EXPERIMENTAL VISCOSITY DATA AS A FUNCTION OF COMPOSITION FOR GASEOUS ETHANE-METHANE MIXTURES

Cur. No.	Fig. No.	Ref. No.	Author(s)	Temp. (K)	Pressure	Mole Fraction of C ₂ H ₆	Viscosity (N s $m^{-2} \times 10^{-6}$)	Remarks
1	106-G(C)	229	Trautz, M. and	293.0		1.0000	9. 09	CH _i : I. G. Farben, 99.9 pure;
			Sorg, K.G.			0.8097	9.38	capillary method; precision ±0.05%
						0.5126	9. 86	$L_1 = 0.020\%, L_2 = 0.031\%, L_3 =$
						0.1884	10.46	0.055%.
						0.0000	10.87	
2	106-G(C)	229	Trautz, M. and	373.0		1.0000	11.42	Same remarks as for curve 1 except
			Sorg, K.G.			0.8097	11.74	$L_1 = 0.000\%$, $L_2 = 0.000\%$, $L_3 =$
						0.5126	12.26	0.000%
						0.1884	12.88	
						0.0000	13, 31	
3	106-G(C)	229	Trautz, M. and	473.0		1,0000	14.09	Same remarks as for curve 1 except
•	200 -(-)		Sorg, K.G.			0.8097	14, 42	$L_1 = 0.004_{00}^{\sigma}$, $L_2 = 0.009_{00}^{\sigma}$, $L_3 =$
						0.5126	14, 96	0, 020%.
						0.1884	15, 62	
						0.0000	16.03	
								S
4	106-G(C)	229	Trautz, M. and	523.0		1.0000	15. 26	Same remarks as for curve 1 except
			Sorg, K.G.			0.8097	15.60	$L_1 = 0.000\%$, $L_2 = 0.000\%$, $L_3 =$
						0.5126	16.14	0.000%.
						0.1884	16.82	
						0.0000	17.25	

TABLE 106-G(C)S. SMOOTHED VISCOSITY VALUES AS A FUNCTION OF COMPOSITION FOR GASEOUS ETHANE-METHANE MIXTURES

Mole Fraction of C ₂ H ₆	293.0 K [Ref. 229]	373, 0 K [Ref. 229]	473, 0 K [Ref. 229]	523.0 K [Ref. 229
0.00	10. 87	13, 31	16.03	17.25
0.05	10.76	13.18	15.92	17.13
0.10	10.64	13.07	15.81	17.02
0.15	10.54	12.96	15.70	16.90
0.20	10.44	12.86	15.60	16, 80
0.25	10.34	12. 75	15.48	16.68
0.30	10.24	12.65	15.38	16. 57
0.35	10.15	12.56	15.27	16.46
0.40	10.06	12.46	15.17	16. 36
0.45	9. 97	12, 36	15.08	16, 26
0. 50	9. 88	12.26	14.98	16.16
0.55	9.80	12.18	14.88	16.06
0.60	9.71	12, 10	14.80	15.96
0.65	9.63	12.00	14.70	15.88
0.70	9.55	11.92	14.61	15. 79
0.75	9.46	11.84	14. 52	15. 70
0.80	9.38	11. 75	14.43	15. 72
0.85	9. 31	11.63	14.34	15. 52
0.90	9.23	11,58	14, 26	15.44
0. 95	9.16	11. 50	14.17	15.35
1 00	0.00	15 42	14 00	15.26

FIGURE 106 - G(C). VISCOSITY DATA AS A FUNCTION OF COMPOSITION FOR GASEOUS ETHANE - METHANE MIXTURES

_ _

TABLE 107-G(C)E. EXPERIMENTAL VISCOSITY DATA AS A FUNCTION OF COMPOSITION FOR GASEOUS ETHANE-PROPANE MIXTURES

Cur. No.	Fig.	Ref. No.	Author(s)	Temp. (K)	Pressure	Mole Fraction of C ₃ H ₈	(N s m ⁻² x 10 ⁻⁶)	Remarks
1	107-G(E)	229	Trautz, M. and Sorg, K.G.	293.0		1.0000 0.8474 0.7437 0.5673 0.0000	8. 01 8. 15 8. 28 8. 41 9. 09	C_3H_6 : I. G. Farben, 99.9 pure; capillary method; precision $\pm 0.05\%$ $L_1=0.167\%$, $L_2=0.286\%$, $L_3=0.591\%$.
2	107-G(E)	229	Trautz, M. and Sorg, K.G.	373.0		1.0000 0.8474 0.7437 0.5673 0.0000	10. 08 10. 25 10. 39 10. 58 11. 42	Same remarks as for curve 1 except $L_1=0.039\%,\ L_2=0.086\%,\ L_3=0.193\%.$
3	106-G(E)	229	Trautz, M. and Sorg, K.G.	473.0		1.0000 0.8474 0.7437 0.5673 0.0000	12. 53 12. 72 12. 98 13. 13 14. 09	Same remarks as for curve 1 except $L_1 = 0.217\%$, $L_2 = 0.314\%$, $L_3 = 0.620\%$.
4	107-G(E)	229	Trautz, M. and Sorg, K.G.	523. 0		1.0000 0.8474 0.7437 0.5673 0.0000	13. 63 13. 82 14. 01 14. 25 15. 26	Same remarks as for curve 1 except $L_1=0.184\%$, $L_2=0.297\%$, $L_3=0.558\%$.

TABLE 107-G(C)S. SMOOTHED VISCOSITY VALUES AS A FUNCTION OF COMPOSITION FOR GASEOUS ETHANE-PROPANE MIXTURES

Mole Fraction of C ₃ H ₈	293.0 K [Ref. 229]	373.0 K [Ref. 229]	473.0 K [Ref. 229]	523.0 K {Ref. 229
0, 00	9, 09	11.42	14.09	15. 26
0.05	9, 03	11.32	14.00	15. 18
0.10	8.97	11.24	13.90	15. 10
0.15	8. 92	11.17	13.82	15.02
0.20	8,86	11.10	13.73	14.94
0. 25	8, 80	11.03	13.65	14. 86
0.30	8. 75	10.96	13.56	14.78
0.35	8, 70	10.89	13.49	14.70
0.40	8, 64	10.82	13.41	14.62
0.45	8, 58	10.78	13.33	14. 54
0.50	8, 53	10.68	13. 26	14.45
0.55	8, 48	10.62	13.18	14. 36
0.60	8. 42	10.25	13.11	14.26
0.65	8, 37	10.48	13.04	14.17
0.70	8. 32	10.42	12.96	14.08
0.75	8. 26	10.36	12.89	14.02
0.80	8, 22	10.30	12.82	13.94
0.85	8. 16	10. 24	12.74	13.86
0.90	8. 11	10.18	12.67	13.80
0.95	8.06	10.14	12,60	13, 72
1.00	8,01	10.08	12.53	13.63

FIGURE 107 - G(C). VISCOSITY DATA AS A FUNCTION OF COMPOSITION FOR GASEOUS ETHANE - PROPANE MIXTURES

TABLE 108-G(C)E. EXPERIMENTAL VISCOSITY DATA AS A FUNCTION OF COMPOSITION FOR GASEOUS ETHYLENE-HYDROGEN MIXTURES

Cur. No.	Fig. No.	Ref. No.	Author(s)	Temp. (K)	Pressure (atm)	Mole Fraction of C ₂ H ₆	Viscosity (N s m ⁻² x 10^{-6})	Remarks
1	108-G(C)	230	Trautz, M. and Stauf, F.W.	195.2		1.0000 0.8082 0.6444 0.5087 0.2501 0.0000	7. 18 7. 31 7. 54 7. 64 7. 72 6. 70	Capillary method; accuracy estimated at $<\pm4\%$ for pure gases; $L_1=0.167\%$, $L_2=0.312\%$, $L_3=0.706\%$.
2	108-G(C)	230	Trautz, M. and Stauf, F.W.	233.2		1.0000 0.8082 0.6444 0.5129 0.2501 0.1638 0.0000	8. 18 8. 39 8. 52 8. 62 8. 66 8. 62 7. 40	Same remarks as for curve 1 except $L_1=0.583\%,\ L_2=0.916\%,\ L_3=2.133\%.$
3	108-G(C)	230	Trautz, M. and Stauf, F.W.	272.2		1.0000 0.8082 0.6444 0.5129 0.2501 0.1638 0.0000	9. 43 9. 59 9. 85 9. 98 9. 96 9. 75 8. 30	Same remarks as for curve 1 except $L_1=0.273\%,\ L_2=0.449\%,\ L_3=1.083\%.$
4	108-G(C)	230	Trautz, M. and Stauf, F.W.	293.2		1.0000 0.8107 0.7033 0.5173 0.2160 0.0000	10. 12 10. 39 10. 53 10. 67 10. 60 8. 73	Same remarks as for curve 1 except $L_1=0.233\%,\ L_2=0.444\%,\ L_3=1.020\%.$
5	108-G(C)	230	Trautz, M. and Stauf, F.W.	328.2		1.0000 0.8707 0.7033 0.5173 0.2160 0.0000	11. 22 11. 54 11. 64 11. 73 11. 56 9. 43	Same remarks as for curve 1 except $L_1=0.375\%$, $L_2=0.573\%$, $L_3=1.157\%$.
6	108-G(Ç)	230	Trautz, M. and- Stauf, F.W.	373.2		1.0000 0.8107 0.7033 0.5173 0.2114 0.0000	12. 64 12. 91 12. 98 13. 11 12. 78 10. 30	Same remarks as for curve 1 except $L_1=0.142\%,\ L_2=0.293\%,\ L_3=0.702\%.$
7	108-G(C)	230	Trautz, M. and Stauf, F.W.	423.2		1.0000 0.8043 0.7201 0.5197 0.2114 0.0000	14. 08 14. 32 14. 41 14. 63 14. 09 11. 23	Same remarks as for curve 1 except $L_1=0.098\%$, $L_2=0.126\%$, $L_3=0.222\%$.
8	108-G(C)	230	Trautz, M. and Stauf, F.W.	473.2		1.0000 0.8043 0.7201 0.5197 0.2114 0.0000	15. 47 15. 68 15. 74 15. 88 15. 29 12. 11	Same romarks as for curve 1 except $L_1=0.032\%,\ L_2=0.058\%,\ L_3=0.127\%,$
9	108-G(C)	230	Trautz, M. and Stauf, F.W.	523.2		1.0000 0.8043 0.7201 0.5116 0.2114 0.0000	16. 81 16. 94 16. 99 17. 09 16. 27 12. 94	Same remarks as for curve 1 except $L_1 = 0.000\%$, $L_2 = 0.000\%$, $L_3 = 0.000\%$.

TABLE 108-G(C)S. SMOOTHED VISCOSITY VALUES AS A FUNCTION OF COMPOSITION FOR GASEOUS ETHYLENE-HYDROGEN MIXTURES

Mole Fraction of C ₂ H ₄	195.2 K [Ref. 230]	233.2 K [Ref. 230]	272, 2 K [Ref. 230]	293, 2 K (Ref. 230)	328. 2 K [Ref. 230]	373, 2 K [Ref. 230]	423, 2 K {Ref. 230}	473.2 K [Ref. 230]	523. 2 K [Ref. 230]
0,00	6.70	7.40	8, 30	8. 73	9. 43	10, 30	11, 23	12.11	12. 94
0.05	7.06	7, 82	9, 02	9, 52	10.28	11.38	12.76	13.42	14. 36
0.10	7. 32	8. 15	9. 44	10.02	10.84	12,04	13.41	14, 22	15, 22
0. 15	7. 51	8.38	9. 72	10.34	11.23	12.47	13.80	14.80	15. 79
0.20	7.64	8. 55	9, 89	10.56	11.50	12.76	14.06	15.22	16.20
0.25	7. 72	8, 66	9. 98	10.69	11.69	12, 94	14, 26	15, 51	16.50
0.30	7.76	8, 73	10.03	10.77	11.81	13,06	14.40	15.70	16.72
0.35	7. 76	8. 76	10.04	10, 80	11.86	13, 12	14.51	15. 82	16.89
0.40	7.74	8.76	10.04	10.82	11.88	13.15	14.57	15.88	17.00
0.45	7.70	8. 74	10.02	10.82	11.86	13.16	14.60	15.90	17.09
0,50	7.65	8.69	10.00	10. 80	11. 82	13.14	14.62	15.90	17.09
0.55	7, 60	8, 65	9. 96	10, 75	11.78	13.12	14.60	15.89	17.10
0,60	7.54	8.60	9. 92	10.70	11.72	13.09	14.58	15.87	17.08
0.65	7.51	8.56	9.88	10.63	11.68	13, 05	14. 53	15.83	17.10
0.70	7.46	8. 51	9, 82	10.56	11.63	13.01	14.47	15.78	17.00
0.75	7.42	8. 46	9, 76	10.48	11.57	12, 96	14. 41	15. 74	16.97
0.80	7.37	8.40	9.70	10.51	11.50	12.90	14.34	15.68	16.94
0.85	7. 33	8. 36	9. 64	10.33	11.44	12.84	14.28	15.63	16.90
0.90	7.29	8.31	9. 58	10.26	11.44	12.78	14, 22	15.58	16.88
0.95	7.24	8.25	9. 51	10.18	11.29	12.71	14.15	15.52	16.84
1.00	7.18	8.18	9.43	10, 12	11.22	12.64	14.08	15.47	16. 81

FIGURE 108-G(C). VISCOSITY DATA AS A FUNCTION OF COMPOSITION FOR GASEOUS ETHYLENE-HYDROGEN MIXTURES

TABLE 109-L(T)E. EXPERIMENTAL VISCOSITY DATA AS A FUNCTION OF TEMPERATURE FOR LIQUID ETHYLENE-METHANE MIXTURES

Cur. No.	Fig. No.	Ref. No.	Author(s)	Mole Fraction of C ₂ H ₄	Pressure (atm)	Temp. (K)	Viscosity (N s m ⁻² x 10 ⁻⁶)	Remarks
1	109-L(T)	70	Gerf, S. F. and	1.000		105. 0	66. 0	Gas purity 99.8; capillary method
	• •		Galkov, G.I.			105.3	65. 2	accuracy ± 1%.
						108.0	60.0	
						110.4	55.3	
						129. 8	33.4	
						138. 4	28. 2	
						148.8	23, 1	
						156.8	19.7	
_	***		0			168. 2	16.4	
2	109-L(T)	70	Gerf, S.F. and Galkov, G.I.	0.230		92. 6 94. 9	31. 1 28. 1	Same remarks as for curve 1.
			Gaikov, G.1.			99. 2	24.0	
						101.1	22.4	
						104.1	20.5	
						109.4	18.2	
						111.0	17.0	
3	109-L(T)	70	Gerf, S.F. and	0.398		93. 7	40.6	Same remarks as for curve 1.
			Galkov, G.I.			95. 1	38. 2	
						97.5	34. 4	
						99. 5	32.7	
						102.6	29. 9	
						105. 2	26.3	
						107.2	25. 3	
						111.2	22.6	
4	109-L(T)	70	Gerf, S.F. and	0.590		96.6	48.8	Same remarks as for curve 1.
			Galkov, G.I.			98. 9	43.8	
						102.6	38. 2	
						104.9	35. 2	
						107.8 111.2	32. 5 29. 5	
5	100 T/T)	70	Comf S E and	0.500				
ð	109-L(T)	10	Gerf, S. F. and Galkov, G. I.	0. 763		98. 9 101. 5	59. 5 52. 6	Same remarks as for curve 1.
			Gairov, G.1.			101.5	48. 2	
						104.1	45. 1	
				+		108.4	42. 1	
						111.1	39. 0	
6	109-L(T)	70	Gerf, S. F. and	0.000		94. 4	18.7	Same remarks as for curve 1.
	` '		Galkov, G. I.			98. 3	16. 2	
						102.4	14. 4	
						108.8	12.5	
						111.2	11.9	
7	109-L(T)	70	Gerf, S.F. and	0.196		133.4	109.0	Same remarks as for curve 1.
			Galkov, G.I.	0.190		152.4	89.0	
				0.196		173.6	73.0	•
				0. 200		184.0	62. 0	
8	109-L(T)	70	Gerf, S.F. and	0.555		143.6	163.0	Same remarks as for curve 1.
			Galkov, G.I.	0.590		161.4	131.0	
				0.588		183. 0	108.0	
				0.584		199. 0	82.0	
				0.590		205.4	80.0	
				0. 605		217.8	68. 0	
9	109-L(T)	70	Gerf, S.F. and	0.730		149.8	193.0	Same remarks as for curve 1.
			-Galkov, G.I.	0. 750		165.0	165. 0	
				0.750		179.4	151.0	
				0.750		196.8	129. 0	
				0. 796 0. 796		214.6 238.2	114. 0 100, 0	
.0	109-L(T)	70	Gerf, S.F. and	1.000				Sama namanka a= f==
. •	TOO-T(1)		Galkov, G.I.	1.000		183. 8 204. 0	135.0	Same remarks as for curve 1.
			Calmot, U.1.			204. U 226. 4	115. 0 92. 0	
						440. 7	92. V	
						252. 2	72.0	

TABLE 109-L(T)S. SMOOTHED VISCOSITY VALUES AS A FUNCTION OF TEMPERATURE FOR LIQUID ETHYLENE-METHANE MIXTURES

				Mo le l	Fraction of Me	ethane			
т, к	0.000 [70]	0, 195 {70}	0. 230 [70]	0, 398 [70]	0, 585 {70	0, 590 [70]	0. 745 {70}	0.763 [70]	1.000 [70]
92			32.10						
93				41.80					
94	18.98								
95	18.30			38. 52					
96	17.65		27.00			50. 30			69. 70
98	16.50			34.41		45.30			
100	15.50		23.40	31.40		41.60		56. 10	65. 98
102	14.65			29, 80		38.80		51.80	
104	13.90			27. 80		36.30		48.40	
105	13.60		20.10	27.00		35, 20		46. 90	
106 107	13.30					34. 15		45. 42 44. 10	
108	12.70		18.50	24.70		32, 20		42.80	
109								41.55	
110	12.20		17.60	23. 40		30. 50		40.50	56.40
112	11.80		16.75	22.10		28.90		38. 12	
114						27.40		-	
120									44.00
130		112.40							33. 20
140		101.81							27.00
150		91.48			149.75		193.10		22, 60
160		81.79			133. 20		173.10		18.98
170		73, 10			118.90		158. 15		15. 98
175									14.70
180		65.10			106. 55		147.65		139.05
190					95. 30		135. 15		128.60
200					85. 10		126.40		118.20
210					75.40		118.60		108, 10
220					66.20	•	111.45		98. 35
230							104.95		89.10
240							98.75		78.80
250							92.90		73.40
260									67.15
270									61.60

FIGURE 109 - L(T). VISCOSITY DATA AS A FUNCTION OF TEMPERATURE FOR LIQUID ETHYLENE - METHANE MIXTURES

FIGURE 109 - L (T). VISCOSITY DATA AS A FUNCTION OF TEMPERATURE FOR LIQUID ETHYLENE-METHANE MIXTURES (continued)

TABLE 110-G(C)E. EXPERIMENTAL VISCOSITY DATA AS A FUNCTION OF COMPOSITION FOR GASEOUS ETHYLENE-NITROGEN MIXTURES

Cur. No.	Fig. No.	Ref. No.	Author(s)	Temp. (K)	Pressure	Mole Fraction of C ₂ H ₄	Viscosity (N s m ⁻² x 10 ⁻⁶)	Remarks
1	110-G(C)	227	Trautz, M. and Melster, A.	300.0		0, 0000 0, 2405 0, 5695 0, 7621 1, 0000	17. 81 15. 74 13. 08 11. 69 10. 33	Capillary method, $r = 0.2019$ m; $L_1 = 0.558\%$, $L_2 = 0.913\%$, $L_3 = 1.765\%$.
2	110-G(C)	227	Trautz, M. and Melster, A.	400.0		0.0000 0.2405 0.5695 0.7621 1.0000	21, 90 19, 56 16, 55 14, 91 13, 48	Same remarks as for curve 1 except $L_1=0.296\%$, $L_2=0.481\%$, $L_3=0.915\%$.
3	110-G(C)	227	Trautz, M. and Melster, A.	500.0		0.0000 0.2405 0.5695 0.7621 1.0000	25. 60 22. 82 19. 63 17. 86 16. 22	Same remarks as for curve 1 except $L_1=0.260\%$, $L_2=0.533\%$, $L_3=1.186\%$.
4	110-G(C)	227	Trautz, M. and Melster, A.	550.0		0.0000 0.2405 0.5695 0.7621 1.0000	27. 27 24. 53 21. 08 19. 21 17. 53	Same remarks as for curve 1 except $L_1=0.494\%$, $L_2=0.796\%$, $L_3=1.588\%$.

TABLE 110-G(C)S. SMOOTHED VISCOSITY VALUES AS A FUNCTION OF COMPOSITION FOR GASEOUS ETHYLENE-NITROGEN MIXTURES

Mole Fraction of C ₂ H ₄	300.0 K [Ref. 227]	400.0 K [Ref. 227]	500. 0 K [Ref. 227]	550, 0 K [Ref. 227]
0.00	17.81	21.90	25, 60	27, 27
0. 05	17.31	21.35	24.95	26, 68
0.10	16, 82	20. 88	24.38	26, 12
0.15	16, 38	20, 35	23.78	25, 55
0.20	15, 92	19.85	23.20	25, 00
0. 25	15.50	19.35	22,60	24, 48
0.30	15.08	18, 85	22.18	23, 93
0.35	14.68	18.38	21.55	23, 40
0.40	14, 30	17.90	21.00	22, 90
0. 45	13.90	17.48	20.50	22, 40
0. 50	13, 55	17.00	20.00	21.90
0. 55	13, 20	16.58	19.55	21, 42
0.60	12.88	16. 15	19.10	20, 96
0. 65	12. 55	15. 75	- 18.68	20, 50
0. 70	12, 25	15, 39	18. 32	20.05
0.75	11.95	15, 00	17. 95	19, 61
0, 80	11.68	14.68	17.60	19. 19
0.85	11.40	14, 35	17.30	18, 78
0.90	11.17	14, 06	17. 00	18.35
0.95	10.90	13.76	18.70	17, 98
1.90	10.33	13.48	16.22	17, 53

FIGURE 110 - G(C). VISCOSITY DATA AS A FUNCTION OF COMPOSITION FOR GASEOUS ETHYLENE-NITROGEN MIXTURES

TABLE 111-G(C)E. EXPERIMENTAL VISCOSITY DATA AS A FUNCTION OF COMPOSITION FOR GASEOUS ETHYLENE-OXYGEN MIXTURES

Cur. No.	Fig. No.	Ref. No.	Author(s)	Temp. (K)	Pressure (atm)	Mole Fraction of C ₂ H ₄	Viscosity (N s m ⁻² x 10^{-6})	Remarks
1	111-G(C)	227	Trautz, M. and Melster, A.	293.0		1.0000 0.8694 0.5855 0.2297 0.0000	20. 19 18. 54 15. 29 11. 98 10. 10	Capillary method, $r = 0.2019$ mm; $L_1 = 0.050\%$, $L_2 = 0.092\%$, $L_3 = 0.198\%$.
2	111-G(C)	227	Trautz, M. and Melster, A.	323.0		1.0000 0.8694 0.5855 0.2297 0.0000	21. 81 20. 04 16. 58 13. 08 11. 07	Same remarks as for curve 1 excep $L_1=0.010\%$, $L_2=0.022\%$, $L_3=0.050\%$.
3	111-G(C)	227	Trautz, M. and Melster, A.	373.0		1.0000 0.8694 0.5855 0.2297 0.0000	24. 33 22. 43 18. 65 14. 79 12. 62	Sam. remarks as for curve 1 excep $L_1=0.014\%,\ L_2=0.030\%,\ L_3=0.068\%,$

TABLE 111-G(C)S. SMOOTHED VISCOSITY VALUES AS A FUNCTION OF COMPOSITION FOR GASEOUS ETHYLENE-OXYGEN MIXTURES

Mole Fraction	293. 0 K	323.0 K	373.0 K
of C ₂ H ₄	[Ref. 227]	[Ref. 227]	[Ref. 227]
0.00	10.12	11.07	12.62
0.05	10.32	11, 50	13. 10
0.10	10.92	11.95	13. 56
0.15	11.32	12, 39	14.04
0, 20	11.72	12.82	14.52
0.25	12. 25	13.28	15.00
0, 30	12.60	13.72	15. 52
0.35	13.05	14, 20	16, 02
0.40	13.48	14,68	16.55
0. 45	13.95	15.18	17. 10
0.50	14. 42	15.68	17.65
0.55	14.93	16.20	18, 22
0.60	15.45	16, 75	18, 83
0. 65	16.00	17. 32	19.48
0.70	16, 55	17. 92	20. 12
0. 75	17.12	18. 52	20.80
0.80	17.70	19, 16	21.48
0. 85	18.32	19. 62	22. 18
0. 90	18.95	20, 48	22.88
0. 9 5	19.58	21.15	23. 60
1.00	20. 19	21, 81	24. 33

FIGURE III-G(C). VISCOSITY DATA AS A FUNCTION OF COMPOSITION FOR GASEOUS ETHYLENE-OXYGEN MIXTURES

TABLE 112-G(C)E. EXPERIMENTAL VISCOSITY DATA AS A FUNCTION OF COMPOSITION FOR GASEOUS n-HEPTANE-NITROGEN MIXTURES

Cur. No.	Fig.	Ref. No.	Author(s)	Temp. (K)	Pressure (atm)	Mole Fraction of n-C ₇ H	Viscosity (N s m ⁻² x 10 ⁻⁶)	Remarks
1	112-G(C)	307	Carmichael, L.T. and Sage, B.H.	310.9	0.398 0.781 1.000	1.0000 0.4848 0.0000	6. 24 10. 40 18. 36	n-C ₇ H ₁₆ : 99. 89 pure, N ₂ : 99. 996 pure; oscillating cylinder visco- meter, calibrated with He; error ±1%, precision ±0.5%.
2	112-G(C)	307	Carmichael, L.T. and Sage, B.H.	344.3	0.398 2.574 1.000	1.0000 0.1471 0.0000	6. 94 15. 46 19. 84	Same remarks as for curve 1.

FIGURE 112-G(C). VISCOSITY DATA AS A FUNCTION OF COMPOSITION FOR GASEOUS n-HEPTANE-NITROGEN MIXTURES

TABLE 113-G(C)E. EXPERIMENTAL VISCOSITY DATA AS A FUNCTION OF COMPOSITION FOR GASEOUS HEXADECAFLUORO-n-HEPTANE - 2, 2, 4-TRIMETHYLPENTANE MIXTURES

Cur. No.	Fig. No.	Ref. No.	Author(s)	Temp. (K)	Pressure (mm Hg)	Mole Fraction of n-C ₇ H ₁₆	Viscosity (N s m ⁻² x 10 ⁻⁶)	Remarks
1	113-G(C)	354	Lewis, J. E.	303.2	47	1.0000 0.8941	8. 2860 8. 1539	Hexadecafluoro-n-heptane: 99.95 ±0.02%, 2.2.4-trimethylpentane:
						0.6992	7, 6732	99. 98 ± 0. 02%; oscillating disk
						0.4830	6. 9922	viscometer calibrated with air:
						0.3658		
							6. 5046	$L_1 = 0.128\%, L_2 = 0.181\%, L_3 =$
						0.1550	5. 6001	0. 356%.
						0.0000	4. 7861	
2	113-G(C)	354	Lewis, J.E.	323.2	40	1.0000	8, 8168	Same remarks as for curve 1 excep
						0.8941	8,6595	$L_1 = 0.701\%$, $L_2 = 0.925\%$, $L_3 =$
						0.6992	8. 2324	1.441%.
			i.			0.4830	7. 5230	2
						0.3658	6. 8805	
						0.1550	5. 8692	
						0.0000	5. 1308	
3	113-G(C)	354	Lewis, J.E.	333.2	40	1.0000	9,0076	Same remarks as for curve 1 except
	` '		•			0.4830	7.6423	$L_1 = 0.000\%$, $L_2 = 0.000\%$, $L_3 =$
						0.0000	5. 3205	0.000%.

TABLE 113-G(C)S. SMOOTHED VISCOSITY VALUES AS A FUNCTION OF COMPOSITION FOR GASEOUS HEXADECAFLUORO-n-HEPTANE - 2, 2, 4-TRIMETHYLPENTANE MIXTURES

Mole Fraction of n-C ₇ H ₁₆	303.2 K [Ref. 354]	323, 2 K [Ref. 354]	333. 2 K [Ref. 354]
0.00	4. 786	5. 131	5. 321
0.05	5,007	5.407	5. 590
0.10	5. 332	5, 670	5.850
0.15	5, 508	5.930	6.110
0.20	5. 818	6. 175	6.360
0, 25	6.040	6.415	6.612
0.30	6.255	6.650	6.850
0. 35	6.460	6.870	7.082
0.40	6,660	7.108	7. 300
0. 45	6, 858	7.320	7. 520
0.50	7.045	7. 510	7. 710
0. 55	7. 220	7.577	7. 900
0.60	7.390	7.880	8.070
0.65	7.545	8.042	8.230
0. 70	7.690	8. 190	8.380
0. 75	7.820	8.325	8.548
0.80	7.940	8, 450	8.650
0, 85	8.042	8. 560	8,770
0. 90	8. 132	8. 665	8.870
0. 95	8.218	8.748	8. 970
1.00	8, 286	8, 816	9.008

FIGURE 113-G(C). VISCOSITY DATA AS A FUNCTION OF COMPOSITION FOR GASEOUS HEXADECAFLUORO-n-HEPTANE-2,2,4-TRIMETHYLPENTANE MIXTURES

e e de la companya de

and a management of the

TABLE 114-G(C)E. EXPERIMENTAL VISCOSITY DATA AS A FUNCTION OF COMPOSITION FOR GASEOUS HYDROGEN-HYDROGEN DEUTERIDE MIXTURES

Cur. No.	Fig. No.	Ref. No.	Author(s)	Temp. (K)	Pressure (mm Hg)	Mole Fraction of HD	Viscosity (N s m ⁻² x 10 ⁻⁶)	Remarks
1	114-G(C)	179	Rietveld, A.O.,	14.4	4-11	0.000	0. 79	H ₂ : obtained from vapors over liquid
_			Van Itterbeek, A., and			0.254	0.82	hydrogen and then purified by con-
			Velds, C.A.			0. 501	0.84	densation; oscillating disk visco-
						0. 757	0.87	meter, relative measurements; un-
						1.000	0.88	certainties $\pm 3\%$ at low temperatures and $\pm 2\%$ at high temperatures; $L_1 = 0.480\%$, $L_2 = 0.759\%$, $L_3 = 1.235\%$.
2	114-G(C)	179	Rietveld, A.O., et al.	20.4	4-11	0.000	1.11	Same remarks as for curve 1 except
						0.240	1. 15	$L_1 = 0.333\%$, $L_2 = 0.745\%$, $L_3 =$
						0.505	1.18	1.667%.
						0.754	1. 21	
						1.000	1.25	
3	114-G(C)	179	Rietveld, A.O., et al.	71.5	15-40	0.000	3. 26	Same remarks as for curve 1 except
	. ,					0.250	3. 45	$L_1 = 0.208\%$, $L_2 = 0.240\%$, $L_3 =$
						0 . 499	3, 62	0. 347%.
						0.749	3. 79	
						1.000	3. 95	
4	114-G(C)	179	Rietveld, A.O., et al.	90.1	15-40	0.000	3.92	Same remarks as for curve 1 except
						0.253	4. 17	$L_1 = 0.268\%, L_2 = 0.508\%, L_3 =$
						0.499	4. 36	1. 113%.
						0.741	4. 53	
						1.000	4.75	
5	114-G(C)	179	Rietveld, A.O., et al.	196.0	15-40	0.000	6. 70	Same remarks as for curve 1 except
						0.236	7.07	$L_1 = 0.000\%$, $L_2 = 0.000\%$, $L_3 =$
						0.496	7.48	0.000%.
						0.746	7. 81	
						1.000	8. 16	
6	114-G(C)	179	Rietveld, A.O., et al.	229.0	15-40	0.000	7.45	Same remarks as for curve 1 except
						0.196	7.84	$L_1 = 0.000\%, L_2 = 0.000\%, L_3 =$
						0.497	8. 31	0.000%.
						0.748	8. 72	
						1.000	9. 10	
7	114-G(C)	179	Rietveld, A.O., et al.	293.1	15-40	0.000	8.83	Same remarks as for curve 1 except
						0.241	9. 28	$L_1 = 0.142\%$, $L_2 = 0.204\%$, $L_3 =$
						0.498	9.80	0. 391%.
						0.748	10.20	
						1.000	10.69	

TABLE 114-G(C)S. SMOOTHED VISCOSITY VALUES AS A FUNCTION OF COMPOSITION FOR GASEOUS HYDROGEN-HYDROGEN DEUTERIDE MIXTURES

Mole Fraction of HD	14.4 K {Ref. 179}	20.4 K {Ref. 179}	71.5 K (Ref. 179)	90.1 K [Ref. 179]	196. 0 K [Ref. 179]	229. 0 K (Ref. 179)	293.1 K [Ref. 179
0.00	0.79	1.11	3.26	3. 92	6.70	7.45	8, 82
0.05	0.79	1.13	3.31	3.98	6. 79	7.54	8. 92
0.10	0,80	1.14	3.35	4.03	6.86	7.64	9. 01
0. 15	0.80	1.15	3.39	4.09	6,94	7.74	9.10
0. 20	0.81	1.15	3. 43	4.13	7. 01	7.84	9. 20
0.25	0.81	1.16	3.46	4.17	7.09	7. 92	9. 30
0.30	0.82	1.17	3.50	4.22	7.17	8.00	9, 40
0.35	0.82	1.18	3.50	4.26	7.24	8.08	9.50
0.40	0.83	1.19	3.57	4.30	7. 33	8. 16	9. 59
0.45	0.83	1.19	3.60	4.33	7.40	8. 24	9.68
0.50	0.83	1, 20	3.63	4.37	7.48	8. 31	9. 78
0. 55	0.83	1.21	3, 66	4, 41	7. 56	8.40	9. 88
0.60	0.83	1.21	3.70	4.46	7.63	8.48	9. 97
0.65	0.84	1.21	3. 73	4.50	7.70	8. 58	10.06
0. 70	0.84	1.21	3. 77	4.55	7. 76	8.65	10. 15
0. 75	0. 84	1.22	3.80	4.59	7.83	8.74	10.24
0.80	0.84	1.22	3. 83	4, 63	7. 90	8. 80	10, 32
0.85	0.84	1.23	3.86	4.65	7.96	8.88	10.42
0.90	0.84	1.24	3.89	4, 70	8.03	8. 96	10.50
0. 95	0. 84	1.24	3.90	4. 73	8. 10	9.03	10.60
1.00	0.88	1, 25	3. 94	4, 75	8. 16	9. 10	10.69

FIGURE 114-G(C). VISCOSITY DATA AS A FUNCTION OF COMPOSITION FOR GASEOUS HYDROGEN -HYDROGEN DEUTERIDE MIXTURES

. ---

<u>.</u>

TABLE 115-G(C)E. EXPERIMENTAL VISCOSITY DATA AS A FUNCTION OF COMPOSITION FOR GASEOUS HYDROGEN-METHANE MIXTURES

Cur. No.	Fig. No.	Ref. No.	Author(s)	Temp. (K)	Pressure (atm)	Mole Fraction of CH ₄	Viscosity (N s m ⁻² x 10 ⁻⁶)	Remarks
1	115-G(C)	229	Trautz, M. and Sorg, K.G.	293.0		1.0000 0.7192 0.5145 0.3978 0.0777 0.0000	10.87 10.99 10.98 10.86 9.55 8.76	CH.; I. G. Farben, 99. 9 pure; capillary method; precision \pm 0. 05%; $L_1=0.028\%$, $L_2=0.048\%$, $L_3=0.092\%$.
2	115-G(C)	1	Adzumi, H.	293. 2		0.0000 0.2083 0.3909 0.4904 0.6805 1.0000	9. 24 10. 62 10. 74 11. 10 11. 24 11. 25	$\rm H_{2^1}$ electrolysis of water, dried and traces of oxygen removed by passing over red hot copper; measurements relative to air; $\rm L_1=0.313\%,\ L_2=0.560\%,\ L_3=1.287\%.$
3	115-G(C)	1	Adzumi, H.	333. 2		0.0000 0.2083 0.3909 0.4904 0.6805 1.0000	10, 08 11, 60 11, 90 12, 34 12, 54 12, 55	Same remarks as for curve 2 except $L_1=0.261\%,\ L_2=0.391\%,\ L_3=0.784\%.$
4	115-G(C)	229	Trautz, M. and Sorg, K.G.	373.0		1.0000 0.7192 0.5145 0.3978 0.0777 0.0000	13. 31 13. 37 13. 28 13. 06 11. 32 10. 33	Same remarks as for curve 1 except $L_1=0.032\%$, $L_2=0.056\%$, $L_3=0.115\%$.
5	115-G(C)	1	Adzumi, H.	373. 2		0.0000 0.2083 0.3909 0.4904 0.6805 1.0000	10. 90 12. 71 13. 12 13. 59 13. 80 13. 80	Same remarks as for curve 2 except $L_1=0.233\%$, $L_2=0.308\%$, $L_3=0.501\%$.
6	115-G(C)	229	Trautz, M. and Sorg, K.G.	473.0		1.0000 0.7192 0.5145 0.3978 0.0777 0.0000	16.03 16.02 15.87 15.51 13.38 12.13	Same remarks as for curve 1 except $L_1=0.029\%$, $L_2=0.050\%$, $L_3=0.110\%$,
7	115-G(C)	229	Trautz, M. and Sorg, K.G.	523.0		1.0000 0.7192 0.5145 0.3978 0.0777 0.0000	17. 25 17. 18 16. 99 16. 62 14. 23 12. 96	Sam: remarks as for curve 1 except $L_1=0.024\%$, $L_2=0.035\%$, $L_3=0.053\%$.

TABLE 115-G(C)S. SMOOTHED VISCOSITY VALUES AS A FUNCTION OF COMPOSITION FOR GASEOUS HYDROGEN-METHANE MIXTURES

Mole Fraction of CH ₁	293. 0 K [Ref. 229]	293.2 K [Ref. 1]	333, 2 K [Ref. 1]	373.0 K [Ref. 229]	373.2 K [Ref. 1]	473.0 K [Ref. 229]	523. 0 K [Ref. 229
0.00	8, 76	9. 24	10.08	10. 33	10.92	12. 13	12.96
0.05	9. 31	9.50	10.37	11.00	11.26	13.00	13.85
0.10	9. 72	9. 79	10.65	11. 55	11.56	13.64	14. 52
0.15	10, 04	9.99	10.92	11. 97	11.38	14.13	15, 03
0, 20	10.30	10.26	11.17	12.32	12. 20	14.50	15, 46
0. 25	10.50	10.46	11.40	12.58	12.49	14.83	15.82
0.30	10, 66	10.63	11.63	12.79	12.76	15. 10	16, 26
0.35	10, 78	10.78	11.84	12. 9 5	13.01	15.34	16.40
0.40	10.87	10.91	12.03	13.08	13. 25	15.54	16.63
0.45	10, 94	11.01	12.19	13.18	13.42	15. 70	16, 81
0.50	10, 98	11. 10	12. 32	13.26	13. 55	15.83	16, 95
0. 55	11,00	11.16	12.41	13. 31	13.66	15.92	17.05
0.60	11.01	11.20	12.48	13. 35	13. 24	15. 97	17, 12
0, 65	11.01	11.24	12.53	13.37	13. 79	16.00	17. 15
0.70	11.00	11.25	12.55	13.38	13.80	16.02	17.18
0. 75	10.99	11.25	12.55	13.38	13.80	16. 03	17, 20
0.80	10, 97	11.25	12.55	13.38	13.80	16.04	17.22
0.85	10, 95	11.25	12. 55	13.37	13. 80	18.04	17, 23
0, 90	10, 93	11.25	12. 5 5	13.36	13.80	16.04	17, 24
0. 95	10.90	11.24	12.55	13. 33	13. 80	16.03	17.24
1.00	10.87	11, 25	12, 55	13. 31	13. 80	16. 03	17, 24

FIGURE 115 - G(C). VISCOSITY DATA AS A FUNCTION OF COMPOSITION FOR GASEOUS HYDROGEN - METHANE MIXTURES

FIGURE 115 - G(C). VISCOSITY DATA AS A FUNCTION OF COMPOSITION FOR GASEOUS HYDROGEN-METHANE MIXTURES (continued)

TABLE 116-G(C)E. EXPERIMENTAL VISCOSITY DATA AS A FUNCTION OF COMPOSITION FOR GASEOUS HYDROGEN-NITRIC OXIDE MIXTURES

Cur. No.	Fig. No.	Ref. No.	Author(s)	Temp. (K)	Pressure (mm Hg)	Mole Fraction of NO	Viscosity (N s m ⁻² x 10 ⁻⁶)	Remarks
1	116-G(C)	340	Alfons, K. and	273.2		0.0000	8. 49	Modified Rankine type viscometer,
	` .		Walter, R.			0.1975	14.17	calibrated with respect to air;
						0. 2299	14. 52	$L_1 = 0.480\%$, $L_2 = 0.743\%$, $L_3 =$
						0. 2835	14.67	1.255%.
						0.4508	15. 95	
						0.7045	17, 20	
						0.8503	17. 50	
						1.0000	17.97	
2	116-G(C)	334	Strauss, W.A. and	293.2	751.64	1,0000	18.61	Capillary flow viscometer, rela-
	` '		Edse, R.		751.96	0.8947	18.36	tive measurements; $L_i = 0.447\%$,
					752.24	0, 7932	18.02	$L_2 = 0.674\%, L_3 = 1.669\%.$
					752.49	0.6900	17.69	•
					752.49	0.6204	17.36	
					753.05	0.4891	16.75	
					753.37	0.3926	16.04	
					753.48	0.2944	15. 12	
					753, 48	0.1931	14.01	
					752.98	0.1002	11.87	
					751.64	0.0000	8.88	
3	116-G(C)	334	Strauss, W.A. and	293.2	750. 98	0.0000	9. 01	Same remarks as for curve 2.
			Edse, R.		751.28	0.0510	10.57	
			·		750.96	0.1499	12.97	
					751.12	0.2506	14.54	
					751.08	0.3425	15.85	
					751.32	0.4423	16.52	
					751.23	0.5393	17. 19	
					751.23	0.6416	17.63	
					751.13	0.7453	18.04	
					751.23	0.8430	18.56	
					751.21	0.9524	18.62	
					751.15	1.0000	18.61	

TABLE 116-G(C)S. SMOOTHED VISCOSITY VALUES AS A FUNCTION OF COMPOSITION FOR GASEOUS HYDROGEN-NITRIC OXIDE MIXTURES

Mole Fraction	273, 2 K	293. 2 K
of NO	[Ref. 340]	[Ref. 334
0.00	8, 49	8.88
0.05	11.25	10. 53
0.10	12.5 4	11. 90
0.15	13.38	13.00
0.20	14.02	13.88
0.25	14.54	14.60
0.30	14, 98	15. 20
0.35	15, 35	15. 70
0.40	15.67	16. 12
0.45	15.95	16. 50
0.50	16, 22	16.84.
0.55	16.45	17.22
0.60	16, 67	17.38
0.65	16.87	17.62
0. 70	17. 05	17.82
0.75	17. 22	18.00
0.80	17, 39	18. 16
0.85	17.54	18.30
0.90	17, 69	18.42
0. 95	17, 83	18.52
1.00	17.97	18. 61

FIGURE 116 - G(C). VISCOSITY DATA AS A FUNCTION OF COMPOSITION FOR GASEOUS HYDROGEN-NITRIC OXIDE MIXTURES

TABLE 117-G(C)E. EXPERIMENTAL VISCOSITY DATA AS A FUNCTION OF COMPOSITION FOR GASEOUS HYDROGEN-NITROGEN MIXTURES

Cur. No.	Fig. No.	Ref. No.	Author(s)	Temp. (K)	Pressure (mm Hg)	Mole Fraction of N ₂	Viscosity (N s m ⁻² x 10 ⁻⁶)	Remarks
1	117-G(C)	252, 377	Van Itterbeek, A., Van Paemel, O., and Van Lierde, J.	82.2		0.000 0.160 0.351 0.441 0.620 0.759 1.000	3. 62 4. 73 5. 09 5. 19 5. 33 5. 37 5. 44	Oscillating disk viscometer; accuracy of results not mentioned; $L_1=0.143\%$, $L_2=0.248\%$, $L_3=0.586\%$.
2	117-G(C)	252, 377	Van Itterbeek, A., et al.	90.2		0.000 0.160 0.351 0.441 0.620 0.759 0.866 1.000	3. 92 5. 23 6. 04 6. 20 6. 29 6. 40 6. 45 6. 51	Same remarks as for curve 1 except $L_1=0.141\%,\ L_2=0.290\%,\ L_3=0.789\%.$
3	117-G(C)	252, 377	Van Itterbeek, A., et al.	291.1		0.000 0.160 0.441 0.620 0.759 0.866 1.000	8, 77 12, 51 15, 60 16, 60 16, 77 17, 42 17, 52	Spine , cmarks as for curve 1 except $L_1=0.438\%$, $L_2=0.650\%$, $L_3=1.161\%$.
4	117-G(C)	252, 377	Van Itterbeek, A., et al.	291.2		0.000 0.136 0.187 0.296 0.400 0.517 0.690 1.000	8. 82 12. 16 13. 05 14. 52 15. 44 16. 13 16. 84 17. 46	Same remarks as for curve 1 except $L_1=0.065\%,\ L_2=0.106\%,\ L_3=0.246\%.$
5	117-G(C)	341	Pal, A.K. and Barua, A.K.	307.2	<100	0.0000 0.2000 0.3991 0.5100 0.5794 0.7977 1.0000	9. 075 13. 847 15. 958 16. 704 16. 995 17. 709 18. 163	N_2 and H_2 : better than 99.5 pure; oscillating disk viscometer, relative measurements; data agree with the literature values within 1.0%; $L_1=0.309\%,\ L_2=0.668\%,\ L_3=1.741\%.$
6	117-G(C)	341	Pal, A.K. and Barua, A.K.	325.4	<100	0.0000 0.2000 0.3991 0.5100 0.5794 0.7977 1.0000	9. 445 14. 254 16. 450 17. 300 17. 701 18. 500 19. 087	Same remarks as for curve 5 except $L_1=0,303\%,\ L_2=0,588\%,\ L_3=1.452\%.$
7	117-G(C)	341	Pal, A.K. and Barua, A.K.	373.2	< 100	0.0000 0.2000 0.3991 0.5100 0.5794 0.7977 1.0000	10. 423 15. 231 18. 120 19. 027 19. 501 20. 577 21. 012	Same remarks as for curve 5 except $L_1 = 0.041\%, \ L_2 = 0.087\%, \ L_3 = 0.219\%.$
8	117-G(C)	341	Pal, A.K. and Barua, A.K.	422.7	< 100	0.0000 0.2005 0.3988 0.4996 0.5988 0.8002 1.0000	11. 490 16. 470 19. 500 20. 636 21. 358 22. 258 23. 009	Same remarks as for curve 5 except $L_1 = 0.211\%, \ L_2 = 0.378\%, \ L_3 = 0.915\%.$
9	117-G(C)	341	Pal, A.K. and Barua, A.K.	478.2	<100	0.0000 0.2005 0.3988 0.4996 0.5988 0.8002 1.0000	12. 640 17. 652 21. 399 22. 400 23. 130 24. 376 25. 259	Same remarks as for curve 5 except $L_1=0.142\%,\ L_2=0.285\%,\ L_3=0.701\%.$

TABLF 117-G(C)S. SMOOTHED VISCOSITY VALUES AS A FUNCTION OF COMPOSITION FOR GASEOUS HYDROGEN-NITROGEN MIXTURES

Mole Fraction of N ₂	82.2 K [Ref. 252]	90, 2 K [Ref. 252]	291.1 K [Ref. 252]	291.2 K [Ref. 252]	307.2 K [Ref. 341]	3z5.4 K [Ref. 341]	373. 2 K [Ref. 341]	422.7 K [Ref. 341]	478.2 K [Ref. 341
0.00	3.62	3. 92	8, 77	8, 82	9. 07	9. 94	10, 42	11.49	12, 64
0.05	4.08	4.38	10.14	10.26	10.23	10.64	11.66	12.72	13.81
0.10	4.33	4.80	11.33	11.45	11.38	11.80	12.90	13.95	15.02
0.15	4.68	5.16	12.36	12.44	12.56	12.99	14. 10	15.14	16.27
0.20	4.86	5.48	13. 20	13.24	13. 61	14.05	15. 23	16.30	16.50
0.25	4.98	5.72	13.88	13. 96	14.42	14. 90	16. 21	17.38	18.70
0.30	5.06	5.90	14.44	14.55	15.07	15.58	16.97	18.28	19.71
0.35	5. 12	6.02	14. 32	15.04	15. 58	16.11	17.60	19.04	20.56
0.40	5.16	6.14	15.32	15.42	15.99	16, 55	18.12	19.68	21.45
0.45	5. 21	6. 20	15.66	15.77	16. 33	16.94	18.56	20, 20	21.84
0.50	5, 26	6. 25	15. 96	16.05	16.62	17.27	18.96	20, 62	22. 33
0.55	5.29	6.29	16.20	16.30	16.86	17.54	19.32	21.00	22.76
0,60	5, 32	6.32	16.43	16.52	17.07	17.80	19.62	21.29	23.16
0.65	5.35	6.36	16, 62	16.70	17.26	18.00	19.90	21.56	23.50
0.70	5.37	6.38	16. 79	16. 86	17.43	18.19	20. 15	21.81	23, 82
0.75	5, 38	6.42	16.94	17.00	17. 58	18.36	20.36	22.04	24.11
0.80	5.40	6.44	17.06	17.11	17.72	18.52	20. 55	22.24	24.38
0.85	5. 41	6.46	17.18	17.21	17.84	18.70	20, 70	22.44	24.62
0.90	5. 42	6.48	17. 30	17.29	17.96	18.82	20, 82	22,63	24, 84
0.95	5.43	6.48	17.50	17.38	18.06	18.96	20, 93	22.82	25.06
1.00	5.44	6.50	17. 52	17.46	18.16	19.09	21, 01	23. 01	25, 27

FIGURE 117 - G(C). VISCOSITY DATA AS A FUNCTION OF COMPOSITION FOR GASEOUS HYDROGEN - NITROGEN MIXTURES

FIGURE 117 - G(C). VISCOSITY DATA AS A FUNCTION OF COMPOSITION FOR GASEOUS HYDROGEN-NITROGEN MIXTURES (continued)

-

TABLE 117-G(D) E. EXPERIMENTAL VISCOSITY DATA AS A FUNCTION OF DENSITY FOR GASEOUS HYDROGEN-NITROGEN MIXTURES

No.		Ref.	Author(s)	Mole Fraction of N ₂	Temp.	Density (g cm ⁻³ ·10 ⁻⁴)	Viscosity (N s m ⁻² x 10 ⁻⁶)	Remarks
1	117-G(D)	327	Van Lierde, J.	1.000	90.2	0.598 0.195 0.0383 0.0243 0.0111 0.00436 0.00276 0.00141 0.000799 0.000355	6.46 6.43 6.28 6.10 5.96 5.23 4.48 3.45 2.32	Oscillating disk viscometer; original data reported as a function of pressure, density calculated from pressure using ideal gas equation.
2	117-G(D)	327	Van Lierde, J.	1.000	90.2	0.746 0.0736 0.0270 0.00987	6.56 6.32 6.11 5.76	Same remarks as for curve 1
3	117-G(D)	327	Van Lierde, J.	0.866	90,2	0.415 0.0321 0.00934 0.00471 0.00185 0.000681 0.000319	6. 64 6. 12 5. 64 5. 05 3. 80 2. 13 1. 24	Same remarks as for curve 1.
4	117-G(D)	327	Van Lierde, J.	0.866	90,2	0.480 0.0249 0.0129 0.00528 0.00151 0.000786	6.41 6.11 5.71 5.69 3.64 2.19	Same remarks as for curve 1.
5	117-G(D)	327	Van Lierde, J.	0.759	90.2	0.387 0.0255 0.0106 0.00549 0.00221 0.000580	6.80 6.30 5.54 4.80 3.97	Same remarks as for curve 1.
6	117-G(D)	327	Van Lierde, J.	0.759	90,2	0.426 0.0227 0.00725 0.00406 0.00198 0.00100	6.30 6.21 5.44 4.86 4.21 3.26	Same remarks as for curve 1.
7 1	l17-G(D)	327	Van Lierde, J.	0.759	90.2	0.484 0.0334 0.00782 0.00329 0.00187 0.000724 0.000294	6.45 6.06 5.43 4.44 3.85 2.69 1.47	Same remarks as for curve 1.
я 1	17-G(D)	327	Van Lierde, J.	0.620	90.2	0.419 0.0398 0.0219 0.00455 0.00228 0.00135 0.000958	6.44 6.62 6.40 5.26 4.49 3.79 3.63	Same remarks as for curve 1.
	17-G(D)	327	Van Lierde, J.	0.441	90,2	0.264 0.0235 0.00743 0.00306 0.00137 0.000878 0.000535 0.000247		Same remarks as for curve 1.
0 1	17-G(D)	327	Van Lierde, J.	0.351	90.2	0.277 0.0272 0.00914 0.00539 0.00318 0.00183 0.000791 0.000626 0.000327		Same remarks as for curve 1.

TABLE 117-G(D) E. EXPERIMENTAL VISCOSITY DATA AS A FUNCTION OF DENSITY FOR GASEOUS HYDROGEN-NITROGEN MIXTURES (continued)

Cur No.		Ref. No.	Author(s)	Mole Fraction of N ₂	Temp.	Density (g cm ⁻³ ·10 ⁻⁴)	Viscosity (N s m ⁻² x 10 ⁻⁶)	Remarks
11	117-G(D)	327	Van Lierde, J.	0.1600	90.2	0.126 0.121 0.00950 0.00219 0.00160 0.000517 0.000312 0.000171	5.27 5.13 5.03 4.10 4.09 2.62 2.19	Same remarks as for curve 1.
12	117-G(D)	327	Van Lierde, J.	0.0000	90.2	0.0322 0.00874 0.00155 0.000355 0.000182 0.0000688 0.0000269	3.72 3.93 3.58 2.50 1.74 1.03 0.64	Same remarks as for curve 1.
13	117-G(D)	329	Kestin, J. and Yata, J.	0.8407	293.2	0.02318 0.01482 0.004968 0.001046	17.600 17.488 17.365 17.310	N_2 : 99.999 pure, H_2 : 99.999 pure; oscillating disk viscometer; accuracy \pm 0.1% and precision \pm 0.05%.
14	117-G(D)	329	Kestin, J. and Yata, J.	0.6721	293.2	0.02025 0.01217 0.004055 0.000860	17.121 17.019 16.926 16.888	Same remarks as for curve 13
15	117-G(D)	329	Kestin, J. and Yata, J.	0.48 79	293.2	0.01527 0.009171 0.003059 0.000637	16.234 16.159 16.100 16.071	Same remarks as for curve 13
16	117-G(D)	329	Kestin, J. and Yata, J.	0.2750	293.2	0.009253 0.005694 0.001898 0.000399	14.420 14.391 14.318 14.332	Same remarks as for curve 13
17	117-G(D)	329	Kestin, J. and Yata, J.	0.1627	293.2	0.006159 0.003856 0.001297 0.000273	12.802 12.781 12.759 12.744	Same remarks as for curve 13
18	117-G(D)	329	Kestin, J. and Yata, J.	0.0961	293. 2	0.004411 0.002774 0.000938 0.000200	11.473 11.465 11.445 11.438	Same remarks as for curve 13
19	117-G(D)	329	Kestin, J. and Yata, J.	0.0000	293.2	0.001936 0.001913 0.001582 0.001242 0.0008333 0.0004137 0.0000876	8. 829 8. 831 8. 826 8. 825 8. 834 8. 829 8. 827	Same remarks as for curve 13
20	117-G(D)	329	Kestin, J. and Yata, J.	1.0000	303.2	0.02648 0.02152 0.01701 0.01130 0.005650	18.367 18.291 18.163 18.098 18.036	Same remarks as for curve 13
21	117-G(D)	329	Kestin, J. and Yata, J.	0.8407	303.2	0.02259 0.01445 0.00480 0.00102	18.045 17.939 17.824 17.782	Same remarks as for curve 13
22	117-G(D)	329	Kestin, J. and Yata, J.	0.6721	303.2	0.01847 0.01176 0.003919 0.000815	17.544 17.464 17.381 17.351	Same remarks as for curve 13
23	117-G(D)	329	Kestin, J. and Yata, J.	0.4879	303.2	0.01409 0.01409 0.008761 0.002947 0.000609	16.640 16.636 16.582 16.520 16.490	Same remarks as for curve 13
24	117-G(D)	329	Kestin, J. and Yata, J.	0.2750	303.2	0.008755 0.005509 0.001841 0.000396	14.786 14.754 14.720 14.706	Same remarks as for curve 13
25	117-G(D)	329	Kestin, J. and Yata, J.	0.1627	303.2	0.006000 0.003750 0.001255 0.000268	13.120 13.108 13.088 13.067	Same remarks as for curve 13

TABLE 117-G(D) E. EXPERIMENTAL VISCOSITY DATA AS A FUNCTION OF DENSITY FOR GASEOUS HYDROGEN-NITROGEN MIXTURES (continued)

Cur. No.	Fig. No.	Ref. No.	Author(s)	Mole Fraction of N ₂	Temp.	Density (g cm ⁻³ · 10 ⁻⁴)	Viscosity (N s m ⁻² x 10 ⁻⁶)	Remarks
26 1	17-G(D)	329	Kestin, J. and Yata, J.	0.0961	303, 2	0.004300 0.002700 0.000901 0.000192	11.768 11.748 11.732 11.726	Same remarks as for curve 13.
27 1	117-G(D)	32 9	Kestin, J. and Yata, J.	0.0000	303, 2	0.001891 0.001209 0.0004042 0.0000847	9.039 9.031 9.027 9.025	Same remarks as for curve 13.

- -

-

TABLE 117-G(D)S. SMOOTHED VISCOSITY VALUES AS A FUNCTION OF DENSITY FOR GASEOUS FI/DROGEN-NITROGEN MIXTURES

	Mole Fraction of Nitrogen								
Density (g cm ⁻³ x 10 ⁻⁴)	0.0000 (90.2 K) [Ref. 327]	0.1600 (90.2 K) [Ref. 327]	0.3510 (90.2 K) [Ref. 327]	0.4410 (90.2 K) [Ref. 327]	0.6200 (90.2 K) [Ref. 327]	1.0000 (90.2 K) [Ref. 327			
0.005	3.645	4.978	5. 261						
0.010	3.679	5.038	5.760			5.906			
0.015	3.695	5.063	5.825	5.917		6.060			
0.020	3.706	5.081	5.864	6.001		6.144			
0.025	3.712	5.095	5.890	6.052		6.200			
0.030	3.717	5. 106	5.904	6.086		6.238			
0.035	3.720	5.115	5.911	6.110		6.265			
0.040	3.721	5.122	5. 917	6.127		6.286			
0.045		5.130	5.920	6.139		6.297			
0.050		5.133	5.922	6.146		6.304			
0.075		5.156	5. 930	6.155	6.261	6.328			
0.100		5.178	5.932	6.162	6.279	6.350			
0.125		5. 199	5.938	6.170	6.291	6.372			
0.150		5.220	5.940	6.177	6.309	6.394			
0.175			5.945	6.182	6.322	6.415			
0.200			5.948	6.190	6.339	6.435			
0.250			5.950	6.198	6.362	6.474			
0.300			5. 952		6.390	6.511			
0.350					6.411	6.549			
0.400					6.436	6.581			
0.450						6.619			

Density (g cm ⁻³ x 10 ⁻¹)	Mole Fraction of Nitrogen								
	0.0000 (293.2 K) [Ref. 329]	0.0961 (293.2 K) [Ref. 329]	0.1627 (293.2 K) [Ref. 329]	0.2750 (293.2 K) [Ref. 329]	0.4879 (293.2 K) [Ref. 329]	0.6721 (293.2 K) [Ref. 329]	0.8407 (293.2 K) [Ref. 329]		
0.00050	8,822	11.440							
0.00100	8.822	11.444	12.757						
0.00125				14.342	16.071	16.899			
0.00150	8.820	11.450	12.762						
0.00200	8.820	11.459	12.778						
0.00250	8.820	11.460	12.780	14,360	16.093	16.900	17.330		
0.00300		11.468	12.781						
0.00350		11.472	12.790						
0.00375				14.378	16,110				
0.00400		11.478	12.794						
0.00450		11.479	12.798						
0.00500		11.479	12.800	14.391	16.124	16.932	17.362		
0.00600			12.800						
0.00625				14.400					
0.00750				14.410	16.158	16.968	17.400		
0.00875				14.420					
0.01000					16.180	17.000	17.438		
0.01125					16.192				
0.01250					16.206	17.028	17.460		
0.01500					16.230	17.055	17.490		
0.01750						17.082	17.520		
0.02000						17.118	17.560		

TABLE 117-G(D)S. SMOOTHED VISCOSITY VALUES AS A FUNCTION OF DENSITY FOR GASEOUS HYDROGEN-NITROGEN MEXTURES (continued)

	Mole Fraction of Nitrogen								
Density (g cm ⁻³ x 10 ⁻⁴)	0.0000 (303.2 K) [Ref. 329]	0.0961 (303.2 K) [Ref. 329]	0.1627 (303.2 K) [Ref. 329]	0.2750 (303.2 K) [Ref. 329]	0.4879 (303.2 K) [Ref. 329]	0.6721 (303.2 K) [Ref. 329]	0.8407 (303.2 K) [Ref. 329]	1.0000 (303.2 K) [Ref. 329]	
0.00050 0.00100 0.00125 0.00150	9.021 9.028 9.031	11.724 11.736 11.740	13, 080	14.720	16.500	17.358			
0.00200	9.037	11.744	13,098	14.736					
0.00250 0.00300 0.00350	9.040	11.748 11.750 11.754	13.100 13,108	14.744 14.744	16.520	17.370	17.800	18.021	
0.00375					16.538				
0.00400		11.758	13,118	14.756					
0.00450 0.00500 0.00600 0.00625 0.00700		11.760 11.760	13, 118 13, 120 13, 122	14.760 14.772 14.780	16.548 16.562	17.401	17. 824	18,035	
0.00750 0.00850				14.781 14.788	16.578	17.438	17.850	16.050	
0.01000 0.01250 0.01375					16.600 16.628 16.640	17.458 17.478	17.878 17.909	18.078 18.102	
0.01500 0.01750 0.01850						17.510 17.540 17.558	17. 940 17. 978	18.140 18.180	
0.02000 0.02250							18.002 18.038	18.276	
0.02500								18.328	

FIGURE 117-G(D). VISCOSITY DATA AS A FUNCTION OF DENSITY FOR GASEOUS HYDROGEN - NITROGEN MIXTURES

FIGURE 117-G(D). VISCOSITY DATA AS A FUNCTION OF DENSITY FOR GASEOUS HYDROGEN-NITROGEN MIXTURES (continued)

•

Anna .-

TABLE 118-G(C)E. EXPERIMENTAL VISCOSITY DATA AS A FUNCTION OF COMPOSITION FOR GASEOUS HYDROGEN-NITROUS OXIDE MIXTURES

Cur. No.	Fig.	Ref. No.	Author(s)	Temp. (K)	Pressure	Mole Fraction of N ₂ O	Viscosity (N s m ⁻² x 10 ⁻⁶)	Remarks
1	118-G(C)	234	Trautz, M. and	300.0		1.0000	14. 88	N ₂ O: 1.3 p per 1000, H ₂ : made by
	• ′		Kurz, F.			0.6011	14. 81	electrolysis; capillary method,
						0.4039	14. 51	$d = 0.018 \text{ cm}$; $L_1 = 0.027\%$, $L_2 =$
						0.2143	13.48	0. 044%. L ₂ = 0. 083%.
						0.0000	8. 91	•
2	118-G(C)	234	Trautz, M. and	400, 0		1.0000	19.43	Same remarks as for curve 1 except
	` '		Kurz, F.			0.6011	19.07	$L_1 = 0.000\%, L_2 = 0.000\%, L_3 =$
						0.4039	18.49	0.000%.
						0.2143	16.84	
						0.0000	10. 81	
3	118-G(C)	234	Trautz. M. and	500.0		1.0000	23, 55	Same remarks as for curve 1 except
	(-,		Kurz. F.			0,6011	22, 92	$L_1 = 0.002\%$, $L_2 = 0.004\%$, $L_3 =$
						0.4039	22. 06	0.009%.
						0, 2143	19.90	
						0.0000	12, 56	
4	118-G(C)	234	Trautz, M. and	550.0		1.0000	25, 55	Same remarks as for curve 1 except
_	,		Kurz. F. 0.6011	24.77	$L_1 = 0.028\%$, $L_2 = 0.063\%$, $L_3 =$			
			• •			0.4039	23. 76	0, 140%.
						0.2143	21.37	
						0,0000	13.41	

TABLE 118-G(C)S. SMOOTHED VISCOSITY VALUES AS A FUNCTION OF COMPOSITION FOR GASEOUS HYDROGEN-NITROUS OXIDE MIXTURES

Mole Fraction of N ₂ O	300, 0 K [Ref. 234]	400. 0 K [Ref. 234]	500.0 K [Ref. 234]	550, 0 K [Ref. 234]
0.00	8. 91	10. 81	12.56	13.41
0, 05	10.54	12.86	14.82	16.30
0.10	11.81	14.58	16.95	18.30
0.15	12.70	15. 78	18.54	19.86
0.20	13.32	16.64	19.62	21.10
0.25	13.77	17. 28	20.49	22. 02
0.30	14.09	17. 79	21.14	22.74
0.35	14.33	18.18	21.64	23. 30
0, 40	14.52	18.48	22.04	23.74
0.45	14.64	18.70	22.35	24.08
0.50	14. 73	18.86	22.58	24, 36
0.55	14.79	18.97	22.76	24.58
0, 60	14.83	19.06	22.92	24.74
0.65	14.85	19.15	23.06	24.92
0.70	14.87	19, 22	23. 18	25.05
0. 75	14.88	19.28	23, 28	25. 16
0, 80	14.89	19.33	23. 36	25. 26
0, 85	14.89	19.37	23.44	25. 35
0.90	14, 89	19.40	23, 48	25, 42
0.95	14.89	19.42	23.53	25.48
1.00	14. 88	19. 43	23.55	25. 55

FIGURE 118-G(C). VISCOSITY DATA AS A FUNCTION OF COMPOSITION FOR GASEOUS HYDROGEN - NITROUS OXIDE MIXTURES

TABLE 119-G(C)E. EXPERIMENTAL VISCOSITY DATA AS A FUNCTION OF COMPOSITION FOR GASEOUS HYDROGEN-OXYGEN MIXTURES

Cur. No.	Fig. No.	Ref. No.	Author(s)	Temp. (K)	Pressure (mm Hg)	Mole Fraction of O ₂	Viscosity (N s m ⁻² x 10 ⁻⁶)	Remarks
1	119-G(C)	334	Strauss, W.A. and	293.2	741.1	0.000	8. 78	Capillary flow viscometer, rela-
			Edse, R.		742.6	0.052	10.45	tive measurements; $L_1 = 0.245\%$,
					744. 1	0.100	12.04	$L_2 = 0.495\%$, $L_3 = 1.767\%$.
					745.7	0.153	13.39	
					747.2	0.206	14.63	
					748.7	0.255	15.55	
					750.5	0.278	17.28	
					752.2	0.359	17.13	
					752.9	0.406	17.78	
					751.6	0.447	18.10	
					750.4	0.493	18.50	
			•		749.3	0.543	18. 87	
					749.3	0.591	19. 32	
					748.4	0.651	19. 45	
					748. 1	0.700	19, 65	
					747, 6	0.748	19. 81	
					747.0	0. 795	19. 98	
					746.4	0.847	20.07	
					745.8	0.895	20. 20	
					745. 2	0.955	20, 26	
								•
					744. 7	1.000	20. 24	
2	119-G(C)	327	Van Lierde, J.	293.6		0.000	8.85	Oscillating disk viscometer; L ₁ =
						0.161	14.09	0.093% , $L_2 = 0.197\%$, $L_3 = 0.498\%$.
						0.273	16, 15	, , , , , , , , , , , , , , , , , , ,
						0.380	17.39	
						0.527	18.68	
		,				0,670	19. 54	
						1.000	20.40	
3	119-G(C)	227	Trautz, M. and	300.0		1.0000	20.57	Capillary method, R = 0.2019 mm;
			Melster, A.			0.8165	20.19	$L_1 = 0.487\%$, $L_2 = 0.686\%$, $L_3 =$
			•			0,6055	19.25	1.220%.
						0.3970	17.84	
						0.2192	14.94	
						0,0000	8.89	
4	119-G(C)	227	Trautz, M. and	400.0		1.0000	25.68	Same remarks as for curve 4 excep
			Melster, A.			0.8165	25. 07	$L_1 = 0.260\%$, $L_2 = 0.373\%$, $L_3 =$
						0.6055	23, 81	0.642%.
						0.3970	21.92	
						0.2192	18, 58	
						0.0000	10.87	
5	119-G(C)	227	Trautz, M. and	500.0		1.0000	30. 17	Same remarks as for curve 4 excep
•	110 0(0)		Melster, A.	000.0		0.8165	29. 50	L ₁ = 0.179%, L ₂ = 0.316%, L ₃ =
			melatel, A.			0.6055	27. 90	
						0.3970	25.56	0, 641%.
						0.2192	21.58	
						0.0000	12.59	
6	119-G(C)	227	Trautz, M. and	550.0		1,0000	32. 20	Same remarks as for curve 4 excep
•	115 0(0)	22.	Melster, A.	330.0		0.8165	31.47	
			meiater, A.					$L_1 = 0.196\%, L_2 = 0.356\%, L_3 = 0.774\%$
						0.6055	29. 78	0. 774%.
						0, 3970	27. 33	
						0.2192	22.88	
						0.0000	13. 81	

TABLE 119-G(C)S. SMOOTHED VISCOSITY VALUES AS A FUNCTION OF COMPOSITION FOR GASEOUS HYDROGEN-OXYGEN MIXTURES

Mole Fraction of O ₂	(293.2 K) (Ref. 334)	(293.6 K) [Ref. 327]	(300.0 K) [Ref. 227]	(400.0 K) [Ref. 227]	(500, 0 K) [Ref. 227]	(550.0 K) [Ref. 227
0.00	8.78	8. 85	8.89	10.87	12, 59	13. 81
0,05	10.40	10.73	10.70	13, 30	15.00	
0.10	11.92	12.46	12. 25	15. 30	17, 21	16.30
0.15	13.28	13. 83	13.60	16. 92	19. 22	18.60
0, 20	14.48	14.88	14.70	18.25	21.00	20. 62 22. 40
0, 25	15.49	15.72	15.60	19, 40	22, 42	99 00
0, 30	16.33	16.43	16. 20	20, 33	23, 60	23. 85
0, 35	17.05	17.05	17.09	21.16	24.62	24.17
0.40	17.64	17.58	17.65	21.88		26. 21
0.45	18.14	18. 14	18.15	22, 48	25. 55 26. 28	27. 19 28. 00
0, 50	18.55	18.47	18.60	23, 04	26.94	00 70
0, 55	18.91	18.85	18.95	25. 55	27.51	28. 70
0,60	19.21	19. 16	19. 28	23. 90	28. 01	29. 32
0.65	19.48	19.45	19.55	24. 25		29.86
0, 70	19.69	19.68	19.78	24. 35	28. 44 28. 82	30. 35 30. 75
0.75	19.87	19.88	19.98	24, 80	29, 15	31, 09
0.80	20.00	20.03	20.12	25, 05	29. 42	
0.85	20.09	20.16	20.28	25. 22	29. 65	31.38
0, 90	20.16	20.25	20.40	25. 40	29. 85	31.58
0, 95	20.22	20.33	20.48	25. 55	29. 85 30. 03	31. 82 32. 02
1.00	20.24	20.40	20.51	25. 68	30.17	32.20

•

_ .__.

- ·

The state of the s

To the same of the

FIGURE 119~G(C). VISCOSITY DATA AS A FUNCTION OF COMPOSITION FOR GASEOUS HYDROGEN-OXYGEN MIXTURES

TABLE 120-G(C)E. EXPERIMENTAL VISCOSITY DATA AS A FUNCTION OF COMPOSITION FOR GASEOUS HYDROGEN-PROPANE MIXTURES

Cur.		Ref. No.	Author (s)	Temp, (K)	Pressure (atm)	Mole Fraction of C ₃ H ₈	Viscosity (N s m ⁻² x 10 ⁻⁶)	Remarks
1	120-G(C)	340	Alfons, K. and	273.2		0,0000	8.601	Modified Rankine type viscometer,
			Walter, R.			0.0313	8.900	calibrated with respect to air; L ₁ =
						0.0785	9,390	0.510% , $L_2 = 0.777\%$, $L_3 = 2.036\%$.
						0,0891	9.500	·
						0.1500	9.700	
						0,2218	9.600	
						0.3271	9.200	
						0.5182	8.700	
						0.6978	8,100	
						0.8037	7.700	
						1.0000	7.520	
2	120-G(C)	234	Trautz, M. and	300.0		1.0000	8.17	C ₃ H ₈ : pure, H ₂ : made by electro-
			Kurz, F.			0.6296	8.74	lysis; capillary method, d = 0.018
						0.2118	9.85	cm; $L_1 = 0.0556^{\circ}$. $L_2 = 0.0939^{\circ}$.
						0.0775	9.70	$L_3 = 0.2250^{\sigma_0}$.
						0.0000	8.91	•
3	120-G(C)	234	Trautz, M. and	400,0		1.0000	10.70	Same remarks as for curve 2 except
			Kurz, F.			0.6296	11.30	L ₁ = 0,052%, L ₂ = 0,123%, L ₃
						0.2118	12.33	0.340%.
						0.0775	11.94	
						0.0000	10.81	
4	120-G(C)	234	Trautz, M. and	500.0		1.0000	13.08	Same remarks as for curve 2 except
			Kurz, F.			0.6296	13.66	$L_1 = 0.070\%$, $L_2 = 0.121\%$, $L_3 =$
						0.2118	14.59	0.301%.
						0.0775	13,92	
						0.0000	12,56	
5	120-G(C)	234	Trautz, M. and	550.0		1,0000	14.22	Same remarks as for curve 2 except
			Kurz, F.			0.6296	14.78	$L_1 = 0.033\%$, $L_2 = 0.066\%$, $L_3 =$
			•			0.2118	15.66	0.135%.
						0.0775	14.85	
						0.0000	13.47	

TABLE 120-G(S). SMOOTHED VISCOSITY VALUES AS A FUNCTION OF COMPOSITION FOR GASEOUS HYDROGEN-PROPANE MIXTURES

Mole Fraction of C ₃ H ₈	(273.2 K) [Ref. 340]	(300, 0 K) [Ref. 234]	(400, 0 K) [Ref. 234]	(500.0 K) [Ref. 234]	(550,0 K) [Ref. 234]
0.00	8.60	8.89	10, 81	12.56	13.47
0.05	9.05	9.50	11.69	13.60	14.45
0.10	9.53	9.80	12.10	14.14	15.10
0.15	9.65	9.90	12.28	14.46	15.50
0.20	9.62	9.88	12.32	14.68	15.66
0.25	9.48	9.78	12.29	14.62	15.62
0.30	9.33	9.64	12.18	14.56	15,55
0.35	9.17	9.48	12.02	14.44	15.45
0,40	9.00	9.31	11.82	14.25	15.34
0.45	8.84	9.15	11.66	14.06	15.22
0.50	8.67	9.02	11.54	13.92	15.10
0.55	8.51	8.90	11.44	13.80	14.97
0,60	8.37	8.80	11.34	13.70	14.84
0.65	8.23	8.69	11,25	13.60	14.72
0.70	8.10	8.58	11.15	13.50	14.62
0.75	7.98	8.48	11.04	13,40	14.51
0,80	7.86	8.39	10,95	13.31	14.41
0,85	7.76	8.32	10.88	13,23	14.34
0.90	7.67	8.27	10.81	13.16	14.30
0, 95	7.59	8.22	10.75	13.12	14.26
1.00	7.52	8.17	10,70	13.07	14.22

FIGURE 120-G(C). VISCOSITY DATA AS A FUNCTION OF COMPOSITION FOR GASEOUS HYDROGEN-PROPANE MIXTURES

TABLE 121-L(T)E. EXPERIMENTAL VISCOSITY DATA AS A FUNCTION OF TEMPERATURE FOR LIQUID METHANE-NITROGEN MIXTURES

Cur. No.	Fig. No.	Ref. No.	Author(s)	Mole Fraction of N ₂	Pressure (atm)	Temp. (K)	Viscosity (N s m ⁻² x 10 ⁻⁶)	Remarks
1	121-L(T)	70	Gerf, S.F. and	1,000		66.2	247. 0	N ₂ and CH ₄ : 99.8 pure; capillary
			Galkov, G.I.			69.0	217.0	flow viscometer, relative meas-
						71.1	201.0	urements.
						73.3	194.0	
						75.4	171.0	
						76.7	164.0	•
						77.3	159.0	
2	121-L(T)	70	Gerf, S. F. and	0.812		64.8	286.0	Same remarks as for curve 1.
-	(-)		Galkov, G.I.			65.3	280, 0	
						65.7	269.0	
						67.6	245.0	
						68.2	240.0	
						70.0	223.0	
						70, 2	221. 0	
						71.7	211.0	
						74.3	190.0	
						76.7	174.0	
						79.1	164.0	
						80.3	154.0	
3	121-L(T)	70	Gerf, S. F. and	0.608		68.2	275.0	Same remarks as for curve 1.
			Galkov, G.I.			70.1	253.0	
						71.7	237.0	
						75.1	210.0	
						78.0	188.0	
						81.6	167.0	
						84.4	152.0	
4	121-L(T)	70	Gerf, S. F. and	0, 412		78.5	217.0	Same remarks as for curve 1,
•	121-1(1)	10	Galkov, G.I.	0.412		81.4	195.0	Same remarks as for curve 1.
			Gaikov, G.1.			84.7	178.0	
						86.1	171.0	
5	121-L(T)	70	Gerf, S.F. and	0.196		84.1	214.0	Same remarks as for curve 1.
3	121-L(1)	10		0,150		85.0	206, 0	Same remarks as for curve 1.
			Galkov, G.1.			87.8	186.0	
						89.8	172. 0	
	101 7 (T)	70	Conf. C. F. and	0.000		94.4		S
6	121-L(T)	70	Gerf, S. F. and	0.000			187.0	Same remarks as for curve 1.
			Galkov, G.I.			98.3	162.0	
						107.4	144.0	
						108.8	125.0	
						111.2	119.0	
7	121-L(T)	344	Gerf, S. F. and	0.239		96.6	155.0	Oscillating cylinder; n accuracy
			Galkov, G.I.			103.6	133. 0	±3, mixture analysis ±0.24.
			,			109.6	118.0	•
						132.4	75.0	
						145.8	66.0	
8	121-L(T)	70	Gerf, S.F. and	0.494		93. 4	133. 0	Same remarks as for curve 7.
•		10	Galkov, G.I.	V. 101		96.4	125.0	Came I chiai no ao ivi cai it I.
			Gainor, G.I.			103.8		
							113.0	
						110.8	103.0	
						138.8	64.0	
						139.4 146.8	64. 0 58. 0	
	101 1/20	5 0	Out CD and					
9	.121-L(T)	70	Gerf, S. F. and	0, 727		96.2	116.0	Same remarks as for curve 7.
			Galkov, G.I.			102.5	103.0	
						110.3	93.0	
						128.8	68. 0	
						137.2	57.0	

TABLE 121-L(T)S. SMOOTHED VISCOSITY VALUES AS A FUNCTION OF TEMPERATURE FOR LIQUID METHANE-NITROGEN MIXTURES

remp. (K)					Mole Fr	action of Nitro	gen		
	0.000 (Ref. 70)	0.196 [Ref. 70]	0.412 (Ref. 70)	0.608 [Ref. 70]	0.812 [Ref. 70]	1.000 [Ref. 70]	0. 239 [Ref. 344]	0.494 [Ref. 344]	0.727 [Ref. 344
0					28.30				
0						24.80	1		
5				28.40	24.60	23. 20			
0				25.48	22.30	20, 84	1		
5				22.90	20.35	18, 58	ŀ		
0				21.04	18.55	17.30	ł		
5				19.15	17.04	15. 92			
0			22.00				1		
0			20. 52	17.64	15.64	14.48	1		
0			19. 22				1		
5			18. 95	16.20	14. 25	13.17	. I		
0		22.20					1		
0			18. 10						
0		21.64	17.60	14.92	13. 10	11.90	1		
0		19.85	17. 18						
5		18. 78	16.44	13, 48	11. 95		1		
ŏ		18. 42	10. 11	10, 10	11.00		1		
ŏ		17. 72							
ō		17. 10							
Ō	19.00								
0	18. 30						159.0	128, 6	
0	17.60						ţ		
5	16.68						- 4		
0	16.39	•					H		
0	15.38						143.8	119.6	107.2
5	14.35						41		
0	13.80						11		
0	13.52						130.0	111.0	99.8
0	13.20						} }		
5	12.80						- } }		
0	12.68								
0	12.18						117.2	102.5	93.2
0	11.70						i i		
0	1						105.2	94.4	86.4
0	ì						94.5	86.7	79.8
0	I.						85.6	79.8	73.0
Ō	1						78. 2	73. 4	66.2
0							73.0	67.8	59.6
ō	k						69. 1	63.0	52.8
ō	1						66.3	59.2	46.0
	ì						ł		
0							64.2		

#all viscosity values should be multiplied by a factor of 10

FIGURE 121-L(T). VISCOSITY DATA AS A FUNCTION OF TEMPERATURE FOR LIQUID METHANE-NITROGEN MIXTURES

FIGURE 121-L(T). VISCOSITY DATA AS A FUNCTION OF TEMPERATURE FOR LIQUID METHANE-NITROGEN MIXTURES (continued)

TABLE 121-G(D)E. EXPERIMENTAL VISCOSITY DATA AS A FUNCTION OF DENSITY FOR GASEOUS METHANE-NITROGEN MIXTURES

Cur. No.	Fig.	Ref. No.	Author(s)	Mole Fraction of N ₂	Temp.	Density (g cm ⁻³)	Viscosity (N s m ⁻² x 10 ⁻⁶)	Remarks
1	121-G(D)	366	Gnezdilov, N.E. and Golubev, I.F.	0.722	273. 2	0. 0000 0. 0108 0. 0217 0. 0558 0. 155 0. 173 0. 173 0. 222 0. 222 0. 264 0. 298 0. 330 0. 335 0. 355 0. 385 0. 408	14. 89 15. 04 15. 10 15. 67 15. 63 17. 08 18. 93 19. 02 21. 07 21. 29 23. 48 23. 60 25. 52 27. 83 27. 96 30. 00 30. 08 31. 85 33. 56 33. 68	No purity specified for gases; composition analyzed by KhT-2M chrome-thermograph; capillary method; experimental error ±15; original data reported as a function of pressure, density calculated from pressure using equations given by Miller et al. [375, 376].
2	121-G(D)	366	Gnezdilov, N. E. and Golubev, I. F.	0, 722	298. 2	0. 20982 0. 0197 0. 0501 0. 101 0. 151 0. 193 0. 236 0. 270 0. 270 0. 301 0. 351 0. 351 0. 364	15. 90 16. 07 16. 54 17. 79 19. 34 21. 04 22. 80 24. 69 24. 69 28. 51 30. 07 30. 38 31. 80 32. 07	Same remarks as for curve 1.
3	121-G(D)	366	Gnezdilov, N.E. and Golubev, I.F.	0.722	323. 2	0. 0181 0. 0457 0. 0910 0. 136 0. 136 0. 175 0. 213 0. 246 0. 275 0. 299 0. 324 0. 344 0. 344	16, 99 17, 42 18, 48 20, 00 20, 18 21, 68 23, 12 24, 50 26, 03 27, 41 27, 69 29, 20 30, 61 30, 81	Same remarks as for curve 1.
4	121-G(D)	366	Gnezdilov, N.E. and Golubev, 1.F.	0. 722	373. 2	0. 00780 0. 0156 0. 01589 0. 0389 0. 0773 0. 114 0. 178 0. 208 0. 235 0. 258 0. 299	18. 66 18. 78 19. 14 19. 28 20. 00 20. 92 22. 11 23. 24 24. 42 25. 62 26. 93 28. 16 29. 55	Same remarks as for curve 1.
5	121-G(D)	366	Gnezdilov, N.E. and Golubev, I.F.	0.722	423.2	0. 0137 0. 0341 0. 0675 0. 0994 0. 0994 0. 128 0. 156 0. 182 0. 206 0. 227 0. 248 0. 267	20. 54 20. 76 21. 49 22. 21 22. 30 23. 10 24. 05 25. 08 26. 06 27. 16 28. 18 29. 30 29. 36	Same remarks as for curve 1.

TABLE 121-G(D)E. EXPERIMENTAL VISCOSITY DATA AS A FUNCTION OF DENSITY FOR GASEOUS METHANE-NITROGEN MIXTURES (continued)

Cur. No.	Fig.	Ref. No.	Author(s)	Mole Fraction of N ₂	Temp. (K)	Density (g cm ⁻³)	Viscosity (N s m ⁻² x 10 ⁻⁶)	Remarks
6	121-G(D)	366	Gnezdilov, N.E. and Golubev, I.F.	0. 722	473. 2	0. 0124 0. 0303 0. 0597 0. 0880 0. 113 0. 113 0. 138 0. 161 0. 183 0. 203 0. 223	22. 19 22. 39 22. 92 23. 62 24. 26 24. 36 25. 12 26. 04 26. 82 27. 74 28. 33 29. 41	Same remarks as for curve 1.
7	121-G(D)	366	Gnezdilov, N.E. and Golubev, I.F.	0.449	273. 2	0. 0189 0. 0493 0. 0493 0. 102 0. 102 0. 204 0. 204 0. 242 0. 271 0. 302 0. 302 0. 319 0. 337 0. 350 0. 350	13. 44 14. 17 13. 94 15. 61 17. 84 20. 42 20. 51 22. 68 22. 82 25. 32 27. 69 27. 50 29. 83 31. 60 31. 73 33. 27 33. 32	Same remarks as for curve 1.
8	121-G(D)	366	Gnezdilov, N.E. and Golubev, I.F.	0.449	298.2	0. 00848 0. 0171 0. 0438 0. 0899 0. 0899 0. 136 0. 175 0. 212 0. 245 0. 245 0. 291 0. 310 0. 326 0. 326	14. 19 14. 36 14. 93 16. 00 16. 21 17. 78 19. 94 21. 90 23. 87 25. 95 27. 86 29. 71 31. 46 31. 50	Same remarks as for curve 1.
9	121-G(D)	366	Gnezdilov, N.E. and Golubev, I.F.	0.449	323. 2	0. 00780 0. 0395 0. 0809 0. 0809 0. 122 0. 158 0. 192 0. 192 0. 221 0. 249 0. 268 0. 286 0. 303 0. 303	15. 09 15. 67 16. 65 16. 80 18. 08 19. 68 21. 36 21. 49 23. 19 24. 92 26. 60 28. 19 28. 30 29. 82 29. 74	Same remarks as for curve 1.
.0	121-G(D)	366	Gnezdilov, N. E. and Golubev, I. F.	0.449	373. 2	0. 00672 0. 0134 0. 0339 0. 0682 0. 101 0. 130 0. 160 0. 187 0. 212 0. 212 0. 212 0. 231 0. 248 0. 263 0. 263	16. 76 16. 87 17. 23 18. 01 19. 01 20. 21 21. 55 22. 91 24. 14 24. 26 25. 62 26. 85 27. 00 28. 14 28. 21	Same remarks as for curve 1.

TABLE 121-G(D)E. EXPERIMENTAL VISCOSITY DATA AS A FUNCTION OF DENSITY FOR GASEOUS METHANE-NITROGEN MIXTURES (continued)

Cur. No.	Fig.	Ref. No.	Author(s)	Mole Fraction of N ₂	Temp.	Density (g cm ⁻³)	Viscosity (N s m ⁻² x 10 ⁻⁶)	Remarks
11	121-G(D)	366	Gnezdilov, N.E. and	0.449	423. 2	0.0118	18.50	Same remarks as for curve 1.
			Golubev, I.F.			0.0296	18, 82	
						0.0587	19. 45	
						0.0872	20.28	
						0.113	21.11	
						0. 137	22.16	
						0.160	23.30	
						0.182	24.44	
						0.203	25.46	
						0.219	26.49	
						0. 234	27. 51	
						0.234	27.64	
?	121-G(D)	366	Gnezdilov, N.E. and Golubev, I.F.	0.449	473.2	0.0106	20.07	Same remarks as for curve 1.
						0.0264	20.39	
						0.0520	20.86	
						0.0770	21.49	
						0.0990	22.24	
						0.121	23.12	
						0.141	23.96	
						0.161	24.86	
						0.180	25, 79	
						0.199	26, 63	
						0.215	27.65	

TABLE 121-G(D)S. SMOOTHED VISCOSITY VALUES AS A FUNCTION OF DENSITY FOR GASEOUS METHANE-NITROGEN MIXTURES

Donait.			Mole Fractio	n of Nitrogen		
Density (g cm ⁻³)	0.449 (273.2 K) [Ref. 366]	0.449 (298.2 K) [Ref. 366]	0.449 (323.2 K) [Ref. 366]	0, 449 (373.2 K) [Ref. 366]	0.449 (423.2 K) [Ref. 366]	0.449 (423.2 K {Ref. 366
0. 02	13.45	14.44	15.32	16.96	18.66	20.24
0.04	13.85	14.86	15.74	17.36	19.06	20.62
0.05	14.08	15.08	15.96	17,58	19, 27	20.84
0.06	14.32	15.32	16.20	17.82	19.50	21.08
0.08	14.88	15.84	16.72	18.34	20.04	21.64
0.10	15, 52	16. 24	17.32	18.96	20.68	22.30
0.12	16.24	17.12	18.00	19.68	21.42	23.08
0.14	17.06	17.95	18.80	20.50	22.28	23, 92
0.15	17.50	18.39	19.24	20.95	22.72	24.38
0.16	17.96	18,84	19.70	21.44	23. 20	24.84
0.18	18.96	19.84	20. 70	22, 50	24.24	25.80
0.20	20.04	20.92	21.84	23.64	25. 36	26.82
0. 22	21, 28	22.15	23.04	24.88	26.64	
0.24	22.60	23.48	24.24	26.28	27, 94	
0. 25	23.36	24. 20	25, 20	27.06		
0.26	24.16	24.96	25.98	27. 90		
0.28	25.90	26.64	27.64			
0.30	27.68	28.60	29.48			
0.35	33.24					

Density			Mole Fractio	on of Nitrogen		
(g cm ⁻³)	0.722 (273.2 K) (Ref. 366)	0.722 (298.2 K) (Ref. 366)	0, 722 (323, 2 K) [Ref. 366]	0. 722 (373. 2 K) [Ref. 366]	0. 722 (423. 2 K) Ref. 366	0.722 (423.2 K) (Ref. 366
0. 02	15.04	16.10	17.04	18.84	20.64	22.28
0.04	15.36	16.44	17.36	19.24	20.96	22.60
0.05	15, 56	16.64	17.58	19, 42	21.14	22.74
0.06	15.74	16.84	17.82	19.64	21, 32	22.94
0.08	16.16	17. 26	18.30	20.04	21.76	23.36
0.10	16.66	17.76	18.84	20.52	22.30	23.88
0. 12	17.20	18, 32	19, 46	21.08	22.84	24.48
0.14	17.80	18. 96	20.14	21.70	23.50	25.18
0.15	18.16	19.30	20.50	22.04	23.84	25.54
0.16	18.50	19.68	20.88	22.40	24. 20	25.92
0.18	19.24	20.44	21.68	23. 20	25.00	26.72
0.20	20.10	21.28	22, 52	24.06	25.80	27.60
0. 22	21.08	22.14	23.40	24.96	26.76	28.58
0.24	22.12	23, 10	24.30	25.88	27.96	29.68
0.25	22.68	23.60	24.78	26.40		30.24
0. 26	23, 26	24.16	25. 26	26.94		30.86
0. 28	24.48	25. 32	26.32	28.16		
0.30	25.80	26.60	27.54	29.56		
0.35	29.34	30.30	31.04			
0.40	33.04					

FIGURE 121-G(D). VISCOSITY DATA AS A FUNCTION OF DENSITY FOR GASEOUS METHANE-NITROGEN MIXTURES

TABLE 122-G(C)E. EXPERIMENTAL VISCOSITY DATA AS A FUNCTION OF COMPOSITION FOR GASEOUS METHANE-OXYGEN MIXTURES

Cur. No.	Fig.	Ref.	Author (s)	Temp.	Pressure (mm Hg)	Mole Fraction of O ₂	Viscosity (N a m ⁻² x 10 ⁻⁴)	Remarks
	122-G(C)	334	Strauss, W. A. and	293.2	746.8	0.000	11.12	Capillary flow viscometer, relative
•	122 0(0)		Edse, R.		747.4	0.051	11.59	measurements; $L_1 = 0.370\%$, $L_2 =$
			_ · · · ·		748.2	0.099	12.15	0.455% , $L_3 = 0.887\%$.
					749.0	0.142	, 12.56	
					750.1	0.198	13.16	
					751.0	0.251	13.74	
					750.7	0.296	14.13	
					750.6	0.349	14.52	
					750.2	0.501	15.92	
					750.2	0.549	16.30	
					750.3	0.597	16.75	
					749.9	0.647	17.18	
					749.4	0.702	17.62	
					749.3	0.765	18.31	
					748.9	0.799	18.39	
					748.9	0.849	18.86	
					748.6	0,898	19.29	
					748.3	0.951	19.71	
					748.0	1.000	20.04	
2	122-G(C)	334	Strauss, W. A. and	293.2	761.0	1.000	20.26	
			Edse, R.		761.6	0,895	19.33	
					761.9	0.801	18.54	
					762.4	0.713	17.75	
					763.0	0.600	16.88	
					763.2	0.497	16.02	
					763.1	0.400	15.19	
					763.7	0.299	14.37	
					762.8	0.191	13.29	
					761.0	0.092	12.17	
					759.7	0.000	11.17	
3	122-G(C)	334	Strauss, W.A. and	293.2	759.7	0.000	11.05	
	• •		Edse, R.		760.3	0.048	11.63	•
					761.9	0.147	12.70	
					763.9	0.244	13.87	
			•		763.5	0.353	14.72	
					763.0	0.504	15.88	
					763.3	0.554	16.52	
					762.8	0.656	17.33	
					762.3	0.747	18.13	
					761.8	0,860	18.98	
					761.3	0.951	19.70	
					761.0	1.000	20.02	

TABLE 122-G(C)S. SMOOTHED VISCOSITY VALUES AS A FUNCTION OF COMPOSITION FOR GASEOUS METHANE-OXYGEN MIXTURES

0,00 0,05	11.12 11.68
0.05	
0.10	12, 22
0.15	12, 72
0.20	13.25
0.25	13.76
0.30	14.12
0.35	14.66
0.40	15.12
0.45	15.54
0.50	15.97
0.55	16.38
0.60	16.81
0,65	17.22
0.70	17.65
0.75	18.05
0.80	18.45
0.85	18.89
0.90	19.30
0.95	19.70
1.00	20, 11

FIGURE 122-G(C). VISCOSITY DATA AS A FUNCTION OF COMPOSITION FOR GASEOUS METHANE-OXYGEN MIXTURES

- -

. سو

- -

TABLE 123-L(D)E. EXPERIMENTAL VISCOSITY DATA AS A FUNCTION OF DENSITY FOR LIQUID METHANE-PROPANE MIXTURES

Cur. No.	Fig. No.	Ref.	Author(s)	Mole Fraction of C ₃ H ₈	Temp. (K)	Density (g c m ⁻³)	Viscosity (N s m ⁻² x 10 ⁻⁶)	Remarks
1	123-L(D)	72	Giddings, J.G., Kao, J.T.F., and Kobayashi, R.	1.0000	310.9	0. 489 0. 492 0. 495 0. 498 0. 501 0. 504 0. 516 0. 527 0. 539 0. 550 0. 562 0. 573	93.6 96.1 99.4 102.3 105.2 107.8 113.1 117.9 127.6 136.8 145.2 153.5 160.8	C ₃ H ₈ : research grade capillary tube viscometer; precision 0.2% excluding critical regions, error ±0.54%; original data reported as a function of pressure, density calculated from pressure using volumetric data of Reamer et al. [367], and Canjar and Manning [368].
2	123-L(D)	72	Giddings, J.G., et al.	0. 7793	310.9	0. 419 0. 429 0. 437 0. 445 0. 450 0. 459 0. 468 0. 481 0. 495 0. 504 0. 513 0. 522	65. 5 69. 1 72. 2 75. 2 77. 8 83. 0 87. 6 96. 2 104. 0 111. 6 119. 0 125. 4	Same remarks as for curve 1.
3	123-L(D)	72	Giddings, J. G., et al.	0.6122	310.9	0.350 0.367 0.381 0.391 0.407 0.420 0.438	44.6 49.1 53.1 56.5 62.0 66.8 74.2	Same remarks as for curve 1,
4	123-L(D)	72	Giddings, J.G., et al.	0.3861	310, 9	0. 214 0. 246 0. 273 0. 307 0. 329 0. 359 0. 380	22. 95 27. 10 30. 7 36. 6 41. 2 48. 9 55. 7	Same remarks as for curve 1.
5	123-L(D)	72	Giddings, J.G., et al.	1.0000	344.3	0. 442 0. 446 0. 450 0. 455 0. 459 0. 463 0. 472 0. 481 0. 498 0. 515 0. 532 0. 550 0. 567	66. 2 69. 1 72. 7 76. 3 79. 0 81. 9 87. 2 92. 2 101. 8 110. 2 118. 5 125. 7 133. 2	Same remarks as for curve 1.
6	123-L(D)	72	Giddings, J. G., et al.	0. 7793	344, 3	0. 313 0. 346 0. 368 0. 384 0. 395 0. 413 0. 426 0. 446 0. 461 0. 474 0. 485 0. 496	39. 0 45. 9 50. 1 54. 7 57. 3 62. 9 67. 7 76. 4 83. 8 90. 8 97. 5 103. 8	Same remarks as for curve 1.
7	123-L(D)	72	Giddings, J.G., et al.	0. 6122	344. 3	0, 269 0, 301 0, 321 0, 351 0, 371 0, 398	30.3 35.3 39.3 45.4 51.0 59.7	Same remarks as for curve 1.

TABLE 123-L(D)S. SMOOTHED VISCOSITY VALUES AS A FUNCTION OF DENSITY FOR LIQUID METHANE-PROPANE MIXTURES

ъ.		Mole Fraction	of Propane	
Density (g cm ⁻³)	1.000 (310.9 K) [Ref. 72]	0.7793 (310.9 K) [Ref. 72]	0. 6122 (310. 9 K) [Ref. 72]	0.3861 (310.9 K) (Ref. 72)
0.20				21.3
0.22				23.7
0.24				26.3
0. 26				29.0
0. 28				32.0
0.30				35. 3
0.32				39.2
0.34				43.8
0.36			47.1	49.2
0.38			52.9	55.7
0.40			59.4	
0.41			63.0	
0.42		65.9	56.8	
0.43		69. 2	70.7	
0.44		73.2	75. 1	
0.45		77.8		
0.46		83.0		
0.47		88.9		
0.48		95.4		
0.49	92.4	101.9		
0.50	102.8	109. 0		
0.51	113.0	116.3		
0.52	121.5	123.8		
0.53	129. 5			
0. 54	137. 0			
0.55	143.8			
0.56	151.5			
0.57	159.7			

FIGURE 123-L(D). VISCOSITY DATA AS A FUNCTION OF DENSITY FOR LIQUID METHANE - PROPANE MIXTURES

ا میں منطقہ میں ایس

-

TABLE 123-G(C)E. EXPERIMENTAL VISCOSITY DATA AS A FUNCTION OF COMPOSITION FOR GASEOUS METHANE-PROPANE MIXTURES

Cur. No.	Fig.	Ref. No.	Author (s)	Temp.	Pressure (atm)	Mole Fraction of C ₃ H ₆	Viscosity (N s m ⁻² x 10 ⁻⁶)	Remarks
1	123-G(C)	229	Trautz, M. and Sorg, K.G.	293.0		1,0000 0,8341 0,6383 0,3684 0,0000	8.01 8.31 8.78 9.48 10.87	CH_{4} and $C_{3}H_{6}$: I. G. Farben, 99.9 pure; capillary method; precision $\pm 0.05\%$; $L_{1} = 0.072\%$, $L_{2} = 0.161\%$, $L_{3} = 0.360\%$.
2	123-G(C)	229	Trautz, M. and Sorg, K.G.	373.0		1,0000 0,8341 0,6383 0,3684 0,0000	10.08 10.42 11.01 11.82 13.31	Same remarks as for curve 1 excep $L_1 = 0.125\%$, $L_2 = 0.218\%$, $L_3 = 0.456\%$.
3	123-G(C)	229	Trautz, M. and Sorg, K.G.	473.0		1,0000 0,8341 0,6383 0,3684 0,0000	12.53 12.91 13.55 14.41 16.03	Same remarks as for curve 1 excep $L_1=0.119\%,\ L_2=0.266\%,\ L_3=0.594\%.$
4	123-G(C)	229	Trautz, M. and Sorg, K.G.	523.0		1.0000 0.8341 0.6383 0.3684 0.0000	13.63 14.03 14.65 15.53 17.25	Same remarks as for curve 1 excep $L_1=0.072\%,\ L_2=0.160\%,\ L_3=0.358\%,$

TABLE 123-G(C)S. SMOOTHED VISCOSITY VALUES AS A FUNCTION OF COMPOSITION FOR GASEOUS METHANE-PROPANE MIXTURES

Mole Fraction of C ₃ H ₈	(293.0 K) [Ref. 229]	(373.0 K) [Ref. 229]	(473.0 K) [Ref. 229]	(523.0 K) [Ref. 229]
0.00	10.86	13.31	16.03	17.25
0.05	10.64	13.10	15.81	17.02
0.10	10.42	12,90	15.58	16.79
0.15	10, 22	12.64	15.36	16.55
0.20	10.04	12.48	15.13	16.31
0.25	9.86	12.29	14.92	16.08
0.30	9.69	12.10	14.71	15,84
0.35	9.54	11.92	14.51	15.61
0.40	9.40	11.73	14.31	15.40
0.45	9. 26	11.56	14.12	15.18
0.50	9.14	11.39	13.94	14.98
0.55	9.01	11.23	13.76	14.80
0.60	8, 88	11.07	13.60	14.63
0.65	8.76	10.92	13.44	14.48
0.70	8.64	10.77	13.28	14.34
0.75	8.52	10.63	13.14	14.20
0.80	8.42	10.51	13.01	14.08
0.85	8. 32	10, 38	12.88	13.95
0.90 .	8, 20	10. 27	12.76	13.84
0.95	8.10	10.17	12.64	13.73
1.00	8.00	10.08	12.53	13.62

FIGURE 123-G(C). VISCOSITY DATA AS A FUNCTION OF COMPOSITION FOR GASEOUS METHANE-PROPANE MIXTURES

- -

....

-

TABLE 123-G(D)E. EXPERIMENTAL VISCOSITY DATA AS A FUNCTION OF DENSITY FOR GASEOUS METHANE-PROPANE MIXTURES

Cur. No.	Fig.	Ref. No.	Author(s)	Mole Fraction of C ₃ H ₈	Temp. (K)	Density (g cm ⁻³)	Viscosity (N s m ⁻² x 10 ⁻⁶)	Remarks
1	123-G(D)	72	Giddings, J. G., Kao, J. T. F., and Kobayashi, R.	1.0000	310.9	0.00175 0.0131	8. 4 7 8. 58	C ₂ H ₆ : research grade; capillary tube viscometer; precision 0, 25% excluding critical regions, error ±0.54%; original data reported as a function of pressure, density calculated from pressure using volumetric data of Reamer e al. [367], and Canjar and Manning [368]
2	123-G(D)	72	Giddings, J.G., et al.	0.7793	310.9	0.60145 0.0122 0.0242	8.92 9.13 9.38	Same remarks as for curve 1.
3	123-G(D)	72	Giddings, J.G., et al.	0.6122	310.9	0.00130 0.00995 0.0201	9.3 9.5 9.7	Same remarks as for curve 1.
4	123-G(D)	72	Giddings, J.G., et al.	0.3861	310.9	0.00120 0.00773 0.0154 0.0244 0.0334 0.0445 0.0554	9. 96 10.13 10.34 10.56 10.82 11.12 11.60	Same remarks as for curve 1,
5	123-G(D)	72	Giddings, J.G., et al.	0.2090	310.9	0.000750 0.00595 0.0122 0.0189 0.0256 0.0332 0.0408 0.0568 0.0745 0.124 0.150 0.174 0.245 0.285 0.311	10, 72 10, 80 10, 91 11, 03 11, 24 11, 41 11, 64 12, 32 13, 12 14, 45 16, 05 17, 97 20, 1 24, 2 28, 0 34, 3 39, 5 44, 2	Same remarks as for curve 1.
6	123-G(D)	72	Giddings, J.G., et al.	0.0000	310.9	0.000630 0.00432 0.00873 0.0132 0.0178 0.0225 0.0272 0.0370 0.0470 0.0600 0.0732 0.0861 0.0998 0.125 0.149 0.188 0.217 0.240 0.258 0.274	11. 62 11. 68 11. 79 11. 90 12. 02 12. 16 12. 31 12. 65 13. 03 13. 68 14. 22 14. 94 15. 71 17. 52 19. 3 22. 8 26. 1 29. 2 31. 8 34. 2	Same remarks as for curve 1.
7	123-G(D)	72	Giddings, J.G., et al.	1.0000	344. 3	0.00158 0.0115 0.0252 0.0432	9, 35 9, 53 9, 79 10, 25	Same remarks as for curve 1.
8	123 - G(D)	72	Giddings, J.G., et al.	0. 7793	344.3	0.00151 0.0103 0.0206 0.0347 0.0487	9, 88 10, 06 10, 27 10, 69 11, 11	Same remarks as for curve 1.

TABLE 123-G(D)E. EXPERIMENTAL VISCORITY DATA AS A FUNCTION OF DENSITY FOR GASEOUS METHANE-PROPANE MIXTURES (continued)

Cur. No.	Fig. No.	Ref. No.	Author(s)	Mole Fraction of C ₃ H ₈	Temp. (K)	Density (g cm ⁻³)	$ \begin{array}{c} {\rm Viscosity} \\ {\rm (N~s~m^{-2}x10^{-6})} \end{array} $	Remarks
9	123-G(D)	72	Giddings, J.G., et al.	0.6122	344.3	0, 00123 0, 00870 0, 0174 0, 0279 0, 0386 0, 0523 0, 0658 0, 103 0, 154 0, 221	10.3 10.4 10.6 10.8 11.1 11.6 12.2 14.2 17.7 24.1	Same remarks as for curve 1.
10	123-G(D)	72	Giddings, J.G., et al.	0.3861	344.3	-0.000 bs1 -0.00675 -0.0136 -0.0211 0.0287 -0.0370 0.0455 0.0643 0.0852 0.115 0.176 0.202 0.243 0.275 0.316 0.342 0.363 0.381	10.96 11.12 11.31 11.50 11.70 11.93 12.24 12.91 13.91 15.46 17.58 20.08 22.7 27.5 31.9 39.2 45.4 51.0 56.1	Same remarks as for curve 1.
11	123-G(D)	72	Giddings, J.G., et al.	0, 2090	344.3	-0.000770 -0.000504 0.0109 -0.0167 0.0225 -0.0287 0.0348 0.0478 0.0615 0.0794 0.0983 0.117 0.136 0.170 0.200 0.244 0.276	11.74	Same remarks as for curve 1.
12	123-G(D)	72	Giddings, J.G., et al.	0.0000	344. 3	0. 000569 0. 00389 0. 00783 0. 0118 0. 0159 0. 0199 0. 0241 0. 0410 0. 0613 0. 0627 0. 0731 0. 0845 0. 106 0. 126 0. 161 0. 190 0. 213 0. 232		Same remarks as for curve 1.

TABLE 123-G(D)E. EXPERIMENTAL VISCOSITY DATA AS A FUNCTION OF DENSITY FOR GASEOUS METHANE-PROPANE MIXTURES (continued)

Cur. No.	Fig. No.	Ref. No.	Author(8)	Mole Fraction of C ₃ H ₈	Temp. (K)	Density (g cm ⁻³)	Viscosity (N s m ⁻² x 10 ⁻⁶)	Remarks
13	123-G(D)	72	Giddings, J.G., et al.	1.0000	377.6	0.00144 0.0102 0.0218 0.0352 0.0517 0.0728 0.105 0.304 0.350 0.375 0.391 0.404 0.414 0.430 0.443	10. 28 10. 48 10. 65 10. 94 11. 54 12. 4 13. 9 35. 6 43. 6 49. 8 54. 4 58. 1 61. 4 67. 5 72. 5 81. 8	Same remarks as for curve 1.
14	123-G(D)	72	Giddings, J.G., et al.	0.7793	377.6	0. 00133 0. 00905 0. 0181 0. 0291 0. 0542 0. 0683 0. 106 0. 159 0. 231 0. 279 0. 330 0. 360 0. 381 0. 409 0. 428 0. 444 0. 457 0. 468	10. 83 10. 98 11. 16 11. 40 11. 75 12. 10 12. 50 14. 6 18. 5 25. 8 32. 1 37. 1 41. 4 47. 7 53. 1 62. 0 69. 3 76. 2 82. 5 88. 7	Same remarks as for curve 1.
15	123-G(D)	72	Giddings, J.G., et al.	0.6122	377.6	0.00114 0.00774 0.0155 0.0244 0.0333 0.0435 0.0537 0.0773 0.105 0.144 0.220 0.249 0.249 0.358 0.358 0.388 0.402	11.30 11.38 11.53 11.73 11.96 12.29 12.65 13.64 15.1 17.7 21.2 24.9 28.6 34.9 40.4 49.0 55.7 61.5	Same remarks as for curve 1.
16	123-G(D)	72	Giddings, J.G., et al.	0.3861	377. 6	0. 000904 0. 00615 0. 0123 0. 0189 0. 0254 0. 0325 0. 0548 0. 0710 0. 0920 0. 114 0. 136 0. 158 0. 197 0. 229 0. 276 0. 307 0. 307 0. 302		Same remarks as for curve 1.

TABLE 123-G(D)E. EXPERIMENTAL VISCOSITY DATA AS A FUNCTION OF DENSITY FOR GASEOUS METHANE-PROPANE MIXTURES (continued)

No.		Ref.	Author(s)	Mole Fraction of C ₃ H ₈	Temp	Density (g cm ⁻³)	Viscosity (N s m ⁻² x 10 ⁻⁶)	Remarks
17	123-G(D)	72	Giddings, J.G., et al.	0.2090 .	377.6	0.000724 0.00492 0.00984 0.0150 0.0201 0.0255 0.0308 0.0418 0.0532 0.0679 0.0828 0.0981 0.113 0.142 0.168 0.212 0.245 0.270 0.291	12. 68 12. 78 12. 90 13. 01 13. 14 13. 29 13. 44 13. 82 14. 28 14. 95 15. 68 16. 50 17. 39 19. 35 21. 5 25. 8 29. 9 33. 6 37. 2 40. 6	Same remarks as for curve 1.
18	123-G(D)	72	Giddings, J.G., et al.	0.0000	377.6	0.000518 0.00354 0.00354 0.00711 0.0107 0.0143 0.0180 0.0216 0.0290 0.0365 0.0457 0.0553 0.0642 0.0740 0.0922 0.110 0.191 0.199	13. 70 13. 76 13. 84 13. 93 14. 03 14. 12 14. 23 14. 45 14. 71 15. 07 15. 47 15. 48 16. 36 17. 34 18. 39 20. 62 22. 86 25. 1 27. 2 29. 4	Same remarks as for curve 1.
	123-G(D)		Giddings, J.G., et al.	0.7793	410.9	0. 00120 0. 00815 0. 0163 0. 0256 0. 0349 0. 0457 0. 0565 0. 0816 0. 110 0. 152 0. 194 0. 232 0. 262 0. 303 0. 332 0. 395 0. 414 0. 443	11. 80 11. 89 11. 99 12. 20 12. 48 12. 76 13. 20 14. 26 15. 89 19. 0 22. 6 26. 4 30. 2 36. 7 42. 2 50. 9 58. 3 64. 6 70. 6 76. 5	Same remarks as for curve 1.
20	123-G(D)	72	Giddings, J.G., et al.	0.6122	410.9	0. 00104 0. 00705 0. 0141 0. 0218 0 0295 0. 0380 0. 0465 0. 0652 0. 0652 0. 140 0. 140 0. 159 0. 239 0. 273 0. 318 0. 348		Same remarks as for curve 1.

TABLE 123-G(D)E. EXPERIMENTAL VISCOSITY DATA AS A FUNCTION OF DENSITY FOR GASEOUS METHANE-PROPANE MIXTURES (continued)

Cur. No.	Fig. No.	Ref. No.	Author(s)	Mole Fraction of C ₃ H ₆	Temp.	Density (g cm ⁻³)	Viscosity (N s m ⁻² x 10 ⁻⁶)	Remarks
21	123-G(D)	72	Giddings, J.G., et al.	0.3861	410.9	0.000744	12.92	Same remarks as for curve 1.
						0.00506	13.04	
						0.0112	13. 20	
						0.0171	13. 33	
						0.0229	13.47	
						0.0291	13.65	
						0.0353	13.83	
						0.0483	14.27	•
						0.0617	14. 74	
						0.0790	15. 52	
						0.0966	16.41	
						0.114	17. 51	
						0.131	18.69	
						0.165	21.3	
						0.195	23. 9	
						0.242	29. 2	
				•		0. 276	34.0	
						0. 303	38. 6	
						0.324	43.0	
						0.341	47.0	
2	123-G(D)	72	Giddings, J.G., et al.	0. 2090	410.9	0.000660	13.66	Same remarks as for curve 1.
						0.00449	13. 73	
						0.008 98	13.81	
						0.0145	13. 9 0	
						0.0201	14.02	
						0.0255	14.17	
						0.0308	14. 29	
						0.0374	14.61	
						0.0474	14.97	
						0.0599	15. 50	
						0.0727	16.07	
						0.0854	16.69	
						0.0981	17.37	
						0. 123	18.92	
						0.146	20.7	
						0.186	24.1	
						0.218	27.6	
						0.245	30. 9	
						0.267	34.1	
						0.284	37.2	
1	123-G(D)	72	Giddings, J.G., et al.	0.0000	410.9	0.000476	14.65	Same remarks as for curve 1.
						0.00325	14.70	
						0.00651	14.78	
						0.00979	14.86	
						0. 0131	14.94	
						0.0164	15.03	
						0.0197	15. 12	
			,			0.0264	15. 32	
			•			0. 0329	15, 54	
						0.0413	15.84	
						0. 9496	16.17	
						0.0575	16.33	
						0.0661	16. 91	
						0.0823	17.74	
						0.0979	18.61	
						0. 126	20.49	
						0.152	22. 4	
						0.174	24.3	
						0. 193	26. 1	

TABLE 123-G(D)S. SMOOTHED VISCOSITY VALUES AS A FUNCTION OF DENSITY FOR GASEOUS METHANE-PROPANE MIXTURES

Donaitu	Mole Fraction of Methane												
Density (g cm ⁻⁵)	1,0000 (310,9 K) [Ref. 72]	0.7793 (310.9 K) [Ref. 72]	0. 6122 (310.9 K) [Ref. 72]	0.3861 (310.9 K) [Ref. 72]	0. 2090 (310. 9 K) [Ref. 72]	0.0000 (310.9 K) [Ref. 72]	1.0000 (344.3 K) [Ref. 72]	0.7793 (344.3 K [Ref. 72]					
0.010	8. 59	9. 10	9.50	10.12	10.89	11.82	9.45	10.00					
0.020	8. 62	9. 35	9.68	10.41	11.16	12.17	9.62	10.22					
0.030		9. 58	9.93	10.76	11.40	12.45	9.88	10.50					
0.040				11,08	11.72	12.80	10.19	10.80					
0.050				11.41	12.04	13. 20	10.55	11.18					
0.075					13. 13	14.37							
0.100					14, 44	15.70							
0.125					16.09	17.35							
0.150					17.99	19. 25							
0.175					20.10	21.52							
0.200					22.61	24. 22							
0.225					25.45	27. 29							
0.250					28.70	30. 72							
0.300					37.06								

	Mole Fraction of Methane												
Density (g cm ⁻³)	0, 6122 (344.3 K) [Ref. 72]	0.3861 (344.3 K) [Ref. 72]	0, 2090 (344, 3 K) [Ref. 72]	0,0000 (344.3 K) [Ref. 72]	1.0000 (377.6 K) [Ref. 72]	0.7793 (377.6 K) [Ref. 72]	0.6122 (377.6 K) [Ref. 72]	0,3861 (377.6 K [Ref. 72]					
0.010	10.47	11.19	11.92	12.96	10.40	11.00	11.42	12.20					
0.020	10, 66	11.41	12.20	13, 19	10.60	11.20	11.70	12.50					
0.030	10, 95	11.72	12.47	13, 49	10.90	11.42	11.98	12.80					
0.040	11.21	12.02	12.80	13, 82	11.18	11.70	12. 20	13.05					
0.050	11.57	12.39	13. 18	14, 20	11.48	12.00	12.56	13.40					
0.075	12.61	13.40	14.22	15.36	12.42	13.00	13.50	14.40					
0.100	14, 00	14. 61	15.58	16. 72	13.70	14.30	14.80	15.70					
0.125	15, 59	16.11	17.13	18.39	15. 10	15. 9 0	16. 38	17.30					
0.150	17.40	17.89	18.98	20, 25	16.70	17. 80	18.20	19.05					
0.175	19.45	20.00	21.11	22. 44	18.60	19. 90	20. 34	21.10					
0. 200	21.82	22.45	23.60	25. 05	20.84	22.40	22.80	23.40					
0. 225	24, 60	25. 24	26.42	28, 08	23.40	25. 20	25.62	26.10					
0.250		28.38	29.67	31, 55	26, 35	28. 20	28.94	29.20					
0.300		36. 20	37.90		33.83	35.84	36.60	37.00					
0.350		47. 20			43.60	45.40	47.00	47.70					
0.400					57.00	59.10	60.90						
0.450					75.40	79.00							

Density (g cm ⁻³)	Mole Fraction of								
	0. 2090 (377. 6 K) [Ref. 72]	0.0000 (377.6 K) [Ref. 72]	0.7793 (410.9 K) [Ref. 72]	0. 6122 (410. 9 K) [Ref. 72]	0.3861 (410.9 K) (Ref. 72)	0.2090 (410.9 K) [Ref. 72]	0.0000 (410.9 K) [Ref. 72]		
0. 010	12.90	13.98	11.98	12.40	13. 20	13.92	14.90		
0. 020	13.20	14.22	12.18	12.60	13.40	14.20	15.20		
0. 030	13.50	14.60	12.40	12.90	13.70	14.40	15.50		
0.040	13.80	14.90	12.60	13.18	14.00	14.70	15.80		
0.050	14.20	15. 30	12. 9 0	13.42	14.40	15. 10	16.20		
0.075	15. 30	16.40	13.90	14.42	15.40	16. 18	17.30		
0. 100	16.60	17.70	15.20	15.80	16.70	17.50	18.70		
0. 125	18. 20	19. 30	16. 9 0	17.60	18.30	19.20	20, 40		
0. 150	20.00	21.20	18.80	19.42	20.10	21.00	22.30		
0. 175	22.20	23.40	20.80	21.50	22, 20	23. 20	24, 40		
0, 200	24.60	26. 20	23. 18	23.80	24.60	25.60	26, 70		
0. 225	27.40	29. 20	25.70	26,40	27.20	28.40	29, 30		
0, 250	30.60	32.60	28.60	29.40	30. 20	31.70			
D. 300	39.00		36.30	37.20	38.00				
0.350			46.20	48.00	49.50				
0.400			60.00						
0. 450			79. 62						

FIGURE 123 - G(D) VISCOSITY DATA AS A FUNCTION OF DENSITY FOR GASEOUS METHANE - PROPANE MIXTURES

FIGURE 123 - G(D). VISCOSITY DATA AS A FUNCTION OF DENSITY FOR GASEOUS METHANE-PROPANE MIXTURES (continued)

FIGURE 123 - G(D). VISCOSITY DATA AS A FUNCTION OF DENSITY FOR GASEOUS METHANE-PROPANE MIXTURES (continued)

The market of the same

FIGURE 123-G(D). VISCOSITY DATA AS A FUNCTION OF DENSITY FOR GASEOUS METHANE-PROPANE MIXTURES (continued)

TABLE 124-G(T)E. EXPERIMENTAL VISCOSITY DATA AS A FUNCTION OF TEMPERATURE FOR GASEOUS NITRIC OXIDE-NITROUS OXIDE MIXTURES

Cur. No.		Ref. No.	Author (s)	Mole Fraction of N ₂ O	Pressure (atm)	Temp. (K)	Viscosity (N s m ⁻² x 10 ⁻⁶)	Remarks
1 124-G(T)	124-G(T)	345	Hawksworth, W.A.,	0.750		508.8	25.16	Gases were purified by vacuum
			Nourse, H.H.E., and			580.8	28.20	distillation; capillary flow visco-
		Raw, C.J.G.			633.0	29.85	meter, calibrated with air; error	
						660.4	30.82	± 1.0%.
						692.8	32.32	
						734.3	33.40	
						778.5	35.18	
2	2 124-G(T)	345	Hawksworth, W.A., et	al. 0.500		475.0	24.85	Same remarks as for curve 1.
<u>.</u>						532.9	27.12	
						575.6	28.71	
						647.8	31.06	
						700.7	33. 54	
						740.8	34.71	
						788.7	36.78	
3	124-G(T)	345	Hawksworth, W.A., et	al. 0.250		510.4	27.32	Same remarks as for curve 1.
						575.1	30.21	
						597.9	30.99	
						645.7	32.56	
						699.8	34.25	
						742.2	36.11	
					785.0	37.40		
4	4 124-G(T)	345	Hawksworth, W.A., et	al. 0.000		374.0	22.23	Same remarks as for curve 1.
						422.8	25.36	
						465.7	26.59	
						520.4	28.31	
						575.0	31.30	
						623.1	33.29	
						677.3	34.83	
						681.2	35.59	
						723.5	36.19	
						771.5	38.42	
						826.7	40.17	
						873.0	41.52	
						922.0	43.47	
						974.2	44.72	
						1023.2	45.48	
						1077.9	47.53	
						1174.8	49.86	
			•			1281.5	53.05	
5 124-G	124-G(T)	345	Hawksworth, W.A., et	al. 1.000		429.2	20.66	Same remarks as for curve 1.
						530.1	24.84	
						582.2	26.39	
						636.0	28,75	
						684.8	30.14	
						739.9	32.63	
						793.2	33.95	
						886.6	39.19	
						916.6	43.58	
						943.2	48.30	
						956.4	52.83	
						977.8	55.5 9	
						1048.3	63,14	
						1174.8	73.60	
					1296.4	76,40		

TABLE 124-G(T)S. SMOOTHED VISCOSITY VALUES AS A FUNCTION OF TEMPERATURE FOR GASEOUS NITRIC OXIDE-NITROUS OXIDE MIXTURES

Temp.	Mole Fraction of Nitrous Oxide								
(K)	0.00 [Ref. 345]	0.25 [Ref. 345]	0.50 [Ref. 345]	0.75 [Ref. 345]	1.00 [Ref. 345]				
375	22.32								
400	23.61								
450					21.50				
500	. 28.30	26.88	26.78	24.81	23.50				
525		27.90							
530			26.77						
550		28.94	27.60	26.78					
575		29.96							
600	32.24	30, 96	29.49	28.68	27,28				
650		32. 35	31.40	30.52					
700	35.82	34.63	33.30	32.32	31.00				
725		35, 50	34.26						
750		36.32	35.24	34.18					
775		37.15	36.22						
800	39, 22	37.92	37.20	35.94	34.57				
900	42.42				41.12				
1000	45.45				59.50				
1100	48.30				68.58				
1200	50, 95				73.60				
1300	53.51				76.40				

FIGURE 124-G(T). VISCOSITY DATA AS A FUNCTION OF TEMPERATURE FOR GASEOUS NITRIC OXIDE - NITROUS OXIDE MIXTURES

TABLE 125-G(C)E. EXPERIMENTAL VISCOSITY DATA AS A FUNCTION OF COMPOSITION FOR GASEOUS NITRIC OXIDE-NITROGEN MIXTURES

Cur.	Fig.	Ref. No.	Author(s)	Temp. (K)	Pressure (atm)	Mole Fraction of NO	Viscosity (N s m ⁻⁷ x 10 ⁻⁶)	Remarks
1	125-G(C)	315	Trautz, M. and Gabriel, E.	293.0		0.0000 0.2674 0.5837 0.6948 1.0000	17. 47 17. 78 18. 27 18. 33 18. 82	NO: from solution of sodium nitrade; capillary method; $L_1=0.112\%$, $L_2=0.185\%$, $L_3=0.368\%$.
2	125-G(C)	315	Trautz, M. and Gabriel, E.	373.0		0.0000 0.2674 0.5837 0.6948 1.0000	20.84 21.32 22.09 22.22 22.72	Same remarks as for curve 1 except $L_1 = 0.204\%$, $L_2 = 0.282\%$, $L_3 = 0.496\%$.

TABLE 125-G(C)S. SMOOTHED VISCOSITY VALUES AS A FUNCTION OF COMPOSITION FOR GASEOUS NITRIC OXIDE-NITROGEN MIXTURES

Mole Fraction	293.0 K	373. 0 K
of NO	(Ref. 315)	[Ref. 315]
0.00	17.47	20. 84
0.05	17.53	20. 95
0.10	17.58	21.11
0.15	17.64	21.16
0.20	17.70	21.26
0.25	17.76	21.36
0.30	17.82	21.46
0.35	17.89	21.55
0.40	17. 95	21.65
0.45	18.02	21.74
0.50	18.09	21.83
0. 55	18.16	21.91
0.60	18.23	22.01
0.65	18.30	22.10
0. 70	18.37	22. 19
0.75	18.49	22, 28
0.80	18.52	22.37
0.85	18. 60	22. 45
0. 90	18.67	22. 54
0. 95	18.75	22.63
1,00	18.82	22, 7 2

FIGURE 125-G(C). VISCOSITY DATA AS A FUNCTION OF COMPOSITION FOR GASEOUS NITRIC OXIDE—NITROGEN MIXTURES

TABLE 126-G(C)E. EXPERIMENTAL VISCOSITY DATA AS A FUNCTION OF COMPOSITION FOR GASEOUS NITROGEN-OXYGEN MIXTURES

Cur. No.	Fig. No.	Ref. No.	Author(s)	Temp. (K)	Pressure (atm)	Mole Fraction of O ₂	Viscosity (N s m ⁻² x 10 ⁻⁶)	Remarks
1	126-G(C)	337	Gururaja, G.J.,	298. 2		0.000	17.796	No purity specified; oscillating disk
			Tirunarayanan, M.A.,	297.6		0.132	17.850	viscometer, calibrated to N2; vis-
			and Ramchandran, A.	298.4		0. 256	18.450	cosity measured at ambient tem-
				298.5		0.410	18, 855	perature and pressure; precision
				298.2		0.510	19.100	was $\pm 1.0\%$ of previous data; $L_1 =$
				298. 2		0.660	19.650	0.486% , $L_2 = 0.616\%$, $L_3 = 1.102\%$.
				298.2		0.760	19.750	
				302.6		1.000	20.800	
2	126-G(C)	227	Trautz, M. and	300.0		1.0000	20.57	Capillary method, R = 0, 2019 mm;
	,		Melster. A.			0. 7592	19. 95	$L_1 = 0.051\%$, $L_2 = 0.088\%$, $L_3 =$
						0.4107	18.94	0.190%.
						0.2178	18.43	
						0,0000	17.81	
3	126-G(C)	227	Trautz, M. and	400.0		1,0000	25.68	Same remarks as for curve 2 except
-			Melster, A.		(0.7592	24.80	$L_1 = 0.061\%$, $L_2 = 0.090\%$, $L_3 =$
						0,4107	23.45	0.154%.
						0.2178	22.75	,
						0.0000	21.90	
4	126-G(C)	227	Trautz, M. and	500.0		1.0000	30, 17	Same remarks as for curve 2 except
•			Melster, A.			0.7592	29.09	$L_1 = 0.066\%$, $L_2 = 0.106\%$, $L_3 =$
						0.4107	27.41	0.226%.
						0.2178	26.58	
						0.0000	25.60	
5	126-G(C)	227	Trautz, M. and	550.0		1.0000	27.14	Same remarks as for curve 2 excep
-			Melster, A.			0.7592	24.33	$L_1 = 1.842\%$, $L_2 = 2.587\%$, $L_3 =$
					0.4107	22.40	4, 859%.	
						0.2178	19.00	
						0.0000	17.53	

TABLE 126-G(C)S. SMOOTHED VISCOSITY VALUES AS A FUNCTION OF COMPOSITION FOR GASEOUS NITROGEN-OXYGEN MIXTURES

Mole Fraction	297.6- 302.6 K	300.0 K	400. 0 K	500, 0 K	550. 0 K
of O ₂	[Ref. 337]	[Ref. 227]	[Ref. 227]	[Ref. 227]	[Ref. 227
0.00	17.67	17.81	21.90	25.60	17. 53
0.05	17.78	17.95	22.09	25.82	17. 99
0.10	17. 90	18.09	22.28	26.11	18.44
0.15	18.03	18.23	22.46	26, 28	18.90
0. 20	18. 16	18.38	22.65	26.51	19.36
0.25	18. 29	18.50	22.84	26.74	19.82
0.30	18. 44	18.66	23. 03	26, 97	20, 29
0.35	18, 58	18.80	23, 22	27, 19	20. 76
0.40	18, 74	18, 94	23. 41	27, 42	21.23
0.45	18. 9 3	19.08	23. 60	27.65	21.72
0.50	19.07	19. 22	23. 79	27.88	22.20
0.55	19. 24	19.37	23. 98	28.15	22. 69
0.60	19. 41	19.50	24, 17	28, 83	23, 18
0.65	19.59	19.65	24. 36	28, 56	23. 66
0.70	19. 7 6	19. 80	24. 54	28.79	24. 16
0.75	19.97	19.94	24. 73	29.02	24.66
0.80	20.11	20.07	24. 92	29, 24	25. 15
0.85	20. 29	21. 21	25. 11		25.66
0.90	20.46	20. 33	25.30	29, 69	26. 16
0.95	20.64	20. 46	25.49		26.64
1.00	20, 80	20.57	25. 68	30.15	27.14

FIGURE 126-G(C). VISCOSITY DATA AS A FUNCTION OF COMPOSITION FOR GASEOUS NITROGEN - OXYGEN MIXTURES

TABLE 127-G(C)E. EXPERIMENTAL VISCOSITY DATA AS A FUNCTION OF COMPOSITION FOR GASEOUS NITROUS OXIDE-PROPANE MIXTURES

Cur. No.	Fig. No.	Ref. No.	Author(s)	Temp. (K)	Pressure (atm)	Mole Fraction of C ₃ H ₈	Viscosity (N s m ⁻² x 10 ⁻⁴)	Remarks
1	127-G(C)	234	Trautz, M. and Kurz, F.	300, 0		1.0000 0.7984 0.4171 0.2018 0.0000	8. 17 9. 26 11. 67 13. 26 14. 88	$N_2O: 1.3$ p per 1000, $C_3H_6: 100$ pure; capillary method; $d=0.018$ cm; $L_1=0.227\%, \ L_2=0.446\%, \ L_3=0.986\%.$
2	127-G(C)	234	Trautz, M. and Kurz, F.	400.0		1,0000 0,7984 0,4171 0,2018 0,0000	10. 70 12. 13 15. 25 17. 25 19. 43	Same remarks as for curve 1 except $L_1 = 0.037\%$, $L_2 = 0.083\%$, $L_3 = 0.187\%$.
3	127-G(C)	234	Trautz, M. and Kurz, F.	500,0		1.0000 0.7984 0.4171 0.2018 0.0000	13. 08 14. 78 18. 54 20. 83 23. 55	Same remarks as for curve 1 except $L_1 = 0.000\%$, $L_2 = 0.000\%$, $L_3 = 0.000\%$.
4	127-G(C)	234	Trautz, M. and Kurz, F.	550. 0		1.0000 0.7984 0.4171 0.2018 0.0000	14. 22 16. 10 20, 12 22. 71 25. 56	Same remarks as for curve 1 except $L_1 = 0.000\%$, $L_2 = 0.000\%$, $L_3 = 0.000\%$.

TABLE 127-G(C)S. SMOOTHED VISCOSITY VALUES AS A FUNCTION OF COMPOSITION OF GASEOUS NITROUS OXIDE-PROPANE MIXTURES

Mole Fraction of C ₃ H ₈	300.0 K [Ref. 234]	400.0 K [Ref. 234]	500.0 K [Ref. 234]	550.0 K [Ref. 234]
0.00	14.88	19. 43	23.55	25. 50
0.05	14.48	18, 88	22.86	24.78
0.10	14,09	18.33	22.16	24.07
0.15	13.68	17.79	21.48	23.40
0. 20	13.29	17. 26	20.86	22.74
0. 25	12.90	16.76	20.28	22.11
0.30	12.53	16.30	19.74	21, 49
0. 35	12.16	15.84	19.22	20, 88
0.40	11.80	15.40	18.70	20. 30
0, 45	11.45	14.97	18.20	19.75
0, 50	11.20	14. 54	17.70	19. 20
0, 55	10.78	14. 12	17.20	18.66
0, 60	10.46	13.70	16.70	18.14
0, 65	10.14	13. 29	16.26	17.62
0. 70	9. 84	12.90	15.70	17.12
0. 75	9.54	12. 51	15.23	16.60
0, 80	9.25	12.14	14.77	16.10
0.85	8.97	11.77	14.33	15.60
0, 90	8.70	11.42	13. 91	15. 13
0, 95	8. 44	11.08	13.49	14.67
1.00	8.18	10.72	13.08	14.22

FIGURE 127-G(C). VISCOSITY DATA AS A FUNCTION OF COMPOSITION FOR GASEOUS NITROUS OXIDE-PROPANE MIXTURES

TABLE 128-G(C)E. EXPERIMENTAL VISCOSITY DATA AS A FUNCTION OF COMPOSITION FOR GASEOUS CARBON DIOXIDE-HYDROGEN CHLORIDE MIXTURES

Cur. No	Fig. No.	Ref. No.	Author(s)	Temp. (K)	Pressure (atm)	Mole Fraction of CO ₂	Viscosity (N s m ⁻² x 10 ⁻⁶)	Remarks
1	128-G(C)	346	Jung, J. and Schmick, H.	291.0		0.0000 0.2000 0.4000	14, 26 14, 53 14, 73	Effusion method of Trautz and Weizel; $L_1 = 0.018\%$, $L_2 = 0.026\%$, $L_3 = 0.041\%$.
						0.6000 0.8000 1.0000	14, 83 14, 81 14, 64	•
2	128-G(C)	346	Jung, J. and Schmick, H.	291.16		0.1000 0.2000 0.3000 0.4000 0.5000 0.6000 0.7000 0.8000 0.9000	14.59 14.72 14.83 14.92 14.99 15.02 15.03 15.00	Same remarks as for curve 1 except $L_1=0.030\%$, $L_2=0.060\%$, $L_3=0.166\%$.

TABLE 128-G(C)S. SMOOTHED VISCOSITY VALUES AS A FUNCTION OF COMPOSITION FOR GASEOUS CARBON DIOXIDE-HYDROGEN CHLORIDE MIXTURES

Mole Fraction of CO ₂	291, 2 K [Ref. 346]
0.00	14.44
0. 05	14, 52
0. 10	14, 59
0.15	14.66
0. 20	14. 72
0. 25	14, 78
0. 30	14.83
0. 35	14, 88
0.40	14. 92
0.45	14. 96
0.50	14, 98
0. 55	15, 00
0. 60	15.02
0. 65	15, 02
0. 70	15.03
0.75	15.02
0.80	15. 01
0.85	14, 98
0. 90	14, 95
0.95	14. 91
1.00	14. 83

FIGURE 128-G(C). VISCOSITY DATA AS A FUNCTION OF COMPOSITION FOR GASEOUS CARBON DIOXIDE—HYDROGEN CHLORIDE MIXTURES

TABLE 129-G(C)E. EXPERIMENTAL VISCOSITY DATA AS A FUNCTION OF COMPOSITION FOR GASEOUS CARBON DIOXIDE-SULFUR DIOXIDE MIXTURES

Cur. No.	Fig. No.	Ref. No.	Author(s)	Temp. (K)	Pressure (mm Hg)	Mole Fraction of SO,	Viscosity (N s m ⁻² x 10 ⁻⁶)	Remarks
1	129-G(C)	346	Jung, G. and Schmick, H.	289.0		0.0000 0.2000 0.4000 0.6000 0.8000 1.0000	14. 58 14. 28 13. 88 13. 46 12. 99 12. 43	Effusion method of Trautz and Weizel; $L_1=0.084\%,\ L_2=0.116\%,\ L_3=0.237\%.$
2	129-G(C)	346	Jung, G. and Schmick, H.	289.0		0.900 0.800 0.700 0.600 0.500 0.400 0.300 0.200	12. 88 13. 16 13. 38 13. 63 13. 84 14. 07 14. 29 14. 47	Same remarks as for curve 1 except $L_1 = 0.073\%$, $L_2 = 0.096\%$, $L_3 = 0.195\%$.
3	129-G(C)	35	Chakraborti, P.K. and Gray, P.	298. 2	243-142	0.000 0.008 0.152 0.179 0.277 0.389 0.424 0.503 0.596 0.655 0.712 0.783 0.822 0.972	14. 80 14. 79 14. 73 14. 71 14. 62 14. 54 14. 43 14. 15 14. 10 13. 99 13. 78 13. 67 13. 18	Gases purified by distillation between liquid nitrogen traps; capillary flow method, relative measurements; precision $\pm 0.2\%$, accuracy 1.0% ; $L_1=0.158\%$, $L_2=0.249\%$, $L_3=0.431\%$.
4	129-G(C)	35	Chakraborti, P.K. and Gray, P.	308.2	243-142	0,000 0,041 0,177 0,269 0,396 0,509 0,608 0,697 0,782 0,866 1,000	15. 38 15. 37 15. 23 15. 10 14. 77 14. 58 14. 36 14. 20 13. 96 13. 77	Same remarks as for curve 3 except $L_1=0.230\%$, $L_2=0.273\%$, $L_3=0.438\%$.
5	129-G(C)	35	Chakraborti, P.K. and Gray, P.	353.2	243-142	0.000 0.048 0.182 0.288 0.388 0.500 0.598 0.694 0.792 0.878 1.000	17. 30 17. 20 17. 02 16. 85 16. 68 16. 45 16. 23 16. 03 15. 79 15. 56	Same remarks as for curve 3 except $L_1=0.041\%,\ L_2=0.071\%,\ L_3=0.174\%.$

TABLE 129-G(C)S. SMOOTHED VISCOSITY VALUES AS A FUNCTION OF COMPOSITION FOR GASEOUS CARBON DIOXIDE-SULFUR DIOXIDE MIXTURES

Mole Fraction of SO ₂	289. 0 K [Ref. 346]	289.0 K [Ref. 346]	298. 2 K [Ref. 35]	308. 2 K [Ref. 35]	353. 2 K [Ref. 35]
0,00	14.580	14,77	14, 80	15.38	17.30
0.05	14.508	14, 70	14. 78	15.33	17. 23
0.10	14, 440	14.62	14.76	15.27	17.21
0.15	14. 365	14.55	14.73	15.21	17.08
0. 20	14. 280	14.46	14.69	15.14	17.00
0.25	14. 200	14.37	14.65	15.07	16. 92
0.30	14.110	14.28	14.60	14.99	16, 83
0.35	14,012	14.18	14.54	14.91	16.74
0.40	14.913	14.09	14.48	14.82	16.64
0.45	13. 810	13.98	14.41	14.73	16.55
0.50	13. 700	13.88	14.33	14.63	16.45
0.55	13.590	13, 76	14.25	14.53	16.35
0.60	13, 475	13, 64	14.16	14.41	16, 24
0.65	13.355	13, 52	14.06	14.29	16.13
0.70	13. 235	13.40	13. 95	14.17	16.01
0. 75	13. 111	13.28	13. 84	14.03	15, 89
0.80	12.980	13.16	13.72	13.90	15.77
0.85	12.855	13,02	13. 59	13.59	15.64
0.90	12.720	12.68	13.46	13.46	15.51
0. 95	12.580	12.74	13.32	13.32	15.37
1.00	12. 440	12,60	13.17	13.28	15, 23

FIGURE 129-G(C). VISCOSITY DATA AS A FUNCTION OF COMPOSITION FOR GASEOUS CARBON DIOXIDE—SULFUR DIOXIDE MIXTURES

TABLE 130-G(C)E. EXPERIMENTAL VISCOSITY DATA AS A FUNCTION OF COMPOSITION FOR GASEOUS CARBON TETRACHLORIDE-DICHLOROMETHANE MIXTURES

Cur. No.	Fig. No.	Ref. No.	Author (s)	Temp.	Pressure (atm)	Mole Fraction of CCl4	Viscosity (N s m ⁻² x 10 ⁻⁶)	Remarks
1	130-G(C)	292	Mueller, C.R. and Ignatowski, A.J.	293.15		0.0000 0.1575 0.2015 0.4986 0.6876 0.8616 1.0000	10.25 10.21 10.16 10.13 10.00 9.91 9.82	Oscillating disks; $L_1 = 0.086\%$, $L_2 = 0.140\%$, $L_3 = 0.294\%$.
2	130-G(C)	292	Mueller, C.R. and Ignatowski, A.J.	353.26		0.0000 0.2261 0.6351 1.0000	12.02 12.12 11.92 11.60	Same remarks as for curve 1 excep $L_1 = 0.283\%$, $L_2 = 0.411\%$, $L_3 = 0.700\%$.
3	130-G(C)	292	Mueller, C.R. and Ignatowski, A.J.	413.43		0.0000 0.1615 0.2882 0.4738 0.7096 0.8739 1.0000	14.27 14.25 14.03 14.11 13.82 13.68 13.63	Same remarks as for curve 1 except $L_1 = 0.332\%$, $L_2 = 0.419\%$, $L_3 = 0.728\%$.

TABLE 130-G(C)S. SMOOTHED VISCOSITY VALUES AS A FUNCTION OF COMPOSITION FOR GASEOUS CARBON TETRACHLORIDE-DICHLOROMETHANE MIXTURES

Mole Fraction of CCl ₄	(293.15 K) [Ref. 292]	(353.26 K) [Ref. 292]	(413.43 K [Ref. 292]
0.00	10. 25	12.02	14.27
0.05	10.24	12.03	14.25
0.10	10.23	12.04	14, 22
0.15	10. 22	12.05	14.19
0.20	10.21	12.06	14.17
0.25	10. 20	12.06	14.14
0.30	10.19	12.07	14.11
0.35	10.17	12.07	14.08
0.40	10.15	12.07	14.05
0.45	10.13	12.06	14.02
0.50	10.11	12.05	13.99
0.55	10.09	12.04	13.96
0.60	10.06	12.02	13.93
0.65	10.04	12.00	13.89
0.70	10.01	11.96	13.86
0.75	10.00	11.92	13, 82
0.80	9.95	11.88	13.79
0.85	9. 91	11.82	13.75
0.90	9.87	11.76	13.71
0.95	9.84	11.70	13.68
1.00	9.82	11.60	13.63

FIGURE 130-G(C). VISCOSITY DATA AS A FUNCTION OF COMPOSITION FOR GASEOUS CARBON TETRACHLORIDE-DICHLOROMETHANE MIXTURES

/

....

... .. **.**

1 1 1 1 1 1 1 1 1 1

TABLE 131-L(C)E. EXPERIMENTAL VISCOSITY DATA AS A FUNCTION OF COMPOSITION FOR LIQUID CARBON TETRACHLORIDE-ISOPROPYL ALCOHOL MIXTURES

Cur. No.	Fig. No.	Ref. No.	Author (s)	Temp.	Pressure (atm)	Mole Fraction of CCl ₄	Viscosity (N s m ⁻² x 10 ⁻⁶)	Remarks
_ <u>_</u>	131-L(C)	352	Katti, P.K. and	313.2		1.000	739.0	Merck's isopropyl alcohol and
	,-,		Prakash, O.			0.885	729.1	B. D. H. carbon tetrachloride were
			•			0.780	733.6	further purified; Ostwald visco-
						0.675	754.8	meter; error $\pm 0.5\%$; L ₁ = 0.057%,
						0.579	781.2	$L_2 = 0.111\%, L_2 = 0.239\%.$
						0.500	817.5	•
						0.398	874.6	
						0.315	935.5	
						0.255	986.8	
						0.121	1144.8	
						0.000	1330.0	

TABLE 131-L(C)S. SMOOTHED VISCOSITY VALUES AS A FUNCTION OF COMPOSITION FOR LIQUID CARBON TETRACHLORIDE-ISOPROPYL ALCOHOL MIXTURES

Mole Fraction of CCl ₄	(313.2 K) [Ref. 352]
0.00	1330.0
0.05	1250.0
0.10	1175.0
0.15	1105.0
0.20	1044.0
0.25	992.0
0.30	946.4
0.35	308.0
0.40	874.0
0.45	8 44. 0
0.50	817.5
0.55	794.8
0.60	775.5
0.65	760.0
0.70	746.8
0.75	737.9
0.80	731.8
0.85	729.0
0.90	729.2
0.95	733.2
1.00	739.0

FIGURE 131-L(C), VISCOSITY DATA AS A FUNCTION OF COMPOSITION FOR LIQUID CARBON TETRACHLORIDE—ISOPROPYL ALCOHOL MIXTURES

TABLE 132-L(C)E. EXPERIMENTAL VISCOSITY DATA AS A FUNCTION OF COMPOSITION FOR LIQUID CARBON TETRACHLORIDE-METHANOL MIXTURES

Cur. No.	Fig. No.	Ref. No.	Author (s)	Temp.	Pressure (atm)	Mole Fraction of CCl4	Viscosity (N s m ⁻² x 10 ⁻⁶)	Remarks
1	132-L(C)	352	Katti, P.K. and	313.2		1.000	739,0	Merck's methanol and B. D. H.
			Prakash, O.			0.895	759.5	carbon tetrachloride were further
						0.807	762.4	purified before use: Ostwald vis-
						0.697	750.0	cometer; error $\pm 0.5\%$; L ₁ = 0.022%
						0.650	742.7	$L_2 = 0.041\%$, $L_3 = 0.099\%$,
						0.490	695.5	•
						0.320	624.8	
						0.280	605.0	
						0.210	570.0	
						0.090	505.0	
						0,000	456.0	

TABLE 132-L(C)S. SMOOTHED VISCOSITY VALUES AS A FUNCTION OF COMPOSITION FOR LIQUID CARBON TETRACHLORIDE-METHANOL MIXTURES

Mole Fraction of CCl ₄	(313.2 K) [Ref. 352]
0.00	456
0.05	484
0.10	511
0.15	539
0.20	565
0.25	591
0.30	615
0.35	638
0.40	660
0.45	680
0.50	698
0.55	715
0.60	730
0.65	742
0.70	751
0.75	758
0.80	762
0.85	762
0.90	759
0.95	751
1.00	739

FIGURE 132-L(C). VISCOSITY DATA AS A FUNCTION OF COMPOSITION FOR LIQUID CARBON TETRACHLORIDE - METHANOL MIXTURES

. _____

TABLE 133-L(C)E. EXPERIMENTAL VISCOSITY DATA AS A FUNCTION OF COMPOSITION FOR LIQUID DIOXANE-BENZYL ACETATE MIXTURES

Cur. No.	Fig. No.	Ref. No.	Author (s)	Temp.	Pressure (atm)	Mole Fraction of C ₂ H ₁₀ O ₂	Viscosity (N s m ⁻² x 10 ⁻⁴)	Remarks
1	133-L(C)	351	Katti, P.K. and	313.2		0,000	625.6	Liquids were purified (ref. J. Chem
			Chaudhri, M.M.			0.200	725.0	Eng. Data, 9, 128, 1964); Ostwald
						0.300	802,4	viscometer; error ± 0.5%; L, =
						0.380	857.0	0.851% , $L_2 = 1.311\%$, $L_3 = 2.683\%$.
						0.520	958.1	
						0.645	1060.2	
						0.748	1147.0	
						0.875	1233.3	
						1.000	1352.5	

TABLE 133-L(C)S. SMOOTHED VISCOSITY VALUES AS A FUNCTION OF COMPOSITION FOR LIQUID DIOXANE-BENZYL ACETATE MIXTURES

Mole Fraction of C ₉ H ₁₀ O ₂	(313.2 K) [Ref. 351]
0,00	626
0.05	655
0.10	684
0.15	714
0.20	742
0.25	772
0.30	802
0.35	833
0.40	864
0.45	896
0.50	930
0.55	965
0.60	1001
0.65	1038
0.70	1076
0.75	1116
0.80	1160
0.85	1204
0.90	1250
0.95	1300
1,00	1352

FIGURE 133 - L(C). VISCOSITY DATA AS A FUNCTION OF COMPOSITION FOR LIQUID DIOXANE-BENZYL ACETATE MIXTURES

TABLE 134-G(C)E. EXPERIMENTAL VISCOSITY DATA AS A FUNCTION OF COMPOSITION FOR GASEOUS ETHYLENE-AMMONIA MIXTURES

Cur. No.	Fig. No.	Ref. No.	Author (s)	Temp. (K)	Pressure (atm)	Mole Fraction of C ₂ H ₄	Viscosity (N s m ⁻² x 10 ⁻⁴)	Remarks
1	134-G(C)	222	Trautz, M. and	293.2		0.0000	10.08	C ₂ H ₄ obtained by chemical reaction;
			Heberling, R.			0.1133	10.01	NH ₂ : I.G. Farben, 99.997% pure,
						0.1929	10.13	chief impurities O2, H2, N2; capil-
						0.3039	10.22	lary transpiration method, d =
						0.4828	10.30	0.04038 cm; experimental error
			•			0.7007	10.27	$<3\%$; $L_1 = 0.036\%$, $L_2 = 0.067\%$,
						0.8904	10.15	$L_3 = 0.148\%$.
						1.0000	9.82	•
2	134-G(C)	222	Trautz, M. and	373.2		0,0000	12.57	Same remarks as for curve 1 except
	•		Heberling, R.			0.1133	12.94	$L_1 = 0.039\%$, $L_2 = 0.061\%$, $L_3 =$
			-			0.1929	13.01	0.142%.
						0.3039	13.04	
						0.4828	13.03	
						0.7007	12.91	
						0.8904	12.69	
						1.0000	12.79	
3	134-G(C)	222	Trautz, M. and	473.2		0.0000	15.41	Same remarks as for curve 1 except
	•		Heberling, R.			0.1133	16.47	$L_1 = 0.029\%$, $L_2 = 0.060\%$, $L_3 =$
			•			0.1929	16.48	0.152%.
						0.3039	16.39	
						0.4828	16.22	
						0.7007	15.95	
						0.8904	15.61	
						1.0000	16.46	
4	134-G(C)	222	Trautz, M. and	523.2		0.0000	16.66	Same remarks as for curve 1 excep
			Heberling, R.			0.1133	18.09	$L_1 = 0.060\%$, $L_2 = 0.077\%$, $L_3 =$
						0.1929	18.05	0.153%.
						0.3039	17.91	•
						0.4828	17.64	
			•			0.7007	17.29	
						0.8904	16.89	
						1.0000	18.13	

TABLE 134-G(C)S. SMOOTHED VISCOSITY VALUES AS A FUNCTION OF COMPOSITION FOR GASEOUS ETHYLENE-AMMONIA MIXTURES

Mole Fraction of C ₂ H ₄	(293. 2 K) [Ref. 222]	(373.2 K) [Ref. 222]	(473.2 K) [Ref. 222]	(523.2 K) [Ref. 222
0.00	9. 82	12.79	16.46	18.13
0.05	9.91	12.87	16.47	18.12
0.10	9. 99	12.93	16.47	18.10
0.15	10.06	12.97	16.47	18.08
0.20	10.13	13.08	16.45	18.04
0.25	10.18	13.03	16.43	17.99
0.30	10, 22	13.04	16.40	17.94
0.35	10, 25	13.04	16.36	17.87
0.40	10.28	13.05	16.31	17,80
0.45	10. 29	13.04	16.26	17.72
0.50	10.30	13.02	16.20	17.64
0.55	10.30	13.01	16.15	17.56
0.60	10.30	12.98	16.09	17.48
0.65	10, 29	12, 96	16.02	17,39
0.70	10. 27	12, 91	15.95	17,30
0.75	10.23	12.87	15.88	17.20
0.80	10, 22	12.82	15.79	17.10
0.85	10, 19	12.76	15.70	16.99
0.90	10.16	12.70	15.61	16.88
0.95	10.12	12.63	15.50	16.77
1.00	10.08	12, 56	15,41	16.65

FIGURE 134-G(C). VISCOSITY DATA AS A FUNCTION OF COMPOSITION FOR GASEOUS ETHYLENE-AMMONIA MIXTURES

TABLE 135-G(C) E. EXPERIMENTAL VISCOSITY DATA AS A FUNCTION OF COMPOSITION FOR GASEOUS HYDROGEN-AMMONIA MIXTURES

Cur No.		Ref. No.	Author(s)	Temp.	Pressure (mm Hg)	Mole Fraction of NH ₃	Viscosity (N s $m^{-2} \times 10^{-6}$)	Remarks
1	135-G(C)	222	Trautz, M. and	293, 2		1,0000	9, 82	H ₂ : by electrolysis of KOH on
	•		Heberling, R.			0.9005	10.04	pure nickel electrodes; NH:
			,			0.7087	10.47	I. G. Farben, 99. 997% pure,
						0.5177	10.80	
						0.2975		chief impurities O2, H2, N2; cap-
							10.87	illary transpiration method,
						0.2239	10, 72	d = 0.04038 cm; experimental
						0.1082	10.11	error $< 3\%$; $L_1 = 0.049\%$, $L_2 =$
						0.0000	8. 77	0.111%, L ₃ = 0.298%.
2	135-G(C)	341	Pal, A.K. and	306.2	< 100	0.0000	9.055	H ₂ : 99.5 pure; oscillating disk
			Barua, A.K.			0.1950	11.840	viscometer, relative measure-
			•			0.3990	12.381	ments; uncertainty in mixture
						0.5360	12. 244	composition ± 0.5%; data agree
						0.6770	12.000	
								with available values in literature
						0.8550 1.0000	11.461	within 1%; L ₁ = 0.265%, L ₂ =
_							10.5 9 0	0.496%, L ₃ = 1.156%.
3	135-G(C)	341	Pal, A.K. and	327.2	< 100	0.0000	9.491	Same remarks as for curve 2 excep
			Barua, A.K.			0.1950	12. 516	$L_1 = 0.025\%$, $L_2 = 0.065\%$, $L_3 =$
						0.3990	13, 071	0.172%,
						0.5360	13.049	
						0.6770	12,758	
						0.8550	12, 150	
						1.0000	11, 375	
	105 0/0\	044	70-1 4 771					
4	135-G(C)	341	Pal, A.K. and	371.2	< 100	0.0000	10.397	Same remarks as for curve 2 excep
			Barua, A.K.			0.1 9 50	13. 582	$L_1 = 0.455\%$, $L_2 = 0.962\%$, $L_3 = 0.962\%$
						0.3990	14.579	2.502%,
						0.5360	14.609	
						0.6770	14.504	
						0.8550	14.135	
						1.0000	13.001	
	100 0(0)	000	M					
3	135-G(C)	222	Trautz, M. and	373.2		1.0000	12.79	Same remarks as for curve 1 excep
			Heberling, R.			0.9005	12.99	$L_1 = 0.192\%$, $L_2 = 0.344\%$, $L_3 =$
						0.7087	13.33	0.868%.
						0.5177	13.54	
						0.2975	13, 29	
						0.2239	12.99	
						0.1082	12.04	
						0.1002	10.30	
e	125-0(0)	241	Dol A V and	401.0	- 100			a
0	135-G(C)	361	Pal, A.K. and	421.2	< 100	0.0000	11.458	Same remarks as for curve 2 excep
			Barua, A.K.			0.1400	14.917	$L_1 = 1.230\%$, $L_2 = 2.097\%$, $L_3 =$
						0.4054	15.937	5.123%.
						0.5170	16.030	
						0.6005	16, 201	
						0.8042	15, 991	
						1.0000	14.850	
~	125 ((())	000	Monada M. and	450.0				
•	135-G(C)	ZZZ	Trautz, M. and	473.2		1.0000	16.46	Same remarks as for curve 1 excep
			Heberling, R.			0.9005	16.60	$L_1 = 0.038\%$, $L_2 = 0.064\%$, $L_3 =$
						0.7087	16.80	0.122%.
						0.5177	16.76	
						0.2975	16.10	
						0,2239	15.60	
						0.1082	14. 32	
						0.0000	12.11	
_	100 (//)	041	7-1 4 55	.=				
•	135-G(C)	341	Pal, A.K. and	479.2	< 100	0.0000	12.621	Same remarks as for curve 2 excep
			Berue, A.K.			0.1400	16.4 6 0	L ₁ = 1.267%, L ₂ = 2.184%, L ₃ =
						0.40 54	17.719	5, 243%,
						0.5170	17.905	
						0.6005	18,020	
						0.8042	17.971	
						1.0000	17.002	
9	135-G(C)	222	Trauts, M. and	523, 2		1.0000	18.13	Same remarks as for curve 1 excess
•			Heberling, R.			0.8005	18. 26	L ₁ = 0.023%, L ₂ = 0.046%, L ₃ =
						0.708?	18.39	~ - 0.0207, Lg = 0.0207, Lg =
								0.109%.
						0. 5177	18, 26	
						0.2975	17.40	
						0,2239	16, 80	

TABLE 135-(C)S. SMOOTHED VISCOSITY VALUES AS A FUNCTION OF COMPOSITION FOR GASEOUS HYDROGEN-AMMONIA MIXTURES

Mole Fraction of NH ₃	(293.2 K) [Ref. 222]	(306.2 K) [Ref. 341]	(327.2 K) [Ref. 341]	(371.2 K) [Ref. 341]	(373.2 K) [Ref. 222]	(421.2 K) [Ref. 341]	(473.2 K) [Ref. 222]	(479.2 K) [Ref. 341]	(523.2 K) [Ref. 222]
0.00	8.77	9.06	9, 49	10.40	10.30	11.46	12.11	12.62	12.96
0.05	9, 53	10.32	10.89	11.47	11.22	12.68	13.24	13.97	14.29
0.10	10.04	11.06	11.67	12.41	11.92	13.61	14.19	15.01	15.25
0.15	10.39	11.54	12.18	13.12	12.46	14.32	14.89	15.78	15.99
0.20	10.63	11.87	12.54	13.63	12.84	14.85	15.40	16.37	16.57
0,25	10.79	12.10	12.78	14.00	13.12	15.26	15.81	16.83	17.04
0.30	10.87	12.24	12.94	14.27	13.33	15.56	16.12	17, 19	17.42
0.35	10.91	12.33	13.04	14.45	13.46	15.78	16.36	17.48	17.71
0.40	10.90	12.39	13.08	14.56	13. 52	15.93	16.50	17.70	17.94
0.45	10.88	12.39	13.08	14.64	13.56	16.04	16.65	17.87	18.10
0.50	10.82	12.36	13.07	14.66	13.55	16.10	16.76	18.00*	18.23
0.55	10.76	12.29	13.03	14.66	13.52	16, 12	16.80	18.08	18.31
0,60	10.68	12.19	12. 9 6	14.60	13.47	16.10	16.82	18.10	18.36
0.65	10.59	12.07	12.85	14.52	13.42	16.05	16.82	18.09	18.38
0.70	10,50	11.92	12.72	14.39	13.35	15.97	16.79	18.03	18.40
0.75	10.40	11.75	12.56	14.23	13. 27	15.86	16.76	17.93	18.39
0.80	10.29	11.56	12.38	14.04	13.19	15.70	16.72	17.80	18.37
0.85	10.18	11.35	12.16	13.81	13.10	15.52	16.66	17.63	18.34
0.90	10.07	11.12	11.92	13.56	13.01	15.32	16.60	17.44	18.28
0.95	9.96	10.86	11.66	13.28	12.90	15.10	16.54	17.22	18.22
1.00	9.80	10.59	11.38	13.00	12.68	14.85	16.46	17.00	18.13

FIGURE 135-G(C). VISCOSITY DATA AS A FUNCTION OF COMPOSITION FOR GASEOUS HYDROGEN – AMMONIA MIXTURES

TABLE 136-G(C)E. EXPERIMENTAL VISCOSITY DATA AS A FUNCTION OF COMPOSITION FOR GASEOUS HYDROGEN-ETHYL ETHER MIXTURES

Cur. No.	Fig.	Ref. No.	Author(s)	Temp.	Pressure (atm)	Mole Fraction of (C ₂ H ₅) ₂ O	Viscosity (N s m ⁻² x 10 ⁻⁶)	Remarks
1	136-G(C)	226	Trautz, M. and Ludewigs, W.	288.16		1.0000 0.2650 0.1330 0.0000	7.29 9.00 9.37 8.68	$(C_2H_5)_2O$: no purity specified, H_2 : made by electrolysis; capillary method; $L_1=0.000\%$, $L_2=0.000\%$, $L_3=0.000\%$.
2	136-G(C)	226	Trautz, M. and Ludewigs, W.	373.16		1.0000 0.2650 0.1330 0.0000	9.49 11.19 11.46 10.35	Same remarks as for curve 1 except $L_1 \approx 0.035\%$, $L_2 = 0.053\%$, $L_3 = 0.097\%$.
3	136-G(C)	226	Trautz, M. and Ludewigs, W.	423.15		1.0000 0.2650 0.1330 0.0000	10.70 12.52 12.62 11.34	Same remarks as for curve 1 except $L_1=0.000\%$, $L_2=0.000\%$, $L_3=0.000\%$.
4	136-G(C)	226	Trautz, M. and Ludewigs, W.	486.16		1.0000 0.2650 0.1330 0.0000	12.15 13.91 14.03 12.48	Same remarks as for curve 1 excep $L_1=0.002\%$, $L_2=0.004\%$, $L_3=0.007\%$.

TABLE 136-G(C)S. SMOOTHED VISCOSITY VALUES AS A FUNCTION OF COMPOSITION FOR GASEOUS HYDROGEN-ETHYL ETHER MIXTURES

Mole Fraction of (C ₂ H ₅) ₂ O	(288.16 K) [Ref. 226]	(373.16 K) [Ref, 226]	(423.15 K) [Ref. 226]	(486.16 K [Ref. 226]
0.00	8.68	10.35	11.34	12.48
0.05	9.09	10,96	11.86	13.27
0.10	9, 32	11.32	12.43	13.88
0.15	9.35	11.48	12.67	14.06
0.20	9, 24	11.43	12.68	14.08
0.25	9.07	11.27	12.57	13.97
0.30	8.88	11.05	12.39	13.77
0.35	8.70	10.87	12.22	13.60
0.40	8.54	10.71	12.07	13.45
0.45	8.40	10, 56	11.93	13. 30
0.50	8. 27	10.43	11.80	13, 17
0.55	8.16	10.31	11.68	13.05
0.60	8.04	10, 20	11,56	12.94
0.65	7.94	10.10	11,44	12.84
0.70	7.84	10.00	11.32	12.73
0.75	7.74	9. 91	11.21	12.63
0.80	7.65	9. 82	11,10	12.54
0.85	7,56	9.73	10.99	12.44
0,90	7.47	9, 65	10,89	12.35
0.96	7.38	9. 57	10.79	12.25
1.00	7.29	9,49	10,70	12.15

FIGURE 136-G(C). VISCOSITY DATA AS A FUNCTION OF COMPOSITION FOR GASEOUS HYDROGEN-ETHYL ETHER MIXTURES

7, "

....

--- ...

TABLE 137-G(C)E. EXPERIMENTAL VISCOSITY DATA AS A FUNCTION OF COMPOSITION FOR GASEOUS HYDROGEN-HYDROGEN CHLORIDE MIXTURES

Cur. No.		Ref. No.	Author (s)	Temp. (K)	Pressure (atm)	Mole Fraction of HCl	Viscosity (N s m ⁻² x 10 ⁻⁶)	Remarks
1	137-G(C)	228	Trautz, M. and	294.16		1,0000	14.37	Capillary method, d = 0.152 mm;
		_	Narath, A.			0.8220	14.61	precision $\pm 2\%$; L ₁ = 0.040%, L ₂ =
			•			0.7179	14.69	0.058%, L ₁ = 0.102%,
						0.5042	14.71	•
						0.2031	13.42	
						0,0000	8.81	
2	137-G(C)	228	Trautz, M. and	327.16		1.0000	16.05	Same remarks as for curve 1 excep
			Narath, A.			0.8220	16,26	$L_1 = 0.011\%, L_2 = 0.028\%, L_3 =$
						0.7179	16.32	0.068%.
						0.5042	16.25	
						0.2031	14.72	
						0.0000	9.47	
3	137-G(C)	228	Trautz, M. and	372.16		1.0000	18.28	Same remarks as for curve 1 excep
	, ,		Narath, A.			0.8220	18,48	$L_1 = 0.081\%$, $L_2 = 0.161\%$, $L_3 =$
			•			0.7179	18.55	0.379%.
						0.5042	18.31	
						0.2031	16.29	
						0.0000	10.36	
4	137-G(C)	228	Trautz, M. and	427.16	•	1.0000	20.94	Same remarks as for curve 1 excep
			Narath, A.			0.8417	20.99	$L_1 = 0.180\%$, $L_2 = 0.338\%$, $L_3 =$
						0.6989	21.04	0.766%.
						0.5092	20,53	
						0.2409	18.66	
						0.0000	11.42	
5	137-G(C)	228	Trautz, M. and	473.16		1.0000	23.04	Same remarks as for curve 1 excep
			Narath, A.			0.8417	23.11	$L_1 = 0.088\%$, $L_2 = 0.154\%$, $L_3 =$
						0.6989	23.04	0.305%.
						0.5092	22.61	
						0.2409	20.24	
						0.0000	12.2 4	
6	137-G(C)	228	Trautz, M. and	523.16		1.0000	25.28	Same remarks as for curve 1 excep
			Narath, A.			0.7947	25.27	$L_1 = 0.087\%$, $L_2 = 0.123\%$, $L_3 =$
						0.6312	25.07	0.198%.
						0.5178	24.54	•
						0. 2991	22.81	
					0.0000	13.15		

TABLE 137-G(C)S. SMOOTHED VISCOSITY VALUES AS A FUNCTION OF COMPOSITION FOR GASEOUS HYDROGEN-HYDROGEN CHLORIDE MIXTURES

Mole Fraction of HCl	(294.2 K) [Ref. 228]	(327.2 K) [Ref. 228]	(372.2 K) [Ref. 228]	(427.2 K) [Ref. 228]	(473.2 K) [Ref. 228]	(523.2 K) [Ref. 228]
0.00	8. 81	9.41	10.36	11.42	12.24	13,15
0.05		12,57	13.08	14.10	15.20	16.48
0.10	12.58	13.45	14.50	16.28	17.41	18.89
0.15	13,04	14.16	15.52	17.49	18.77	20.34
0.20	13.41	14.70	16.25	18.24	19.70	21.38
0.25	13.73	15.12	16.80	18.74	20.33	22.18
0.30	14.00	15. 44	17.22	19.10	20.81	22,84
0.35	14.23	15.70	17.56	19.42	21.24	23.36
0.40	14.40	15.91	17.82	19.72	21.62	23.82
0.45	14.54	16.07	18.04	20.00	21.96	24.18
0.50	14.62	16.18	18.20	20, 24	22.25	24.48
0.55	14.70	16, 26	18.33	20.44	22.50	24.72
0.60	14.74	16.32	18.41	20.62	22.70	24.92
0.65	14.74	16.34	18.46	20.79	22.85	25.09
0.70	14.72	16.33	18.48	20.88	22.97	25.19
0.75	14.68	16.31	18.48	20.96	23.05	25.26
0.80	14.64	16.28	18.47	20.99	23,10	25.32
0.85	14.60	16.24	18.44	20.98	23.11	25.34
0.90	14.53	16.18	18.40	20.98	23.10	25.34
0.96	14.46	16.12	18.33	20.96	23.08	25.33
1.00	14.38	16.05	18.28	20.44	23.04	25.28

FIGURE 137-G(C). VISCOSITY DATA AS A FUNCTION OF COMPOSITION FOR GASEOUS HYDROGEN-HYDROGEN CHLORIDE MIXTURES

TABLE 138-G(C)E. EXPERIMENTAL VISCOSITY DATA AS A FUNCTION OF COMPOSITION FOR GASEOUS HYDROGEN-SULFUR DIOXIDE MIXTURES

Cur. No.	Fig. No.	Ref. No.	Author (s)	Temp. (K)	Pressure (mm Hg)	Mole Fraction of SO ₂	Viscosity (N s m ⁻² x 10 ⁻⁶)	Remarks
1	138-G(C)	231	Trautz, M. and Weizel, W.	290.16		1.0000 0.8215 0.5075 0.3903 0.2286 0.1676 0.0000	12.59 12.93 13.50 13.70 13.44 13.04 8.88	Capillary method, $D \approx 0.15$ mm; accuracy: pure $SO_2 \pm 0.2$, pure $H_2 \pm 0.8$, for $SO_2 < 30\%$ of mixture ± 0.4 ; precision: $\pm 0.3\%$ for $SO_2 < 30\%$ of mixture; $L_1 = 0.116\%$, $L_2 = 0.231\%$, $L_3 = 0.587\%$.
2	138-G(C)	347	Pal, A.K. and Barua, A.K.	303.20	100	1.0000 0.8219 0.5957 0.4919 0.4059 0.2005 0.0000	13.301 13.445 13.501 13.675 13.701 13.641 9.000	H ₂ : 99.95 pure; oscillating disk viscometer, relative measurements; error \pm 1.0%; L ₁ = 1.181%, L ₂ = 1.624%, L ₃ = 2.567%.
3	138-G(C)	231	Trautz, M. and Weizel, W.	318.16		1.0000 0.8028 0.5075 0.2963 0.2286 0.1676 0.0000	13.86 14.25 14.75 14.94 14.53 14.10 9.45	Same remarks as for curve I excep $L_1 = 0.234\%$, $L_2 = 0.492\%$, $L_3 = 1.288\%$.
4	138-G(C)	347	Pal, A.K. and Barua, A.K.	328.20	100	1.0000 0.7866 0.5975 0.4863 0.4000 0.2005	14.402 14.546 14.721 14.846 14.801 14.712 9.560	Same remarks as for curve 2 except $L_1 = 1.657\%$, $L_2 = 2.196\%$, $L_3 = 3.135\%$.
5	138-G(C)	231	Trautz, M. and Weizel, W.	343.16		1.0000 0.8028 0.6999 0.6175 0.4823 0.2963 0.2306 0.1676 0.1657	14.98 15.35 15.57 15.74 15.87 15.96 15.57 15.00 15.05 9.94	Same remarks as for curve 1 excep $L_1 = 0.408\%$, $L_2 = 0.594\%$, $L_3 = 1.333\%$.
6	138-G(C)	231	Trautz, M. and Weizel, W.	365,16	•	1,0000 0.8028 0.6999 0.6175 0.4823 0.2306 0.1676 0.1657	15.99 16.33 16.48 16.75 16.82 16.40 15.73 15.77	Same remarks as for curve 1 excep $L_1=0.225\%,\ L_2=0.320\%,\ L_3=0.675\%,$
7	138~G(C)	347	Pal, A.K. and Barua, A.K.	373.20	100	1,0000 0,7866 0,5975 0,4863 0,4000 0,2005 0,0000	16.890 16.806 16.795 16.691 16.595 16.289	Same remarks as for curve 2 excep $L_1 = 1.193\%$, $L_2 = 1.637\%$, $L_3 = 2.612\%$.
8	138-G(C)	231	Trautz, M. and Weizel, W.	397.16		1.0000 0.6760 0.4698 0.3265 0.1636 0.0000	17.39 17.97 18.14 18.01 16.85 11.02	Same remarks as for curve 1 excep $L_1 = 0.242\%$, $L_2 = 0.439\%$, $L_3 = 0.953\%$.
9	138- G (C)	347	Pal, A.K. and Barua, A.K.	423.20	100	1.0000 0.8110 0.6024 0.5023 0.4018 0.2000 0.0000	19.220 19.203 19.250 19.252 19.253 17.788 11.550	Same remarks as for curve 2 except $L_1=0.342\%,\ L_2=0.555\%,\ L_3=1.278\%.$
10	138-Q(C)	231	Trautz, M., and Weizel, W.	432.16		1.0000 0.6760 0.4698 0.3265 0.1676 0.1512 0.0000	18.97 19.42 19.60 19.42 18.03 17.48 11.67	Same remarks as for curve 1 excep $L_1=0.367\%,\ L_2=0.498\%,\ L_3=0.839\%.$

TABLE 138-G(C)E. EXPERIMENTAL VISCOSITY DATA AS A FUNCTION OF COMPOSITION FOR GASEOUS HYDROGEN-SULFUR DIOXIDE MIXTURES (continued)

Cur. No.	Fig.	Ref. No.	Author(s)	Temp. (K)	Pressure (mm Hg)	Mole Fraction of SO ₂	Viscosity (N s m ⁻² x 10 ⁻⁶)	Remarks
11	138-G(C)	231	Trautz, M. and	472,16		1,0000	20,71	Same remarks as for curve 1 excep
			Weizel, W.			0.6760	21,18	$L_1 = 0.118\%$, $L_2 = 0.181\%$, $L_3 =$
						0.4905	21.21	0. 329%.
						0.3265	20.98	
						0.1512	19.53	
						0,0000	12.87	
12	138-G(C)	C) 347	Pal, A.K. and Barua, A.K.	473.20	100	1.0000	21,150	Same remarks as for curve 2 excep
						0.8110	21.411	$L_1 = 0.109\%$, $L_2 = 0.159\%$, $L_3 =$
						0.6024	21.499	0.346%.
			0.5023	21.540				
						0.4018	21.337	
						0.2000	19.472	
						0.0000	12/260	

TABLE 138-G(C)S. SMOOTHED VISCOSITY VALUES AS A FUNCTION OF COMPOSITION FOR GASEOUS HYDROGEN-SULFUR DIOXIDE MIXTURES

Mole Fraction of SO ₂	(373.2 K) [Ref. 347]	(397.2 K) [Ref. 231]	(423.2 K) [Ref. 347]	(432.2 K) [Ref. 231]	(472.2 K) [Ref. 231]	(473.2 K) [Ref. 347]
0.00	10,47	11.02	11.55	11.67	12.87	12.26
0.05	14.20	15.11	15.17	15.51	17.54	16.90
0.10	15.20	16.10	16.44	16.76	18.76	18.10
0.15	15,82	16.73	17, 24	17.64	19.51	18.92
0.20	16.25	17.18	17.81	18.26	20.02	19.54
0.25	16.56	17,49	18, 24	18.77	20.44	20.05
0.30	16.78	17.72	18,56	19,16	20.80	20.50
0.35	16.94	17.92	18,80	19.46	21.06	21.92
0.40	17.04	18.04	18.99	19.58	21.02	21,26
0.45	17.11	18.12	19.12	19.59	21.26	21.44
0.50	17.14	18.17	19, 22	19.60	21.28	21.54
0.55	17.14	18.18	19, 28	19.58	21.30	21.58
0.60	17.12	18.16	19,32	19.56	21.28	21,58
0.65	17.10	18.10	19.34	19.52	21.26	21.56
0.70	17.06	18.02	19, 34	19.44	21.22	21.52
0.75	17.04	17.94	19,33	19.40	21.16	21.48
0.80	17.00	17.84	19,34	19.32	21.08	21.42
0.85	16.98	17.74	19,30	19.25	21.00	21.39
0.90	16.96	17.72	19, 28	19.16	19.91	21.32
0.95	16.92	17.51	19.26	19.07	19.80	21.25
1.00	16.89	17.39	19.22	18.97	20.71	21.16

FIGURE 138-G(C). VISCOSITY DATA AS A FUNCTION OF COMPOSITION FOR GASEOUS HYDROGEN-SULFUR DIOXIDE MIXTURES

TABLE 139-G(C) E. EXPERIMENTAL VISCOSITY DATA AS A FUNCTION OF COMPOSITION FOR GASEOUS METHANE-AMMONIA MIXTURES

Cur. No.	Fig.	Ref. No.	Author(s)	Temp. (K)	Pressure (mm Hg)	Mole Fraction of NH ₃	Viscosity (N s m ⁻² x 10 ⁻⁶)	Remarks
1	139-G(C)	346	Jung, G. and	287.66		0.0000	10, 91	Effusion method of Trautz and
			Schmick, H.			0,9000	10,08	Weizel; $L_1 = 0.118\%$, $L_2 = 0.210\%$,
						0.8000	10,39	$L_3 \approx 0.616\%$.
						0.7000	10,61	•
						0.6000	10,77	
						0,5000	10.91	
						0.4000	10.99	
						0.3000	11.05	
						0.2000	11.05	
						0.1000	10,99	
						1,0000	9,79	
2	139-G(C)	35	Chakraborti, P.K.	298.2	243-142	0.0000	11.00	NH ₃ : purified by distillation be-
			and Gray, P.			0.7400	11.01	tween liquid nitrogen traps, CH4:
						0.1970	11.09	99.8 pure; capillary viscometer,
						0.3020	11.12	relative measurements; error 1.0
						0.4040	11.27	and precision \pm 0.2%; $L_1 = 0.488\%$
						0.4970	11.28	$L_2 = 0.636\%$, $L_3 = 1.220\%$.
						0.5910	11.18	
						0.7000	10.89	
						0.7950	10.71	
						0.8980	10.39	
						1.0000	10, 16	
3	139-G(C)	35	Chakraborti, P.K.	Chakraborti, P.K. 308.2 243-142	0.0000	11.38	Same remarks as for curve 2 e	
			and Gray, P.			0.8000	11.34	$L_1 = 0.279\%$, $L_2 = 0.343\%$, $L_3 =$
						0.1850	11, 37	0.666%.
						0.3060	11.40	
						0.4060	11.35	
						0.4990	11.30	
						0.5980	11. 28	
						0.6970	11. 2 9	
						0.7980	11.18	
						0.8710	10,96	
						1.0000	10.49	
4	139-G(C)	35	Chakraborti, P.K.	353.2	243-142	0.0000	12.53	Same remarks as for curve 2 exce
			and Gray, P.			0.4600	12.62	$L_1 \approx 0.059\%$, $L_2 = 0.110\%$, $L_3 =$
						0.1780	12.77	0.159%.
						0.2900	12.85	
						0.3940	12.88	
						0.4970	12.87	
						0.5960	12.80	
						0.6890	12.72	
						0.7780	12.58	
						0.8350	12.43	
						1.0000	11.98	

TABLE 139-G(C)8. SMOOTHED VISCOSITY VALUES AS A FUNCTION OF COMPOSITION FOR GASEOUS METHANE-AMMONIA MIXTURES

Mole Fraction of NH ₃	(287.7 K) {Ref. 346]	(298.2 K) [Ref. 35]	(308.2 K) [Ref. 35]	(353.2 K) [Ref. 35]
0.00	10. 91	11.00	11.38	12.53
0.05	10.96	11.05	11.38	12.61
0.10	10.99	11,09	11.38	12.68
0.15	11.02	11.13	11.39	12.74
0.20	11.03	11.16	11.39	12.79
0.25	11.04	11.13	11.38	12.82
0.30	11.04	11.19	11.38	12.85
0.35	11.02	11.19	11.38	12.87
0.40	10.99	11.19	11.37	12.88
0.45	10.95	11.17	11.37	12.88
0.50	10.90	11.14	11.36	12.87
0.55	10.84	11.11	11.35	12.85
0.60	10.77	11.05	11.33	12.82
0.65	10.69	10.99	11.30	12.77
0.70	10.55	10.90	10, 25	12.71
0.75	10.49	10.81	11.19	12.63
0.80	10.37	10,70	11.10	12.54
0.85	10.24	10.58	11.00	12.43
0.90	10.10	10.44	10.86	12.30
0.95	9.95	10.30	10.69	12.15
1.00	9.79	10.16	10.50	11.98

FIGURE 139 - G(C). VISCOSITY DATA AS A FUNCTION OF COMPOSITION FOR GASEOU. METHANF AMMONIA MIXTURES

TABLE 140-G(C)E. EXPERIMENTAL VISCOSITY DATA AS A FUNCTION OF COMPOSITION FOR GASEOUS METHANE-SULFUR DIOXIDE MIXTURES

Cur. No.	Fig. No.	Ref. No.	Author(s)	Temp.	Pressure (mm Hg)	Mole Fraction of SO ₂	Viscosity (N s m ⁻² x 10 ⁻⁶)	Remarks
1	140-G(C)	35	Chakraborti, P.K.	308.2	142-243	0.000	11.38	SO ₂ : tank gas was purified by
			and Gray, P.			0.085	11.86	distillation between liquid nitrogen
						0.221	12.60	traps; capillary flow method,
						0.302	12.87	relative measurements; precision
						0.433	13,24	$\pm 0.2\%$ and accuracy 1.0%; L ₁ =
						0.567	13.48	0.096% , $L_2 = 0.149\%$, $L_3 = 0.398\%$.
						0.674	13.57	
						0.791	13.59	
						0.871	13,56	
						1.000	13.28	
2	140-G(C)	C) 35 Chakraborti, P.K. 353.2 142-243 and Gray, P.		353.2	142-243	0.000	12,53	Same remarks as for curve 1 except
	, ,					0.146	13,60	L, = 0.598%, L, = 0.896%, L, =
			0.260	13.86	1.919%.			
						0.392	14.69	
						0.478	14.91	
						0.590	15.12	
						0.681	15.23	
						0.871	15.23	
						1.000	15.21	

TABLE 140-G(C)S. SMOOTHED VISCOSITY VALUES AS A FUNCTION OF COMPOSITION FOR GASEOUS METHANE-SULFUR DIOXIDE MIXTURES

Mole Fraction of SO ₂	(308.2 K) [Ref. 35]	(353.2 K) [Ref. 35]
0.00	11.39	12.53
0.05	11.68	12.84
0.10	11.95	13.15
0.15	12, 22	13.43
0.20	12.46	13.72
0.25	12.67	13.97
0.30	12.86	14.21
0.35	13.03	14.43
0.40	13, 17	14.62
0.45	13. 29	14.79
0.50	13.39	14.93
0.55	13.47	15.05
0.60	13.53	15.14
0.65	13.57	15.21
0.70	13.60	15.25
0.75	13.61	15.28
0.80	13.60	15.29
0.85	13.57	15.29
0.90	13.53	15.28
0.96	13.44	15.25
1.00	13.28	15.22

FIGURE 140-G(C). VISCOSITY DATA AS A FUNCTION OF COMPOSITION FOR GASEOUS METHANE-SULFUR DIOXIDE MIXTRES

TABLE 141-G(C)E. EXPERIMENTAL VISCOSITY DATA AS A FUNCTION OF COMPOSITION FOR GASEOUS NITROGEN-AMMONIA MIXTURES

Cur. No.	Fig. No.	Ref. No.	Author(s)	Temp. (K)	Pressure (mm Hg)	Mole Fraction of N ₂	Viscosity (N s m ⁻² \times 10 ⁻⁶)	Remarks
1	141-G(C)	222	Trautz, M. and	293.2		0.0000	17.45	N ₂ : obtained by chemical reaction;
			Heberling, R.			0.1117	10.92	NH ₃ : I.G. Farben, 99.997% pure,
						0.2853	12.54	chief impurities O2, H2, N2; cap-
						0.4362	13.83	illary transpiration method, d =
						0.7080	15.85	0.04038 cm; experimental error
						0.8889	16.90	$<3\%$; $L_1 = 0.358\%$, $L_2 = 0.678\%$,
						1.0000	9.62	$L_3 = 1.675\%$.
2	141-G(C)	347	Pal, A.K. and	297.2	100	0.0000	10.281	N ₂ : 99.95 pure; oscillating disk
			Barua, A.K.			0.2036	11.944	viscometer, relative measure-
						0.4291 0.4973	13.617 14.160	ments; error $\pm 1.0\%$; L ₁ = 1.016%,
						0.5980	14.861	$L_2 = 1.564\%$, $L_3 = 3.726\%$.
						0.7993	16.785	
						1,0000	17.505	
,	141-G(C)	347	Pal, A.K. and	327.2	100	0.0000	11.372	Same remarks as for curve 2 excep
J	141-0(0)	J-11	Barua, A.K.	021.2	100	0.2036	13.640	L ₁ = 0.321%, L ₂ = 0.499%, L ₃ =
						0.4291	15.171	1.102%.
						0.4973	15.805	
						0.5980	16.703	
						0.7993	17.937	
						1.0000	19.130	
4	141-G(C)	347	Pal, A.K. and	373.2	100	0.0000	13.075	Same remarks as for curve 2 excep
			Barua, A.K.			0.2036	15.495	$L_1 = 0.379\%$, $L_2 = 0.464\%$, $L_3 =$
			•			0.4291	17.010	0.694%.
						0.4973	17.734	
						0.5980	18.508	
						0.7993	19.892	
						1.0000	21.010	
5	141-G(C)	222	Trautz, M. and	373.2		0.0000	20.85	Same remarks as for curve 1 excep
			Heberling, R.			0.1117	13.98	$L_1 = 0.057\%$, $L_2 = 0.107\%$, $L_3 =$
						0.2853	15.69	0.209%.
						0.4362	17.10	
						0.7080	19.20	
						0.8889 1.0000	20.31 12.79	
	141 ((c)	247	Del A V and	423.2	100	0.0000	14,928	Same remarks as for curve 2 excep
О	141-G(C)	347	Pal, A.K. and	423. Z	100	0.0000	17,611	
			Barua, A.K.			0.4080	19.003	$L_1 = 0.824\%$, $L_2 = 1.288\%$, $L_3 = 2.509\%$.
						0.5072	19.901	2.003/0.
						0.6015	20.375	
						0.7748	21.672	
						1,0000	23.050	
7	141-G(C)	222	Trautz, M. and	473.2		0,0000	24.62	Same remarks as for curve 1 excep
•	(-,		Heberling, R.			0.1117	17.68	$L_1 = 0.677\%$, $L_2 = 0.913\%$, $L_3 =$
						0.2853	19.46	1.733%.
						0.4362	20.85	
						0.7080	22.96	
						0.8889	24.08	
						1.0000	16.46	
8	141-G(C)	222	Trautz, M. and	523.2		0.0000	26,27	Same remarks as for curve 1 excep
	·		Heberling, R.			0.1117	19.39	$L_1 = 0.299\%$, $L_2 = 0.475\%$, $L_3 =$
			•			0.2853	21.12	0.974%.
						0.4362	22.50	
						0.7080	24.60	
						0.8889	25.72 19 13	
						1.0000	18.13	
9	141-G(C)	347	Pal, A.K. and	573.2	100	0.0000	16.798	Same remarks as for curve 2 excep
			Barua, A.K.			0.2397	19.572	L ₁ = 1.124%, L ₂ = 1.569%, L ₃ =
						0.4080	20.785	3, 359%.
						0.5072	21.520 22.211	
						0.6015	44, 211	
						0.7748	23.625	

TABLE 141-G(C)S. SMOOTHED VISCOSITY VALUES AS A FUNCTION OF COMPOSITION FOR GASEOUS NITROGEN-AMMONIA MIXTURES

Mole Fraction of N ₂	(293.2 K) [Ref. 222]	(297.2 K) [Ref. 347]	(327.2 K) [Ref. 347]	(373.2 K) [Ref. 222]	(373, 2 K) [Ref. 347]	(423.2 K) [Ref. 347]	(473.2 K) [Ref. 222]	(523.2 K) [Ref. 222]	(573.2 K) [Ref. 222]
0.00	9.82	10.30	11.37	13,08	12.79	14,93	16.46	18.13	16.80
0.05	10.32	10.64	11.88	13.62	13.38	15.49	17.04	18.70	17.26
0.10	10.80	11.00	12.36	14.13	13.87	15,87	17.62	19.25	17.72
0.15	11.30	11.35	12.86	14.64	14.37	16.34	. 18. 20	19.79	18.16
0.20	11.78	11.70	13.32	15.12	14.88	16.81	18.76	20.30	18.60
0.25	12,25	12.07	13.78	15.57	15,38	17.27	19.32	20.78	19.04
0.30	12,70	12.44	14.24	16.02	15.86	17,73	19.86	21.25	19.47
0.35	13,12	12.85	14.68	16.45	16.32	18.19	20.34	21.68	19.90
0.40	13,54	13.24	15.10	16.86	16.77	18.64	20.76	22.10	20.32
0.45	13.92	13.64	15.50	17.26	17.22	19.09	21.17	22.60	20.76
0.50	14.28	14.01	15.90	17,64	17.64	19.52	21.55	22, 90	21.16
0.55	14.62	14.38	16.26	18.04	18.04	19.95	21.90	23.27	21.58
0.60	14.95	14.74	16.62	18.42	18.42	20.36	22.24	23.62	22.00
0.65	15.28	15.11	16.96	18.78	18.78	20.76	22.60	23.99	22.48
0.70	15.60	15.48	17.30	19.12	19.12	21.14	22.89	24.32	22.80
0.75	15.92	15,84	17.62	19,45	19.44	21,51	23.18	24.66	23.21
0.80	16.24	16.18	17.94	19.77	19.76	21.84	23.48	24.98	23.62
0.85	16.56	16.52	18.24	20.15	20,08	22.17	23.76	25.32	24.02
0.90	16.85	16,86	18.54	20.40	20.38	22.48	24.06	25.64	24.40
0.95	17.17	17.18	18.84	20.70	20.67	22.76	24.35	25.95	24.83
1.00	17.45	17.50	19.13	21.01	20.85	23.05	24.62	26.27	25.23

FIGURE 141-G(C). VISCOSITY DATA AS A FUNCTION OF COMPOSITION FOR GASEOUS NITROGEN-AMMONIA MIXTURES

TABLE 142-G(C)E. EXPERIMENTAL VISCOSITY DATA AS A FUNCTION OF COMPOSITION FOR GASEOUS NITROUS OXIDE-AMMONIA MIXTURES

Cur. No.		Ref. No.	Author(s)	Temp. (K)	Pressure (mm Hg)	Mole Fraction of N ₂ O	Viscosity (N s m ⁻² x 10 ⁻⁶)	Remarks
1	142-Q(C)	35	Chakraborti, P.K.	298.2	142-243	1,000	14.86	Both gases were purified by
			and Grav. P.			0.899	14.63	distillation between liquid nitro-
						0.802	14.36	gen traps; capillary flow visco-
						0.702	13.81	meter, relative measurements:
						0.598	13.43	precision ± 0, 2%, accuracy 1,0%;
						0.507	13.08	L ₁ = 0.421%, L ₂ = 0.535%, L ₃ =
						0.406	12.66	1.075%.
						0.303	12.03	
						0.207	11.46	
						0.105	10.78	
						0.000	10.16	
2	142-G(C)	35	Chakraborti, P.K.	308.2	142-243	1.000	15.38	Same remarks as for curve 1 excep
			and Gray, P.			0.951	15.27	$L_1 = 0.142\%$, $L_2 = 0.192\%$, $L_3 =$
						0.821	14.95	0.430%.
						0.706	14.65	
						0.602	14.32	
						0.502	13.93	
						0.402	13.52	
						0.313	13.05	
						0.210	12.40	
						0.112	11.67	
						0.000	10.49	
3	142-G(C)	35	Chakraborti, P.K.	353.2	142-243	1,000	17.30	Same remarks as for curve 1 excep
			and Gray, P.			0.919	17.23	$L_1 = 0.180\%$, $L_2 = 0.228\%$, $L_3 =$
			•			0.816	17.00	0.408%.
						0.716	16.74	
						0.606	16.35	
						0.502	15.86	
						0.408	15.40	
						0.320	14.88	
						0.221	14.18	
						0,142	13.55	
						0,000	11.98	

TABLE 142-G/C)S. SMOOTHED VISCOSITY VALUES AS A FUNCTION OF COMPOSITION FOR GASEOUS NITROUS OXIDE-AMMONIA MIXTURES

Mole Fraction of NO ₂	(298.2 K) [Ref. 35]	(308.2 K) [Ref. 35]	(353.2 K) [Ref. 35]
0.00	10.16	10.49	12,00
0.05	10.48	11.03	12.58
0.10	10.82	11.51	13.10
0.15	11.14	11.94	13.58
0.20	11.46	12.32	14.02
0. 25	11.78	12,68	14.41
0.30	12.08	13.00	14.76
0.35	12.36	13.28	15.10
0.40	12.63	13.53	15.39
0.45	12.88	13.76	15.66
0.50	13.12	13.97	15.90
0.55	13.34	14.16	16.13
0.60	13.55	14.33	16.33
0.65	13.76	14.49	16.51
0.70	13.95	14.64	16.67
0.75	14.13	14.78	16.81
0.80	14.30	14.91	16.93
0.85	14.45	15.03	17.04
0.90	14.60	15.17	17.13
0.95	14.73	15.29	17.22
1.00	14.86	15.40	17.30

FIGURE 142-G(C), VISCOSITY DATA AS A FUNCTION OF COMPOSITION FOR GASEOUS NITROUS OXIDE—AMMONIA MIXTURES

TABLE 143-G(C)E. EXPERIMENTAL VISCOSITY DATA AS A FUNCTION OF COMPOSITION FOR GASEOUS NITROUS OXIDE-SULFUR DIOXIDE MIXTURES

Cur. No.	Fig. No.	Ref. No.	Author(s)	Temp. (K)	Pressure (mm Hg)	Mole Fraction of N ₂ O	Viscosity (N s m ⁻² x 10 ⁻⁶)	Remarks
1	143-G(C)	35	Chakraborti, P.K.	298.2	142-243	0.000	14.86	SO, and N,O: tank gases puri-
			and Gray, P.			0.043	14.79	fied by distillation between liquid
			•			0.178	14,80	nitrogen traps; capillary visco-
						0.297	14.64	meter, relative measurements;
						0.401	14.48	precision ± 0.2% and accuracy
						0.493	14.27	1.0%; $L_1 = 0.319\%$, $L_2 = 0.470\%$,
						0.596	14.04	$L_3 = 1.345\%$.
						0.702	13.92	•
						0.800	13.71	
						0.900	13.39	
						0.914	13.20	
						1.000	13.17	
2	143-G(C)	35	Chakraborti, P.K.	308.2	142-243	0.000	15.38	Same remarks as for curve 1 exce
			and Gray, P.			0.042	15.04	$L_1 = 0.753\%$, $L_2 \approx 1.011\%$, $L_3 =$
			•			0.147	15.05	1.841%.
						0,249	14.90	
						0,398	14.69	
						0.476	14.55	
						0.575	14.36	
						0.672	14.31	
						0.777	14.11	
						0.879	13.87	
						1.000	13.28	
3	143-G(C)	35	Chakraborti, P.K.	353.2	142-243	0.000	17.30	Same remarks as for curve 1 exce
			and Gray, P.			0.035	17.26	$L_1 = 0.107\%$, $L_2 = 0.147\%$, $L_3 =$
			•			0.183	17.07	0.289%.
						0.273	16.94	
						0.375	16.78	
						0.474	16.56	
						0.576	16.36	
						0.675	16.17	
						0.786	15.89	
						0.895	15.60	
						1,000	15.23	

TABLE 143-G(C)S. SMOOTHED VISCOSITY VALUES AS A FUNCTION OF COMPOSITION FOR GASEOUS NITROUS OXIDE-SULFUR DIOXIDE MIXTURES

Mole Fraction of N ₂ O	(298.2 K) [Ref. 35]	(308.2 K) [Ref. 35]	(353.2 K) [Ref. 35]
0.00	14.88	15.38	17.30
0.05	14,86	15.31	17.24
0.10	14.83	15.24	17.18
0.15	14.80	15.16	17.12
0.20	14.76	15.08	17.05
0. 25	14.71	15.00	16.98
0.30	14.65	14.92	16.90
0.35	14.57	14.83	16.82
0.40	14.49	14.73	16.73
0.45	14.40	14.63	16.64
0.50	14.30	14.53	16.54
0.55	14,21	14.43	16.44
0.60	14.10	14.31	16.33
0.65	14.00	14.20	16.22
0.70	13.89	14.08	16.09
0.75	13.77	13.96	15,96
0.80	13,66	13.84	15.83
0.85	13.54	13.71	15.69
0.90	13.42	13.58	15,54
0.95	13.29	13.43	15,39
1.00	13.17	13.28	15.23

FIGURE 143-G(C). VISCOSITY DATA AS A FUNCTION OF COMPOSITION FOR GASEOUS NITROUS OXIDE—SULFUR DIOXIDE MIXTURES

TABLE 144-G(C)E. EXPERIMENTAL VISCOSITY DATA AS A FUNCTION OF COMPOSITION FOR GASEOUS OXYGEN-AMMONIA MIXTURES

Cur. No.	Fig.	Ref. No.	Author(s)	Temp. (K)	Pressure (atm)	Mole Fraction of O2	Viscosity (N s m ⁻² x 10 ⁻⁶)	Remarks
1			Trautz, M. and Heberling, R.	293. 2		0.0000 0.1245 0.2921 0.5214 0.7014	20.23 11.43 13.50 16.04 17.83	O ₃ : by electrolysis of KOH on pure nickel electrodes; NH ₃ : I.G. Farben 99.997% pure, chief impurities O ₂ . H ₂ , N ₂ ; capillary transpiration meth- od; d = 0.04038 cm; experimental
						0.8649 1.0000	19.24 9.82	error $<3\%$; $L_1 = 0.092\%$, $L_2 = 0.203\%$ $L_3 = 0.523\%$.
2	144-G/C)	222	Trautz, M. and Heberling, R.	373.2		0.0000 0.1245 0.2921 0.5214 0.7014 0.8649 1.0000	24.40 14.59 16.89 19.72 21.70 23.26 12.79	Same remarks as for curve 1 except $L_1 = 0.012\%$, $L_2 = 0.033\%$, $L_3 = 0.086\%$.
3	144-G(C)	222	Trautz, M. and Heberling, R.	473.2		0.0000 0.1245 0.2921 0.5214 0.7014 0.8649 1.0000	29.02 18.40 20.85 23.90 26.04 27.73 16.46	Same remarks as for curve 1 except $L_1 = 0.282\%$, $L_2 = 0.440\%$, $L_3 = 0.891\%$.

TABLE 144-G(C)S. SMOOTHED VISCOSITY VALUES AS A FUNCTION OF COMPOSITION FOR GASEOUS OXYGEN-AMMONIA MIXTURES

Mole Fraction of O ₂	(293.2 K) [Ref. 222]	(373.2 K) [Ref. 222]	(473.2 K) [Ref. 222]
0.00	9. 82	12.79	16.46
0,05	10.48	13.52	17.26
0.10	11.12	14.24	18.05
0.15	11.75	14.95	18.80
0.20	12.38	15. 64	19.55
0.25	13.00	16.32	20, 28
0.30	13.61	17.00	20.96
0.35	14.20	17.64	21.65
0.40	14.78	18.28	22, 29
0.45	15.32	18.89	22. 92
0.50	15,84	19.48	23.53
0.55	16.34	20.06	24, 13
0.60	16.81	20,62	24.69
0.65	17.26	21.26	25.28
0.70	17.70	21.70	25, 80
0.75	18.15	22, 20	26,33
0.80	18.59	22.68	26.86
0.85	19.01	23.15	27.20
0.90	19.42	23.58	27.92
0.96	19.82	24.00	28, 48
1.00	20, 23	24.40	29.02

FIGURE 144-G(C). VISCOSITY DATA AS A FUNCTION OF COMPOSITION FOR GASEOUS OXYGEN—AMMONIA MIXTURES

TABLE 145-G(C)E. EXPERIMENTAL VISCOSITY DATA AS A FUNCTION OF COMPOSITION FOR GASEOUS AMMONIA-METHYLAMINE MIXTURES

Cur. No.	Fig. No.	Ref. No.	Author(s)	Temp.	Pressure (mm Hg)	Mole Fraction of CH ₃ NH ₂	Viscosity (N s m ⁻² x 10 ⁻⁴)	Remarks
	145-G(C)	348	Burch, L.G. and Raw, C.J.G.	273	110-220	1.000 0.750 0.500 0.250 0.000	8.71 8.89 9.00 9.09 9.20	CH ₃ NH ₂ : 98.0 pure, NH ₃ : 99.99 pure, gases were further purified by vacuum distillation; capillary flow viscometer, relative measure ments; uncertainty $\pm 0.5\%$; L ₁ = 0.000%, L ₂ = 0.000%, L ₃ = 0.000%.
2	145-G(C)	348	Burch, L.G. and Raw, C.J.G.	298	110-220	1.000 0.750 0.500 0.250 0.000	9.43 9.64 9.80 9.94 10.09	Same remarks as for curve 1
3	145-G(C)	348	Burch, L.G. and Raw, C.J.G.	32 3	110-220	1.000 0.750 0.500 0.250 0.000	10.15 10.40 10.60 10.79 10.99	Same remarks as for curve 1.
4	145-G(C)	348	Burch, L.G. and Raw, C.J.G.	348	110-220	1.000 0.750 0.500 0.250 0.000	10.88 11.15 11.40 11.64 11.89	Same remarks as for curve 1.
5	145-G(C)	348	Burch, L.G. and Raw, C.J.G.	373	110-220	1.000 0.750 0.500 0.250 0.000	11.61 11.91 12.21 12.50 12.79	Same remarks as for curve 1.
6	145-G(C)	348	Burch, L.G. and Raw, C.J.G.	423	110-220	1.000 0.750 0.500 0.250 0.000	13.07 13.45 13.85 14.22 14.60	Same remarks as for curve 1 excep $L_1 = 0.031\%$, $L_2 = 0.068\%$, $L_3 = 0.153\%$.
7	145-G(C)	348	Burch, L.G. and Raw, C.J.G.	473	110-220	1.000 0.750 0.500 0.250 0.000	14.66 15.10 15.55 16.02 16.47	Same remarks as for curve 1.
8	145-G(C)	348	Burch, L.G. and Raw, C.J.G.	523	110-220	1.000 0.750 0.500 0.250 0.000	16.11 16.63 17.15 17.72 18.25	Same remarks as for curve 1.
9	145-G(C)	348	Burch, L.G. and Raw, C.J.G.	573	110-220	1.000 0.750 0.500 0.250 0.000	17.56 18.19 18.50 19.43 20.03	Same remarks as for curve 1 except $L_1=0.440\%,\ L_2=0.574\%,\ L_3=0.883\%.$
10	145-G(C)	348	Burch, L.G. and Raw, C.J.G.	623	110-220	1.000 0.750 0.500 0.250 0.000	19.01 19.70 20.41 21.07 21.81	Same remarks as for curve 1 except $L_1=0.105\%,\ L_2=0.159\%,\ L_3\approx0.320\%.$
11	145-G(C)	348	Burch, L.G. and Raw, C.J.G.	673	110-220	1.000 0.750 0.500 0.250 0.000	20.48 21.28 22.05 22.83 23.60	Same remarks as for curve 1.

TABLE 145-G(C)8. SMOOTHED VISCOSITY VALUES AS A FUNCTION OF COMPOSITION FOR GASEOUS AMMONIA-METHYLAMINE MIXTURES

Mole Fraction of CH ₃ NH ₂	(273.0 K) [Ref. 348]	(298.0 K) [Ref. 348]	(323.0 K) [Ref. 348]	(348.0 K) [Ref. 348]	(373.0 K) [Ref. 348]	(423.0 K) [Ref. 348]
0.00	9.20	10.09	10.99	11.89	12.79	14.60
0.05	9.18	10.04	10.94	11.84	12.74	14.53
0.10	9, 16	10.01	10.91	11.79	12.68	14.46
0.15	9,14	9.98	10.87	11.74	12.63	14.38
0.20	9. 12	9, 96	10.83	11.69	12.57	14.30
0, 25	9. 10	9. 93	10.79	11.64	12.50	14.22
0.30	9,08	9, 90	10.75	11.59	12.46	14.15
0.35	9.06	9.88	10.72	11.54	12.39	14.08
0.40	9.04	9.86	10.68	11.49	12.33	14.00
0.45	9.01	9.84	10.64	11.44	12.27	13.93
0.50	9,00	9.81	10.60	11.40	12.21	13.85
0.55	8, 97	9,78	10.56	11.35	12.16	13.77
0.60	8, 95	9,75	10.52	11.30	12.10	13.70
0.65	8,92	9.72	10.48	11.25	12.04	13.62
0.70	8, 90	6.69	10.44	11.20	11.98	13.54
0,75	8, 90	9, 65	10.40	11,15	11.91	13.45
0.80	8, 87	9.61	10.35	11,10	11.86	13.38
0.85	8, 83	9.58	10.31	11.05	11.80	13.30
0.90	8.80	9.54	10.26	11.00	11.74	13.23
0.95	8.76	9.49	10.22	10.94	11.68	13.16
1,00	8,71	9,43	10.15	10.88	11.61	13.09

Mole Fraction of CH ₃ NH ₂	(473.0 K) [Ref. 348]	(523.0 K) [Ref. 348]	(573.0 K) [Ref. 348]	(623.0 K) [Ref. 348]	(673.0 K) [Ref. 348]
0.00	16,47	18.25	20,03	21.81	23,60
0.05	16,39	18.15	19.86	21.66	23.45
0.10	16.30	18.05	19.70	21.50	23.30
0.15	16,22	17.94	19,55	21.34	23.15
0.20	16.12	17.83	19.40	21.19	23.00
0.25	16.02	17.72	19,26	21.04	21.28
0.30	15.94	17.60	19.12	20,90	21.68
0.35	15.84	17.50	19.00	20.76	21.52
0.40	15,74	17.38	18.87	20.62	21.37
0.45	15.64	17.27	18.75	20.48	21.21
0.50	15.50	17.15	18,63	20,35	22.05
0.55	15.46	17.06	18.52	20,22	21.90
0.60	15.36	16.95	18,40	20.08	21.74
0.65	15.28	16.84	18.29	19.96	21.59
0.70	15.19	16.74	18.18	19.82	21.44
0.75	15,10	16.63	18.08	19.69	21.28
0.80	15,02	16.53	17.97	19.55	21.12
0.85	14.94	16.43	17.86	19.42	20.96
0.90	14, 85	16.33	17.76	19.28	20.80
0.95	14.76	16.22	17.66	19.15	20.64
1.00	14.66	16, 11	17.56	19.01	20.48

FIGURE 145-G(C). VISCOSITY DATA AS A FUNCTION OF COMPOSITION FOR GASEOUS AMMONIA-METHYLAMINE MIXTURES

TABLE 146-L(C)E. EXPERIMENTAL VISCOSITY DATA AS A FUNCTION OF COMPOSITION FOR GASEOUS ANILINE-BENZYL ACETATE MIXTURES

Cur. No.	Fig. No.	Ref. No.	Author(s)	Temp. (K)	Pressure Mole Fraction (atm) of Benzyl Acetate	Viscosity (N s m ⁻² x 10 ⁻⁴)	Remarks
1	146-L(C)	351	Katti, P.K. and	303.2	0.000	3145.7	Liquids were purified (ref. J.
			Chaudhri, M.M.		0.125	2910.0	Chem. Eng. Data, 9, 128, 1964);
					0,300	2600.0	Ostwald viscometer; error ± 0.5%
					0.435	2383.6	$L_1 = 0.049\%$, $L_2 = 0.085\%$, $L_3 =$
					0.495	2284.5	0.172%.
					0.605	2123.5	
					0.750	1928.5	
					0.850	1809.5	
					1,000	1652.4	

TABLE 146-L(C)S. SMOOTHED VISCOSITY VALUES AS A FUNCTION OF COMPOSITION FOR GASEOUS ANILINE-BENZYL ACETATE MIXTURES

Mole Fraction of Benzyl Acetate	(303.2 K) [Ref. 351]
0.00	3150.0
0.05	3055.0
0.10	2960.0
0.15	2867.5
0.20	2777.5
0.25	2690.0
0.30	2600.0
0.35	2517.5
0.40	2437.5
0.45	2357.5
0.50	2280.0
0.55	2205.0
0.80	2132.5
0.65	2060.0
0.70	1992.5
0.75	1927.5
0.80	1865.0
0.85	1807.5
0.90	1750.0
0.95	1700.0
1.00	1652.5

FIGURE 146-L(C). VISCOSITY DATA AS A FUNCTION OF COMPOSITION FOR LIQUID ANILINE—BENZYL ACETATE MIXTURES

TABLE 147-L(C)E. EXPERIMENTAL VISCOSITY DATA AS A FUNCTION OF COMPOSITION FOR LIQUID BENZYL ACETATE - META-CRESOL MIXTURES

Cur. No.	Fig.	Ref. No.	Author (s)	Temp. (K)	Pressure (atm)	Mole Fraction of Benzyl Acetate	Viscosity (N s m ⁻² x 10 ⁻⁶)	Remarks
1	147-L(C)	351	Katti, P.K. and Chaudhri, M.M.	313, 2		0.000 0.115 0.272 0.435 0.620 0.810 1.000	6180.0 5113.7 3917.2 3060.0 2337.0 1764.6 1352.5	Liquids were purified (ref. J. Chem. Eng. Data, 9, 128, 1964); Ostwald viscometer; error \pm 0.5% $L_1 = 0.0102\%$, $L_2 = 0.0270\%$, $L_3 = 0.071\%$.

TABLE 147-L_(C)S. SMOOTHED VISCOSITY VALUES AS A FUNCTION OF COMPOSITION FOR LIQUID BENZYL ACETATE - META-CRESOL MIXTURES

Mole Fraction	(313.2 K)
of Benzyl Acetate	[Ref. 351]
0.00	6180.0
0.05	5700.0
0.10	5250.0
0.15	4814.0
0.20	4420.0
0.25	4062.0
0.30	3748.0
0.35	3466.0
0.40	3216.0
0.45	2999.0
0.50	2785.0
0.55	2590.0
0.60	2410.0
0.65	2235.0
0.70	2075.0
0.75	1930.0
0.80	1792.0
0.85	1672.0
0.90	1560.0
0.95	1478.0
1.00	1352.5

FIGURE 147-L(C). VISCOSITY DATA AS A FUNCTION OF COMPOSITION FOR LIQUID BENZYL ACETATE - meta-CRESOL MIXTURES

=

TABLE 148-G(C)E. EXPERIMENTAL VISCOSITY DATA AS A FUNCTION OF COMPOSITION FOR GASEOUS DIMETHYL ETHER-METHYL CHLORIDE MIXTURES

Cur. No.	Fig. No.	Ref. No.	Author(s)	Temp. (K)	Pressure (atm)	Mole Fraction of (CH ₂) ₂ O	Viscosity (N s m ⁻² x 10 ⁻⁴)	Remarks
1	148-G(C)	349	Chakraborti, P.K.	308.2		0.000	9.66	Tank gases were purified by frac-
			and Gray, P.			0.046	9.75	tionation at liquid nitrogen temper-
			•			0.222	9.99	ature; capillary flow viscometer,
						0.299	10.09	relative measurements; precision
						0.401	10, 24	± 0.4% and accuracy ± 1.0%; L, =
						0.508	10.41	0.083% , $L_2 = 0.128\%$, $L_3 = 0.291\%$.
						0.604	10.54	• •
						0.699	10.70	
						0.802	10.86	
						0.877	10.99	
						1.000	11.26	
2	148-G(C)	349	Chakraborti, P.K.	353.2		0.000	10.98	Same remarks as for curve 1 except
	• •		and Gray, P.			0.063	11.09	$L_1 = 0.082\%$, $L_2 = 0.109\%$, $L_3 =$
						0.191	11.29	0.258%.
						0.281	11.42	
						0.400	11.66	
						0.474	11.76	
						0.588	11.97	
						0.669	12.12	
						0.761	12.32	
						1.000	12.78	

TABLE 148-G(C)S. SMOOTHED VISCOSITY VALUES AS A FUNCTION OF COMPOSITION FOR GASEOUS DIMETHYL ETHER-METHYL CHLORIDE MIXTURES

Mole Fraction of (CH ₃) ₂ O	(308.2 K) [Ref. 349]	(353.2 K) [Ref. 349]
0,00	9,66	10,98
0.05	9.73	11.06
0.10	9.80	11.14
0.15	9.88	11.21
0.20	9. 95	11.30
0.25	10.02	11.38
0.30	10.09	11.46
0.35	10.17	11.54
0.40	10.24	11.63
0.45	10.32	11.72
0.50	10.39	11.81
0.55	10.47	11.86
0.60	10.54	12.00
0.65	10.61	12.10
0.70	10.69	12.19
0.75	10.77	12.29
0.80	10.85	12.38
0.85	10.94	12.48
0.90	11.04	12.58
0.95	11.15	12.68
1.00	11.26	12.78

FIGURE 148-G(C). VISCOSITY DATA AS A FUNCTION OF COMPOSITION FOR GASEOUS DIMETHYL ETHER-METHYL CHLORIDE MIXTURES

TABLE 149-G(C)E. EXPERIMENTAL VISCOSITY DATA AS A FUNCTION OF COMPOSITION FOR GASEOUS DIMETHYL ETHER-SULFUR DIOXIDE MIXTURES

Cur.		Ref. No.	Author(s)	Temp. (K)	Pressure (atm)	Mole Fraction of SO ₂	Viscosity (N s m ⁻² x 10 ⁻⁴)	Remarks
1	149-G(C)	349	Chakraborti, P.K. and	308, 2		0,000	9.66	Tank gases were purified by frac-
			Gray, P.			0.058	9.83	tionation at liquid nitrogen temper-
			•			0.184	10.31	ature; capillary flow viscometer.
						0,294	10.70	relative measurements; precision
						0.391	11.06	± 0.4% and accuracy ± 1.0%; L, =
						0.492	11.45	0.279% , $L_2 = 0.372\%$, $L_3 = 0.807\%$.
						0.591	11.79	•
						0.692	12.20	
						0,782	12.54	
						0.844	12.79	
						1.000	13.28	
2	149-G(C)	349	Chakraborti, P.K. and	353.2		0.000	10.98	Same remarks as for curve 1 excep
			Gray, P.			0.049	11.14	$L_1 = 0.259\%$, $L_2 = 0.369\%$, $L_3 =$
			•			0.190	11.69	0.953%.
						0,279	12.04	
						0.389	12.53	
						0.504	13.05	
						0.570	13.33	
						0.648	13.77	
						0.748	14.10	
						0.866	14.64	
						1.000	15.23	

TABLE 149-G(C)S. SMOOTHED VISCOSITY VALUES AS A FUNCTION OF COMPOSITION FOR GASEOUS DIMETHYL ETHER-SULFUR DIOXIDE MIXTURES

Mole Fraction of SO ₂	(308.2 K) [Ref. 349]	(353.2 K) [Ref. 349]
0,00	9,66	10, 97
0.05	9.88	11.17
0.10	10,05	11.37
0.15	10, 23	11.57
0,20	10.41	11.78
0, 25	10.58	11.98
0.30	10.76	12.18
0.35	10,94	12.40
0.40	11.12	12.60
0.45	11.29	12.81
0.50	11.48	13.02
0.55	11.66	13, 23
0.60	11.84	13.44
0,65	12,02	13.66
0.70	12. 20	13.88
0.75	12.38	14.10
0.80	12.56	14.32
0,85	12.74	14,54
0.90	12.92	14.77
0.95	13.10	14.99
1.00	13.28	15, 23

FIGURE 149-G(C). VISCOSITY DATA AS A FUNCTION OF COMPOSITION FOR GASEOUS DIMETHYL ETHER-SULFUR DIOXIDE MIXTURES

TABLE 150-G(C)E. EXPERIMENTAL VISCOSITY DATA AS A FUNCTION OF COMPOSITION FOR GASEOUS METHYL CHLORIDE-SULFUR DIOXIDE MIXTURES

Cur. No.	Fig.	Ref. No.	Author (s)	Temp.	Pressure (atm)	Mole Fraction of CH ₃ Cl	Viscosity (N s m ⁻² x 10 ⁻⁴)	Remarks
1	150-G(C)	349	Chakraborti, P.K.	308.2		0.000	11.26	Tank gases were purified by frac-
			and Gray, P.			0.045	11,30	tionation at liquid nitrogen temper-
						0.167	11.56	ature; capillary flow viscometer,
						0.286	11.83	relative measurements; precision
						0.369	12.06	$\pm 0.4\%$ and accuracy $\pm 1.0\%$; L ₁ =
						0.492	12.31	0.332% , $L_2 = 0.466\%$, $L_3 = 0.537\%$.
						0.604	12.56	•
						0.690	12.73	
						0.768	12.92	
						0.847	13.10	
						1.000	13.28	
2	150-G(C)	349	Chakraborti, P.K.	353.2		0.000	12.78	Same remarks as for curve 1 excep
			and Gray, P.			0.051	12.86	$L_1 = 0.092\%$, $L_2 = 0.127\%$, $L_3 =$
			•			0.183	13.19	0.233%.
						0.285	13,43	
						0.394	13.77	
						0.483	14.00	
						0.589	14.28	
						0.686	14.56	
						0.793	14.87	
						1.000	15.23	

TABLE 150-G(C)S. SMOOTHED VISCOSITY VALUES AS A FUNCTION OF COMPOSITION FOR GASEOUS METHYL CHLORIDE-SULFUR DIOXIDE MIXTURES

Mole Fraction of CH ₂ Cl	(308.2 K) [Ref. 349]	(353.2 K) (Ref. 349)
0,00	11, 26	12.77
0.05	11.37	12.89
0.10	11.48	13.01
0,15	11.59	13.13
0, 20	11,70	13.24
0, 25	11.82	13.37
0, 25	11.93	13.50
0.35		13.63
	12.03	
0.40	12.14	13.77
0.45	12, 25	13.90
0.50	12.35	14.04
0.55	12.46	14.18
0,60	12,56	14.32
0.65	12.66	14.45
0.70	12.75	14.57
0.75	12.85	14.71
0, 80	12, 94	14.83
0.85	13.03	14.94
0.90	13, 12	15.05
0.95	13.20	15.15
1.00	13.28	15.23

FIGURE 150-G(C). VISCOSITY DATA AS A FUNCTION OF COMPOSITION FOR GASEOUS METHYL CHLORIDE—SULFUR DIOXIDE MIXTURES

.....

TABLE 151-L(T). RECOMMENDED VISCOSITY VALUES FOR LIQUID REFRIGERANT 500

DISCUSSION	RECOMMENDED VALUES
SATURATED LIQUID	[Temperature, T, K; Viscosity, u, N s m ⁻² · 10 ⁻³]
off of bound on [199] and the date of the control o	SATURATED LIQUID
Unly one set of experimental data, by Phillips [311], was found in the literature.	3 E
There were fitted to the courselor	200 0.611
incy were nined to the equation	
log u = A + B/T	210 0.515
	220 0.442
from which recommended values were generated.	225 0.412
The deviations from the equation are within ± 1%. Indicating good internal	
consistency, but we need independent determination to assess the accuracy.	
	240 0.341 245 0.322
	250 0.304
	265 0.261
	900 0 906
	295 0.200
	300
	310 0.1768
	315 0.1700
	345 0.1221
	355 0.1024
	370 0.0670
	375 0.0520

* Crit. Temp.

TABLE 151-V(T). RECOMMENDED VISCOSITY VALUES FOR REFRIGERANT 500 VAPOR

DISCUSSION

SATURATED VAPOR

RECOMMENDED VALUES

[Temperature, T, K, Viscosity, μ , 10-3 N s m-2]

Recommended values for the viscosity of the saturated vapor were generated by means of the method of Stiel and Theodochord with make the method of Stiel and Theodochord with the contract of the section of Stiel and Theodochord with the contract of the section of Stiel and Theodochord with the contract of the section of Stiel and Theodochord with the section of the section of Stiel and Theodochord with the section of the se	SATURA	SATURATED VAPOR
viecosity concept. Excess viscosity, gotten from a reduced excess viscosity versus reduced temperature curve obtained with a number of other refrigerants. Were combined with the recommended values for the 1 atm gas.	₽	1
The accuracy is of about 5%, but the figure may be higher around the critical temperature.	240	0. 00959
	250	0,01006
	260	0.01052
	270	0.01102
	2×0	0.01152
	290	0.01201
	300	0.01258
	310	0.01319
	320	0.01381
	3130	0.01448
	:340	0.01532
	350	0.0163
	:160	0,0173
	370 379*	0.0193
	:	

* Crit. Temp.

TABLE 151-G(T). RECOMMENDED VISCOSITY VALUES FOR GASEOUS REFRIGERANT 500

DISCUSSION

[Temperature, T. K. Viscosity, 1. 10-6 N s m-2]
JES 4. 10-

GAS	Temperature, T, K.	Temperature, T, K, Viscosity, µ, 10-6 N s m-?
Only one set of experimental data, by Latto [137], was found in the literature.		GAS
From the data, the function $\sigma^2\Omega = \frac{K\sqrt{T}}{\mu}$	Fe	ā
was computed and then adjusted to a linear equation in 1/T from which the recommended values were generated.	240	9.57
The accuracy is thought to be $\pm 2\%$.	260 260 270	10,46 10,46 10.91
	280	11.35
	300 310 320	12.2 12.7 13.1
	330	13.5
	350 360 370 380 380	14.4 15.8 15.0 16.0

FIGURE 151-G(T). DEPARTURE PLOT FOR VISCOSITY OF GASEOUS REFRIGERANT 500

TABLE 152-L(T). RECOMMENDED VISCOSITY VALUES FOR LIQUID REFRIGERANT 502

DISCUSSION

	RECOMMENDED VALUES	ED VALUES
SATURATED LIQUID	[Temperature, T, K, Vis	[Temperature, T, K, Viscosity, μ . 10-8 N s m-2]
Two sets of experimental data were found in the literature, those of Gordon [79] and of Phillips [371], They are in fair agreement.	SATURATED LIQUID	D LIQUID
The date had an one of the second and the second an	£	ı
the cata usion 210 N were least square litted to an equation;		0.571
$\log \mu = A + B/T$).488).423
from which recommended values were generated. Above 270 K the curve was drawn graphically.	230 0. 240 0.	0.371 0.329
		0.2949
The accuracy is thought to be better than ±5%.	260 0.	0.2664
		. 2395
		0.2150
		1.1940
		. 1755
	310 0.	0.1585
		. 1425
		0.1265
		.1090
	350 0.	680
		0.030

* Crit. Temp.

TABLE 152-V(T). RECOMMENDED VISCOSITY VALUES FOR REFRIGERANT 502 VAPOR

DISCUSSION

SATURATED VAPOR

RECOMMENDED VALUES

[Temperature, T, K, Viscosity, μ , 10-3 N s m-2]

SATURATED VAPOR

a .	0.00941	0.00990	0.01037	0.01084	0.01134	0.01185	0.01240	0.01301	0.0137	0.0143	0.0152	0.0161	0.0174	0.0194	, 000 t
H	220	230	240	250	260	270	280	290	300	310	320	330	340	350	.000

The accuracy should be poor, about ±10% close to the boiling point, but may reach ±20% when approaching the critical point.

Recommended values for the viscosity of the saturated vapor were computed with the method of Stiel and Thodos [207] which makes use of the excess viscosity, concept. From a graph of reduced excess viscosity versus reduced temperature, constructed with data for several refrigerants, excess viscosity was derived, and added to the recommended values.

TABLE 152-G(T). RECOMMENDED VISCOSITY VALUES FOR GASEOUS REFRIGERANT 502

CONTROL OF THE PROPERTY SOS	RECOMMENDED VALUES	[Temperature, T, K, Viscosity, µ, 10-8 N s m-2	GAS	II	230 9.86	250 10,75	260 11.19			300 12.90	310 13.32			370 15.75	390 16.54	400 16.93	
	Discussion	GAS	Values for the visconity of the me man found in	nical note [281]. They were read from the curve, then checked by means of the constion.	8.0 = K / T	Which was fitted to a linear semistical in a feet of the semistic of the semistic of the semistic of the semisimal s	values were generated	These are estimated values and there is no more and it is	accuracy.								

Curve Reference

TABLE 153-L(T). RECOMMENDED VISCOSITY VALUES FOR LIQUID REFRIGERANT 503

3	
٠.	
٠	÷
٤	ì
1001	
č	j
č	j
č	j
C	į
C	į
C	į
č	į

DISCUSSION	RECOMMENDED VALUES	
SATIRATED LEGITO	(Temperature, T. K: Viscosity, µ. N s m ⁻² · 10 ⁻²)	m-2 · 10~]
	SATURATED LIQUID	
Only one set of experimental data, the results of Phillips [371], was found in the literature. The suthor gives an equation of the type:	1	
$\log \mu = A + B/T + CT + DT^2$		
which was adorted to generate recommended values. The deviations from the	190 0.295	
equation are small but there is no means to assess the accuracy. Values above		
260 K were obtained by extrapolation and should be considered as tentative values.		
	210 0.225 215 0.210	
	240 0.1523 245 0.1428	
	250 0.134	
	260 0.117 265 0.110	
	275 0.096	
	060 0 082 780 0 582	

TABLE 154-L(T). RECOMMENDED VISCOSITY VALUES FOR LEQUID REFRIGERANT 504

DISCUSSION	RECOMMENDED VALUES
SATURATED LIQUID	[Temperature, T, K; Viscosity, μ , N s m ⁻² · 10 ⁻⁸]
Only and not of commental data, the recented of Dhilline [271] was	SATURATED LIQUID
found in the literature. The author gives an equation of the type:	1 L
green and the second	
10g µ · A + B/T + CT + DI*	205 0.433
which was adopted to senserate recommended values. Values shows 9th ch.	
tained from the equation, represent an extrapolation.	215 0.364 220 0.334
The deviations from the equation are small, but there is no means to	225 0.319
asbess accuracy.	
	235 0.276
	240 0.260
	245 0.245
	265 0.197 270 0.187
	290 0.1507 295 0.1424
	305 0.126

TABLE 155-L(T)E. EXPERIMENTAL VISCOSITY DATA AS A FUNCTION OF TEMPERATURE FOR LIQUID SODIUM CHLORATE-SODIUM NITRATE MIXTURES

Cur.		Ref. No.	Author(s)	Mole Fraction of NaClO ₃	Pressure (atm)	Temp.	Viscosity (N s m ²	×10 ⁻³	Remarks
1	155-L(T)	358	Campbell, A.N. and	1.000		534.5	6.95	NaClO, a	nd NaNO3: Fisher reagent
			Van Der Kouwe, E.T.			534.8	6.93		emicals and dried at 130 C
						537.4	6.74		n impurity in NaClO ₃ was
						537.7	6.70		f sodium bromate and in
						539.5	6.59		as 0.0005% heavy metals;
						541.7	6.46		flow viscometer; over-al
						545.5	6.19		of measurements ± 1.0%.
						548.5	5,98		or months - 1, 0
						550.5	5,86		
						553.9	5.71		
						556.0	5.58		
						559.2	5.43		
2	155-L(T)	358	Campbell, A.N. and	0.727		511.2	8.53	Same rer	marks as for curve 1.
			Van Der Kouwe, E.T.			513.2	8.33		
						518.5	7.77		
					521.2	7.54			
						526.2	7.16		
						529.3	6.91		
						530.2	6.86		
						533.5	6.60		
						537.1	6.37		
						543.6	5.96		
						544.4			
							5.88		
						548.2	5.66		
						553.5	5.37		
						557.5 560.7	5.16 4.98		
3	155-L(T)	358	Campbell, A.N. and	0,515		511.2	7.56	Same cer	marks as for curve 1.
•	(.,		Van Der Kouwe, E.T.	0,010		514.9	7.24	Jan. 101	Harks as for curve 1.
			van Ber neawe, B. I.			519.4	6.92		
						522.7	6.66		
						526.5	6.38		
						528.6			
						530.5	6.24 6.07		
						531.7			
							6.14		
						535.6	5.77		
						541.0	5.47		
						546.0	5.22		
						550.7	5.00		
	(=)					555.7	4.79	_	
4	155-L(T)	358	Campbell, A.N. and	0.389		522.4	6.11	Same rer	narks as for curve 1.
			Van Der Kouwe, E.T.			526.2	5.88		
						529.4	5.70		
						530.0	5.67		
						532.9	5.50		
						535.2	5.38		
						541.7	5.06		
						545.2	4.92		
						546. 7	4.84		
						549.2	4.77		
						550.9	4.68		
						559.4	4.37		
						559.9	4.31		
						561.5	4.26		

TABLE 155-L(T)S. SMOOTHED VISCOSITY VALUES AS A FUNCTION OF TEMPERATURE FOR LIQUID SODIUM CHLORATE-SODIUM NITRATE MIXTURES

Temp.		Mole Fraction of	Sodium Chlorate	
(K)	0.389 [Ref. 358]	0.515 [Ref. 358]	0.727 [Ref. 358]	1.000 [Ref. 358]
510.0		7.650	8.665	
515.0		7.265	8.150	
520.0	6.250	6.890	7.670	
525.0	5.960	6.520	7.240	
530.0	5.670	6.175	6.850	
535.0	5.400	5.850	6.480	6.934
537.5				6.730
540.0	5.150	5.555	6.140	6,535
542.5				6.360
545.0	4.920	5.278	5.990	6.192
547.5				6.040
550.0	4.715	5,035	5.555	5,900
552.5	*****			5.760
555.0	4.510	4.821	5.280	
557.5				5,510
560.0	4.320	4.620	5.020	5.390

FIGURE 155-L(T). VISCOSITY DATA AS A FUNCTION OF TEMPERATURE FOR LIQUID SODIUM CHLORATE—SODIUM NITRATE MIXTURES

TABLE 156-G'C)E. EXPERIMENTAL VISCOSITY DATA AS A FUNCTION OF COMPOSITION FOR GASEOUS SULFUR DIOXIDE-SULFURYL FLUORIDE MIXTURES

Cur. No.		Ref. No.	Author(s)	Temp. (K)	Pressure (atm)	Mole Fraction of SO ₂ F ₂	Viscosity (N s m ⁻² x 10 ⁻⁶)	Remarks
1	156-G(C)	350	Chang, K.C., Hesse, R.J., and Raw, C.J.G.	273		0.00 0.25 0.50 0.75 1.00	12, 26 12, 89 13, 43 13, 88 14, 13	SO_2 : 99.98 pure, SO_2F_2 : 99.5% pure; constant volume transpiration type viscometer, relative measurements; $L_1 = 0.000\%$, $L_2 = 0.000\%$, $L_3 = 0.000\%$.
2	156-G(C)	350	Chang, K.C., et al.	323		0.00 0.25 0.50 0.75 1.00	14.42 15.12 15.69 16.06 16.22	Same remarks as for curve 1.
3	156-G(C)	350	Chang, K.C., et al.	373		0.00 0.25 0.50 0.75 1.00	16.52 17.27 17.86 18.16 18.28	Same remarks as for curve 1.
4	156-G(C)	350	Chang, K.C., et al.	423		0.00 0.25 0.50 0.75 1.00	18.62 19.40 19.97 20.23 20.29	Same remarks as for curve 1.
5	156-G(C)	350	Chang, K.C., et al.	473		0.00 0.25 0.50 0.75 1.00	20.69 21.43 21.98 22.17 22.25	Same remarks as for curve 1 excep $L_1 = 0.006\%$, $L_2 = 0.013\%$, $L_3 = 0.028\%$.
6	156-G(C)	350	Chang, K.C., et al.	52 3		0.00 0.25 0.50 0.75 1.00	22.69 23.43 23.93 24.13 24.22	Same remarks as for curve 1 excep $L_1 \approx 0.007\%$, $L_2 \approx 0.015\%$, $L_3 \approx 0.033\%$.
7	156-G(C)	350	Chang, K.C., et al.	573		0.00 0.25 0.50 0.75 1.00	24.68 25.35 25.82 26.03 26.14	Same remarks as for curve 1.
8	156-G(C)	350	Chang, K.C., et al.	623		0.00 0.25 0.50 0.75 1.00	26.61 27.21 27.66 27.87 28.01	Same remarks as for curve 1.
9	156-G/C)	350	Chang, K.C., et al.	673		0.00 0.25 0.50 0.75 1.00	28.45 29.07 29.46 29.68 29.83	Same remarks as for curve 1.

Ŋ

TABLE 156-G(C)S. SMOOTHED VISCOSITY VALUES AS A FUNCTION OF COMPOSITION FOR GASEOUS SULFUR DIOMIDE-SULFURYL FLUORIDE MIXTURES

Mole Fraction of SO ₂ F ₂	(273.0 K) [Ref. 350]	(323.0 K) [Ref. 350]	(373.0 K) [Ref. 350]	(423.0 K) [Ref. 350]	(473.0 K) [Ref. 350]	(523.0 K) [Ref. 350]	(573.0 K) [Ref. 350]	(623.0 K) [Ref. 350]	(673.0 K) [Ref. 350
0.00	12.26	14.42	16.52	18.62	20,69	22.69	24.68	26.61	28.45
0.05	12.39	14.57	16.59	18.80	20.84	22.87	24.83	26.78	28.60
0.10	12.52	14.72	16.85	18.96	21.00	23.04	24.97	26.89	28.73
0.15	12.65	14.86	17.00	19.12	21.15	23.19	25.11	26.99	28,85
0.20	12.77	14.99	17.14	19.26	21.30	23.33	25,23	27.10	28.96
0.25	12.89	15.12	17.27	19.40	21.44	23.43	25.35	27.21	29.07
0.30	13.01	15.24	17.41	19.54	21.57	23.58	25.46	27.32	29.16
0.35	13.12	15.37	17.53	19.66	21.70	23.69	25.57	27.42	29.25
0.40	13.23	15.48	17.65	19.78	21.81	23.78	25.66	27.51	29.33
0.45	13.33	15.59	17.76	19.88	21.90	23.87	25.75	27.59	29.40
0.50	13.43	15.69	17.86	19.97	21.98	23.94	25.82	27.66	29.46
0.55	13.54	15.78	17.93	20.05	22.04	24.00	25.88	27.72	29.52
0.60	13.63	15.86	18.00	20.11	22.09	24.04	25.93	27.76	29.56
0, 65	13.73	15.94	18,07	20.16	22, 12	24.08	25.97	27.80	29.61
0.70	13.81	16.00	18.12	20.20	22.15	24.11	26.00	27.83	29.65
0.75	13.88	16,06	18.16	20.23	22, 17	24.13	26.03	27.87	29.68
0.80	13.94	16.11	18.20	20,25	22.19	24.15	26.06	27.90	29.71
0.85	14.00	16.14	18.23	20.27	22.21	24.17	26.08	27.93	29.75
0.90	14.05	16.17	18.25	20.28	22.30	24.19	26,10	27.96	29.78
0.95	14.09	16.20	18.27	20.29	22, 34	24,20	26.12	27.99	29.80
1.00	14.13	16, 22	18.28	20.29	22, 25	24.22	26.14	28.01	29.83

FIGURE 156-G(C). VISCOSITY DATA AS A FUNCTION OF COMPOSITION FOR GASEOUS SULFUR DIOXIDE—SULFURYL FLUORIDE MIXTURES

and the replaced of the analysis and Lag. () or

--- .. - .

· · ·

TABLE 157-L(T)E. EXPERIMENTAL VISCOSITY DATA AS A FUNCTION OF TEMPERATURE FOR LIQUID IRON-CARBON MIXTURES

Cur. No.	Fig.	Ref. No.	Author(s)	Mole Fraction of Fe	Pressure Temp (atm) (K)	. Viscosity (N s m ⁻² = 5	×163	Remarks
1	157-L(T)	356	Vatolin, N.V., Vostrayakov, A.A., and Esin, O.A.	0.9992	1823.2 1853.2 1873.2 1973.2	7.80 5.97 5.92 4.30	oscillan	y specified for metals; t crucible method; precision aracy not given.
2	157-L(T)	356	Vatolin, N.V., et al.	0.9980	1893.2 1943.2 1993.2	4.55 3.99 3.12	Same re	marks as for curve 1.
3	157-L(T)	356	Vatolin, N.V., et al.	0.9975	1823.2 1853.2 1973.2	4.92 4.34 3.50	Same re	marks as for curve 1.
4	157-L(T)	356	Vatolin, N.V., et al.	0.9960	1833.2 1853.2 1883.2 1953.2 1983.2	5.10 4.88 4.12 3.52 2.88	Same re	omarks as for curve 1.
5	157-L(T)	356	Vatolin, N.V., et al.	0.9936	1843.2 1903.2 1923.2 1953.2 1973.2	4.79 3.90 3.77 3.50 3.54	Same re	emarks as for curve 1.
6	157-L(T)	356	Vatolin, N.V., et al.	0.9870	1723.2 1793.2 1863.2 1973.2	7.76 5.93 4.60 3.54	Same re	marks as for curve 1.
7	157-L(T)	356	Vatolin, N.V., et al.	0.9790	1713.2 1743.2 1763.2 1853.2 1873.2	6.94 6.41 6.25 4.79 4.70	Same re	emarks as for curve 1.
8	157-L(T)	356	Vatolin, N.V., et al.	0.9715	1623.2 1693.2 1723.2 1823.2 1873.2 1903.2	9.23 7.45 6.60 4.47 4.40 3.83	Same re	marks as for curve 1.
9	157-L(T)	356	Vatolin, N.V., et al.	0.9580	1543.2 1703.2 1753.2 1823.2	8.60 5.75 4.89 3.39	Same re	marks as for curve 1.
10	157-L(T)	356	Vatolin, N.V., et al.	0.9514	1633.2 1693.2 1763.2 1833.2 1873.2	4.06 2.42 2.45 2.03 1.36	Same re	marks as for curve 1.

TABLE 157-L/T)S. SMOOTHED VISCOSITY VALUES AS A FUNCTION OF TEMPERATURE FOR LIQUID IRON-CARBON MIXTURES

			ISM XIU		
Temp.		м	ole Fraction of Ir	on	
(K)	0.9992 [Ref. 356]	0.9980 [Ref. 356]	0.9975 [Ref. 356]	0.9960 [Ref. 356]	0, 9936 [Ref. 356]
1820	7950		4970		
1825	7625		4875	5690	
1840	6820		4580		4852
1850	6440		4415	4920	4660
1870				4380	
1875	5740		4125	4275	4241
1880				4180	4170
1890	5430	4600			
1900	5250	4430	3920	3885	3940
1920	4950	4122			3735
1925	4875	4050	3760	3630	3730
1940	4675				3630
1950	4550	3715	3615	3425	3570
1960		3509		3355	
1970	4320				3470
1975		3420	3370	3260	3445
1980		3360		3240	3420
2000		3150			

Temp.		M	ole Fraction of Ir	on	
(K)	0.9870 [Ref. 356]	J. 9790 [Ref. 356]	0.9715 [Ref. 356]	0.9580 [Ref. 356]	0.9514 [Ref. 356
1550				8480	
1575				7990	
1600				7515	
1625			9170	7030	
1630					4130
1650			8540	6570	3750
1660					3560
1675			7885	6110	3300
1690					3040
1700		7234	7215	5665	2875
1720					2590
1725	7715	6820	6570	5200	2525
1740					2340
1750	7040	6407	6020	4740	2232
1770					2035
1775	6370	6000	5530		
1800	5760	5606	5092	3902	
1825	5245	5228	4710	3540	
1840		5022			
1850	4800	4900	4380	3210	
1875	4450	4600	4110		
1900	4140		3870		
1925	3892				
1950	3690				
1975	3530				
1980	3415				
1900	3415				

FIGURE 157-L(T). VISCOSITY DATA AS A FUNCTION OF TEMPERATURE FOR LIQUID IRON-CARBON MIXTURES

TABLE 158-L(T)E. EXPERIMENTAL VISCOSITY DATA AS A FUNCTION OF TEMPERATURE FOR LIQUID LEAD-TIN MIXTURES

Cur. No.	Fig. No.	Ref. No.	Author(s)	Mole Fraction of Pb	Pressure (atm)	Temp.	Viscosity (N s m ⁻² x ****)	×10-3	Remarks
1	158-L(T)	357	Yao, T.P. and	0,000		504.2	2.75	Sn: 99.98	85 pure, Pb: 99.9962
			Kondic, V.			504.2	2.67		llating pendulum method
						505.2	2.68	~~lative n	leasurements.
						505.2 505.7	2.63		
							2.56 2.54		
						505.7 506.2	2.46		
						506.2	2.44		
						508.2	2.38		
						508.2	2.35		
						508.7	2.26		
						508.7	2.20		
						509.7 509.7	2.22 2.11		
						518.2	2.10		
						518.2	1.99		
						527.2	1.97		
						527.2	1.94		
						531.2	1.92		
						531.2	1.89		
						534.2	1.89		
						534.2 542.2	1.82		
						542.2	1.86 1.76		
						554.2	1.74		
						554.2	1.73		
						558.2	1.69		
						558.2	1.56		
						566.2	1.70		
						566.2	1.64		
						571.7	1.70		
						571.7 585.2	1.65 1.69		
						585.2	1.60		
						599.2	1.63		
						599.2	1.58		
						607.2	1.61		
						607.2	1.56		
						618.2	1.53		
						618.2	1.51		
						622.2 622.2	1.54 1.52		
						628.2	1.53		
						628.2	1.49		
						638.7	1.50		
						638.7	1.48		
						648.7	1.51		
						648.7	1.50		
						657.2 657.2	1.52		
						660.2	1.48 1.52		
						660.2	1.46		
•	150_1/70	257	Van T D and	0.025				Same se-	arka aa fan awwa 1
Z	158-L(T)	307	Yao, T.P. and Kondic, V.	0.025		503.2 513.2	8. 54 2. 05	same rem	arks as for curve 1.
			LOIMIC, V.			515.2	1.98		
						525.7	1.78		
						540.2	1.74		
						549.2	1.65		
						566.2	1.63		
						572.2	1.57		
						624.2	1.51		
_						666.2	1.44	_	
3	158-L(T)	357	Yao, T.P. and	0.300		473.2	3.97	Same rem	arks as for curve 1.
			Kondie, V.			488.2	2.53		
						503.7	2.47		
						623.7 54 9.7	2.24 2.13		
						574.2	2.13 2.11		
						608.2	2.05		
						640.2	1.96		
						669.7 719.2	1.88 1.79		

TABLE 158-L(T)E. EXPERIMENTAL VISCOSITY DATA AS A FUNCTION OF TEMPERATURE FOR LIQUID LEAD-TIN MIXTURES (continued)

ur. No.		Ref. No.	Author (s)	Mole Fraction of Pb	Pressure (atm)	Temp. (K)	Viscosity (N s m ⁻² x 2000)	×10-3	Remarks
4	158-L(T)	357	Yao, T.P. and	0.382		460.2	3.75	Same rem	arks as for curve 1.
	• • •		Kondie, V.			461.2	3.10		
			• •			467.2	2.77		
						473.7	2.66		
						484.7	2.21		
						494.7	2.06		
						507.2	1.99		
						524.7	2.06		
						541.7	2.02		
						550.7	2.41		
						572.2	2.28		
						591.2	2.32		
						630.7	2.26		
						719.2	2.14		
						725.7	2.12		
5	158-L(T)	357	Yao, T.P. and	1.000		616.2	2.73	Same rem	arks as for curve 1.
	• •		Kondic, V.			622.2	2.68		
						626.2	2.60		
						633.2	2.48		
						653.2	2.41		
						704.2	2.21		
						716.2	1.99		
						736.2	1.96		
						753.2	1.93		
						763.2	1.90		
						773.2	1.87		

TABLE 158-L(T)S. SMOOTHED VISCOSITY VALUES AS A FUNCTION OF TEMPERATURE FOR LIQUID LEAD-TIN MIXTURES

Nsm⁻² x 10⁻⁶

Temp.		М	ole Fraction of L	ead	
(K)	0.000	0.025	0.300	0.382	1.000
	[Ref. 357]	[Ref. 357]	[Ref. 357]	[Ref. 357]	[Ref. 357]
460.0				4150	
470.0			4950		
475.0				2550	
480.0			2945	2060	
500.0	•		2455	2060	
505.0	2620	•			
510.0	2015	4200			
520.0		1880			
525.0			2220	2040	
540.0	1835	1790			
550.0			2150	2230	
560.0	1707	1610			
575.0			2100	2310	
580.0	1640	1570			
600.0	1570	1540	2050	2300	2950
612.5					2780
620.0	1530	1510			
625.0			2000	2280	2630
637.5					2490
640.0	1510	1480			
650.0			1950	2250	2360
660.0	1490	1445			
675.0			1900	2220	2180
700.0			1850	2180	2180
725.0			1800		1990
750.0					1940
775.0					1890

FIGURE 158-L(T). VISCOSITY DATA AS A FUNCTION OF TEMPERATURE FOR LIQUID LEAD—TIN MIXTURES

en company of a

...

5. TERNARY SYSTEMS

TABLE 159-G(C)E. EXPERIMENTAL VISCOSITY DATA AS A FUNCTION OF COMPOSITION FOR GASEOUS ARGON-HELIUM-NEON MIXTURES

Cur. No.	Fig. No.	Ref. No.	Author(s)	Temp. (K)	Pressure (atm)	Mo Ar	le Fraction He	n of Ne	Viscosity (N s m ⁻² x 10 ⁻⁶)	Remarks
1	_	223	Trautz, M. and	293, 2		0. 1615	0, 5175	0. 3210	26.02	Gas purity: Ar < 0, 5% N2.
			Kipphan, K.F.			0.1702	0.4746	0.3552	26. 29	He < 1% Ne, Ne < 1% He;
						0. 2382	0.5429	0, 2189	25. 04	method of Trautz and
						0. 2670	0.1754	0.5576	27.40	Weizel, calibrated with
						0. 3213	0.3594	0.3193	25.69	air.
						0. 3333	0.2042	0.4625	26.55	
						0.4414	0, 1883	0.3703	25.57	
						0.5851	0.1983	0.2166	24. 11	
2		223	Trautz, M. and	373.2		0.1615	0.5175	0.3210	30, 69	Same remarks as for
			Kipphan, K.F.			0.1702	0.4746	0.3552	31.00	curve 1.
			•••			0.2382	0.5429	0, 2189	29. 57	
						0.2670	0.1754	0. 5576	32, 37	
						0.3213	0.3594	0.3193	30.44	
						0.3333	0.2042	0.4625	31.47	
						0.4414	0. 1883	0.3703	30.45	
						0.5851	0.1983	0.2166	28.86	
3		223	Trautz, M. and	473.2		0.1615	0.5175	0.3210	35.93	Same remarks as for
			Kipphan, K. F.			0.2382	0.5429	0.2189	34,70	curve 1.
						0.2670	0.1754	0.5576	37. 90	•
						0.3213	0.3594	0.3193	35. 74	
						0.3333	0.2042	0.4625	36. 92	
						0.4414	0, 1883	0.3703	35. 82	
						0. 5851	0.1983	0.2166	34. 15	

TABLE 160-G(C)E. EXPERIMENTAL VISCOSITY DATA AS A FUNCTION OF COMPOSITION FOR GASEOUS ARGON-HELIUM-CARBON DIOXIDE MIXTURES

Cur.	Fig.	Ref.	Author(s)	Temp.	Pressure		le Fraction		Viscosity	Remarks
No.	No.	No.		(K)	(atm)	Ar	He	co,	(N s m ⁻² x 10 ⁻⁴)	
		361	Strunk, M.R. and Fehsenfeld, G.D.	278. 2		0. 2295 0. 1322	0.1630 0.6385	0. 6075 0. 2293	16. 86 19. 53	Ar: Matheson Co., specified purity 99. 995, chief impurities O ₂ and N ₂ , He: Matheson Co., specified purity 99. 9, chief impurities N ₂ and CO ₂ , CO ₂ : Matheson Co., specified purity 99. 8, chief impurities N ₂ and O ₂ ; mixtures prepared according to Dalton's law of partial pressures; mixtures analyzed on mass spectrometer; rolling ball viscometer; experimental error ±1.5%.
2		361	Strunk, M.R. and Fehsenfeld, G.D.	323. 2		0. 22 9 5 0. 13 22	0. 1630 0. 6385	0.6075 0.2293	19.15 21.72	Same remarks as for curve 1.
3		361	Strunk, M.R. and Fehsenfeld, G.D.	363.2		0. 229 5 0. 132 2	0, 1630 0, 6385	0.6075 0.2293	21.03 23.48	Same remarks as for curve 1.

TABLE 161-G(C)E. EXPERIMENTAL VISCOSITY DATA AS A FUNCTION OF COMPOSITION FOR GASEOUS ARGON-HELIUM-METHANE MIXTURES

Cur. No.	Fig. No.	Ref. No.	Author(s)	Temp. (K)	Pressure (atm)	Mo Ar	le Fraction He	of CH ₄	Viscosity (N s m ⁻² x 10 ⁻⁶)	Remarks
1		361	Strunk, M.R. and Fehsenfeld, G.D.	278.2		0.3909 0.4510	0. 4597 0. 1612	0, 1494 0, 3878	19, 54 16, 82	Ar: Matheson Co., specified purity 99.995, chief impurities O ₂ and N ₂ , He: Matheson Co., specified purity 99.9, chief impurities N ₂ and CO ₂ , CH ₄ : Matheson Co., specified purity 99.0, chief impurities CO ₂ , N ₂ , ethane, propane; mixtures prepared according to Dalton's law of partial pressures; mixtures analyzed on mass spectrometer; rolling ball viscometer; experimental error ±1.5%.
2		361	Strunk, M.R. and Fehsenfeld, G.D.	323.2		0.3909 0.4510	0. 4597 0. 1612	0. 1494 0. 3878	22.05 19.10	Same remarks as for curve 1.
3		361	Strunk, M.R. and Fehsenfeld, G.D.	363.2		0.3909 0.4510	0. 4597 0. 1612	0.1494 0.3878	23.87 20.91	Same remarks as for curve 1.

TABLE 162-G(C)E. EXPERIMENTAL VISCOSITY DATA AS A FUNCTION OF COMPOSITION FOR GASEOUS ARGON-CARBON DIOXIDE-METHANE MIXTURES

Cur.	Fig.	Ref.	Author(s)	Temp.	Pressure	Mo	le Fraction	n of	Viscosity	Remarks
No.	No.	No.	Author(s)	(K)	(atm)	Ar	CO2	CH₄	$(N s m^{-2} x 10^{-6})$	кешагкв
1		361	Strunk, M.R. and Fehsenfeld, G.D.	278. 2		0.1498 0.4267	0. 6396 0. 1668	0. 2106 0. 4065	14.82 16.20	Ar: Matheson Co., specified purity 99. 995, chief impurities O ₂ and N ₂ , CO ₂ : Matheson Co., specified purity 99. 8, chief impurities N ₂ and O ₂ , CH ₄ : Matheson Co., specified purity 99. 0, chief impurities CO ₂ , N ₂ , ethane, propane; mixtures prepared according to Dalton's law of partial pressures; mixtures analyzed on mass spectrometer; rolling ball viscometer; experimental error ±1.5%.
2		361	Strunk, M.R. and Fehsenfeld, G.D.	323.2		0.1498 0.4267	0, 63 96 0, 1668	0.2106 0.4065	17.02 18.42	Same remarks as for curve 1.
3		361	Strunk, M.R. and Fehsenfeld, G.D.	363.2		0.1498 0.4267	0, 6396 0, 1668	0,2106 0,4065	18. 74 20. 11	Same remarks as for curve 1.

TABLE 163-G(C)E. EXPERIMENTAL VISCOSITY DATA AS A FUNCTION OF COMPOSITION FOR GASEOUS CARBON DIOXIDE-HYDROGEN-OXYGEN MIXTURES

Cur.	Fig.	Ref.	Author(s)	Temp.	Pressure	Me	ole Fractio	n of	Viscosity	Remarks
No.	No.	No.	Audior (8)	(K)	(psia)	CO3	H ₂	O ₂	$(N s m^{-2} x 10^{-6})$	кешаскв
1		337	Gururaja, G.J.,	298.5	14.2	12.8	74.9	12.3	15, 85	No purity specified; oscil-
			Tirunarayanan,	299.0		70.0	14.7	15.3	15, 78	lating disc viscometer,
			M.A., and	299.3		78.0	6.0	16.0	15.80	calibrated to N,; viscosity
			Kamchandran, A.	298.0		9. 2	69.1	21.7	16.61	measured at ambient tem-
				298.1		17.4	58.9	23. 7	16.72	perature and pressure;
				297.9		59.0	14.3	26.7	16.67	precision was ±1,0% of
				297.0		19.4	50.0	30.6	17.12	previous data,
				297.7		42.0	18.8	39. 2	17.10	•
				297.0		33.8	22.0	44.2	17.86	
				296.3		33.3	22.0	44.7	16.85	
				297.0		11.4	40.3	48.3	18.19	
				296.8		14.7	36.0	49.3	18.18	

TABLE 164-G(C)E. EXPERIMENTAL VISCOSITY DATA AS A FUNCTION OF COMPOSITION FOR GASEOUS CARBON DIOXIDE-NITROGEN-OXYGEN MIXTURES

Cur.	Fig.	Ref.	A45(-)	Temp.	Pressure	Mo	le Fracti	on of	Viscosity	
No.	No.	No.	Author(s)	(K)	(atm)	co,	N ₂	0,	$(N s m^{-2} x 10^{-6})$	Remarks
1		337	Gururaja, G.J.,	297. 45		0.084	0.883	0. 033	17, 45	No purity specified; oscil-
			Tirunarayana,	297.83		0.098	0.812	0.090	17.55	lating disc viscometer.
			M.A., and	295. 92		0.090	0.796	0.114	17, 90	calibrated to N.; viscosity
			Ramchandran, A.	298.45		0.146	0.736	0.118	17.60	measured at ambient tem-
				297.80		0.297	0.500	0.203	17.40	perature and pressure;
				297.80		0.507	0.280	0.213	16.80	precision was ±1% of
				296.94		0.090	0.680	0.230	18.05	previous data.
				297.45		0.062	0.858	0.081	17.78	•
				297.85		0.128	0.703	0.169	17.65	
				297, 45		0.212	0.520	0.268	17.65	
				297.30		0.266	0.400	0.334	17.65	
2		363	Herning, F. and	293		0.086	0.891	0.023	17. 56	Capillary method.
			Zipperer, L.			0.133	0.828	0.039	17, 49	
						0.062	0.831	0.107	17.93	

TABLE 164-G(T) E. EXPERIMENTAL VISCOSITY DATA AS A FUNCTION OF TEMPERATURE FOR GASEOUS CARBON DIOXIDE-NITROGEN-OXYGEN MIXTURES

Cur. No.	Fig.	Ref. No.	Author(s)	Mol CO ₂	e Fracti N ₂	on of O ₂	Pressure (atm)	Temp.	Viscosity (N s m ⁻² x 10 ⁻⁶)	Remarks
1		364	Kenney, M.J.,	0.1062	0.8865	0.0073		317.2	18.44	Pure gases were obtained from
			Sarjant, R.J., and					561.2	27. 23	commercial cylinders; relative
			Thring, M.W.					687.2	31.21	capillary flow viscometer,
			•					813.7	35. 36	calibrated for air; estimated
								1027.7	41.84	maximum error \pm 2.0%.
								1160.7	45. 16	
2		364	Kenney, M.J.,	0.1500	0.8450	0.005		305.2	17.63	Same remarks as for curve 1.
			et al.					548.7	27.33	
								737.2	32.20	
								904.7	38.05	
								1039.2	41.11	
								1134.2	44.13	
3		364	Kenney, M.J.,	0.1982	0.7954	0.0064		291.4	17.03	Same remarks as for curve 1.
			et al.					403.2	21,69	
								496.2	24.89	
								631.2	29.01	
								811.2	34,77	
								932.2	38. 23	
								1047.2	41.87	
								1146.2	43.74	

TABLE 165-G(D) E. EXPERIMENTAL VISCOSITY DATA AS A FUNCTION OF DENSITY FOR GASEOUS HYDROGEN-METHANE-NITROGEN MIXTURES

Cur. No.	Fig. No.	Ref.	Author(s)	Mol- H ₂	e Fractic	on of N ₂	Temp.	Density (g cm ⁻³)	Viscosity (N s m ⁻² x 10 ⁻⁶)	Remarks
1		366	Gnezdilov, N.E. and Golubev, I.F.	0.577	0.218	0.205	273. 2	0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10 0.12 0.13 0.14 0.15 0.16 0.17 0.18 0.20 0.21	12. 60 12. 68 13. 11 13. 57 13. 81 14. 36 14. 60 15. 12 15. 54 16. 15 16. 65 17. 38 18. 06 18. 70 19. 15 19. 80 20. 61 21. 25 22. 09 22. 84 23. 77 24. 43	No purity specified for gases; composition analyzed by means of Kh T-2M chrome-thermograph; capillary method; experimental error ± 1%; density calculated from data given.
2		366	Gnezdilov, N.E. and Golubev, I.F.	0.577	0.218	0.205	298. 2	0.22 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10 0.11 0.12 0.13 0.14 0.15 0.16 0.17 0.18 0.19 0.20 0.21	24. 43 13. 44 13. 52 13. 95 14. 41 14. 65 15. 20 15. 44 15. 96 16. 38 16. 99 17. 49 18. 22 18. 90 19. 54 19. 94 20. 64 21. 45 22. 09 22. 93 23. 68 24. 61 25. 27	Same remarks as for curve 1.
3		366	Gnezdilov, N.E. and Golubev, I.F.	0.577	0.218	0.205	323.2	0.22 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10 0.11 0.12 0.13 0.14 0.15 0.16 0.17 0.18 0.19 0.20 0.21 0.22	14. 25 14. 33 14. 76 15. 22 15. 46 16. 01 16. 25 16. 77 17. 19 17. 80 18. 30 19. 03 19. 71 20. 35 20. 80 21. 45 22. 26 22. 90 23. 74 24. 69 25. 42 26. 08	Same remarks as for curve 1.

TABLE 165-G(D) E. EXPERIMENTAL VISCOSITY DATA AS A FUNCTION OF DENSITY FOR GASEOUS HYDROGEN-METHANE-NITROGEN MIXTURES (continued)

Cur. No.	Fig. No.	Ref. No.	Author(s)	Mole H ₂	Fraction CH ₄	of N ₂	Temp.	Density (g cm ⁻³)	Viscosity (N s m ⁻² x 10 ⁻⁶)	Remarks
4		366	Gnezdilov, N.E. and Golubev, I.F.	0.577	0.218	0.205	373.2	0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10 0.11 0.12 0.13 0.14 0.15 0.16 0.17 0.18 0.19 0.20 0.21	15. 78 15. 87 16. 30 16. 76 17. 00 17. 55 17. 79 18. 31 18. 73 19. 32 19. 84 20. 57 21. 25 21. 89 22. 34 22. 99 23. 80 24. 44 25. 28 26. 03 26. 96 27. 62	Same remarks as for curve 1.
5		366	Gnezdilov, N.E. and Golubev, I.F.	0.577	0.218	0.205	423.2	0. 22 0. 01 0. 02 0. 03 0. 04 0. 05 0. 06 0. 07 0. 08 0. 09 0. 10 0. 11 0. 12 0. 13 0. 14 0. 15 0. 16 0. 17 0. 18 0. 19 0. 20 0. 21 0. 22	27. 52 17. 28 17. 36 17. 79 18. 29 18. 49 19. 04 19. 28 19. 80 20. 22 20. 83 21. 33 22. 06 22. 74 23. 38 23. 83 24. 48 25. 29 26. 77 27. 72 28. 45 29. 11	Same remarks as for curve 1.
6		366	Gnezdilov, N.E. and Golubev, I.F.	0.577	0.218	0.205	473.2	0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10 0.11 0.12 0.13 0.14 0.15 0.17 0.18 0.17 0.19	18. 78 18. 86 19. 29 19. 75 19. 99 20. 54 20. 78 21. 30 21. 72 22. 31 22. 83 23. 56 24. 24 24. 88 25. 33 25. 98 26. 79 27. 43 28. 27 29. 95 30. 61	Same remarks as for curve 1.

TABLE 165-G(D) E. EXPERIMENTAL VISCOSITY DATA AS A FUNCTION OF DENSITY FOR GASEOUS HYDROGEN-METHANE-NITROGEN MIXTURES (continued)

Cur. No.	Fig. No.	Ref. No.	Author(s)	Mole H ₂	Fractio CH ₄	n of N ₂	Temp.	Density (g cm ⁻³)	Viscosity (N s m ⁻² x 10^{-6})	Remarks
7		366	Gnezdilov, N.E. and Golubev, I.F.	0.577	0.218	0.205	523.2	0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10 0.11 0.12 0.13 0.14 0.15 0.16 0.17 0.18 0.19 0.20 0.21	20. 26 20. 34 20. 77 21. 23 21. 47 22. 02 22. 26 22. 78 23. 20 23. 81 24. 31 25. 04 25. 72 26. 36 26. 81 27. 46 28. 27 28. 91 29. 75 30. 70 31. 43 32. 09	Same remarks as for curve 1.
8		366	Gnezdilov, N.E. and Golubev, I.F.	0.498	0.188	0.314	273.2	0. 22 0. 01 0. 02 0. 03 0. 04 0. 05 0. 06 0. 07 0. 08 0. 09 0. 10 0. 11 0. 12 0. 13 0. 14 0. 15 0. 16 0. 17 0. 18 0. 19 0. 20 0. 21 0. 22	14. 31 14. 53 14. 72 14. 97 15. 29 15. 64 15. 91 16. 25 16. 69 17. 07 17. 50 17. 85 18. 34 18. 98 19. 52 20. 19 20. 78 21. 52 22. 40 23. 19 24. 23 25. 18	Same remarks as for curve 1.
9		366	Gnezdilov, N.E. and Golubev, I.F.	0.498	0.188	0.314	298.2	0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10 0.11 0.12 0.13 0.14 0.15 0.16 0.17 0.18 0.19 0.20	15. 24 15. 46 15. 46 15. 65 15. 90 16. 22 16. 57 16. 84 17. 18 17. 62 18. 00 18. 43 18. 78 19. 27 19. 91 20. 45 21. 12 21. 71 22. 45 23. 33 24. 17 25. 16 26. 11	Same remarks as for curve 1.

TABLE 165-G(D) E. EXPERIMENTAL VISCOSITY DATA AS A FUNCTION OF DENSITY FOR GASEOUS HYDROGEN-METHANE-NITROGEN MIXTURES (continued)

Cur. No.	Fig. No.	Ref. No.	Author(s)	Mole H ₂	Fractic CH ₄	n of N ₂	Temp.	Density (g cm ⁻³)	Viscosity (N s m ⁻² x 10 ⁻⁶)	Remarks
10		366	Gnezdilov, N.E.	0.498	0.188	0.314	323.2	0.01	16.11	Same remarks as for curve 1
			and Golubev, I. F.					0.02	16.33	
								0.03	16.52	
								0.04	16.77 17.09	
								0.05 0.06	17.44	
								0.07	17.71	
								0.08	18.05	
								0.09	18.49	
								0.10	18.87	
								0.11	19.30	
								0.12	19.65	
								0.13	20.14	
								0.14	20.78	
								0.15	21.32	
								0.16	21.99	
								0.17	22.58	
								0.18 0.19	23, 32 24, 20	
								0.10	24.20	
								0.21	26.03	
								0.22	26.98	
11		366	Gnezdilov, N.E.	0.498	0.188	0.314	373.2	0.01	17.79	Same remarks as for curve 1.
			and Golubev, I.F.					0.02	18.01	
								0.03	18.20	
								0.04	18.45	
								0.05	18.77	
								0.06 0.07	19.12 19.39	
								0.08	19.73	
								0.09	20.17	
								0.10	20.55	
								0.11	20.98	
								0.12	21.33	
								0.13	21.82	
								0.14	22.46	
								0.15	23.00	
								0.16	23.67	
								0.17	24.25	
								0.18	25.00	
								0.19 0.20	25.88 26.67	
								0.21	27.71	
								0. 22	28.66	
12		366	Gnezdilov, N.E.	0.498	0.188	0.314	423.2	0.01	19.36	Same remarks as for curve 1.
			and Golubev, I.F.					0.02	19.58	
								0.03	19.77	
								0.04	20.02	
								0.05 0.06	20.34 20.69	
								0.07	20.96	
								0.08	21.30	
								0.09	21.74	
								0.10	22.12	
								0.11	22.55	
								0.12	22.90	
								0.13	23.39	
								0.14	24.03	
								0.15	24.57	
								0.16	25.24	
								0.17	25.83	
								0.18	26.57	
								0.19	27.45	
								0.20 0.21	28. 24 29. 28	

TABLE 165-G(D) E. EXPERIMENTAL VISCOSITY DATA AS A FUNCTION OF DENSITY FOR GASEOUS HYDROGEN-METHANE-NITROGEN MIXTURES (continued)

Cur. No.	Fig. No.	Ref. No.	Author(s)	Mole H ₂	Fraction CH ₄	of N ₂	Temp.	Density (g cm ⁻³)	Viscosity (N s m ⁻² x 10 ⁻⁶)	Remarks
13		366	Gnezdilov, N. E.	0.498	0.188	0.314	473.2	0.01	20.88	Same remarks as for curve 1
			and Golubev, I. F.					0.02	21.10	
			-					0.03	21.29	
								0.04	21.54	
								0.05	21.86	
								0.06	22.21	
								0.07	22.48	
								0.08	22.82	
								0.09	23, 26	
								0.10	23.64	
								0.11	24.07	
								0.12	24.42	
								0.13	24.91	
								0.14	25.55	
								0.15	26.09	
								0.16	26.76	
								0.17	27.34	
								0.18	28.09	
								0.19	28.97	
								0.20	29.76	
								0.21	30.80	
								0.22	31 75	

TABLE 166-G(C)E. EXPERIMENTAL VISCOSITY DATA AS A FUNCTION OF COMPOSITION FOR GASEOUS DIMETHYL ETHER-METHYL CHLORIDE-SULFUR DIOXIDE MIXTURES

Cur.	Fig.	Ref.	Author(s)	Temp.	Pressure	Mo	le Fractio	n of	Viscosity	Remarks
No.	No.	No.	Audior (8)	(K)	(atm)	(CH ³) ³ O	CH3C1	SO ₂	(N s m ⁻² x 10 ⁻⁶)	Kemarks
1		349	Chakraborti, P. K. and Gray, P.	308.2		26. 3 25. 5 33. 7 48. 9	25. 6 48. 8 33. 5 25. 2	48. 1 25. 7 32. 9 25. 9	12. 08 11. 45 11. 53 11. 02	(CH ₃) ₂ O and CH ₃ Cl in gas cylinders, SO ₂ in syphons obtained from Matheson Co.; all purified by frac- tionation at liquid nitrogen temperature; capillary flow viscometer calibrated with air, Ar, N ₂ O, and CH ₄ ; estimated maximum uncer- tainty is ±1.0% and pre- cision ±0.4%.
2		349	Chakraborti, P.K. and Gray, P.	353.2		25. 3 24. 4 33. 3	25.5 49.4 33.1 25.0	49. 2 26. 2 33. 6	13.86 13.19 13.26	Same remarks as for curve 1.

6. QUATERNARY SYSTEMS

TABLE 167-G(C)E. EXPERIMENTAL VISCOSITY DATA AS A FUNCTION OF COMPOSITION FOR GASEOUS ARGON-HELIUM-CARBON DIOXIDE-METHANE MIXTURES

Cur. No.	Fig.	Ref. No.	Author(s)	Temp. (K)	Pressure (atm)	Ar	Mole F	raction of	СН	Viscosity (N s m ⁻² x 10 ⁻⁶)	Remarks
1		361	Strunk, M.R. and Fehsenfeld, G.D.	278. 2	1.0	0.1010 0.3823	0.1847 0.3166	0.3820 0.1095	0, 3323 0, 1916	14.88 18.42	Ar: Matheson Co., specified purity 99. 995, chief impurities O ₂ and N ₂ , He: Matheson Co., specified purity 99. 9, chief impurities N ₂ and CO ₂ , CO ₂ : Matheson Co., specified purity 99. 8, chief impurities N ₂ and O ₂ , CH ₄ : Matheson Co., specified purity 99. 0, chief impurities CO ₂ , N ₂ , ethane, propane; mixtures prepared according to Dalton's law of partial pressures; mixtures analyzed on mass spectrometer; rolling ball viscometer; experimental error ±1.5%.
2		361	Strunk, M.R. and Fehsenfeld, G.D.	323.2	1.0 1.0	0.1010 0.3823	0.1847 0.3166	0.3820 0.1095	0. 3323 0. 1916	17.70 20.80	Same remarks as for curve 1.
3		361	Strunk, M.R. and Fehsenfeld, G.D.	363.2	1.0 1.0	0.1010 0.3823	0.1847 0.3166	0.3820 0.1095	0.3323 0.1916	18.70 22.72	Same remarks as for curve 1.

TABLE 168-G(T)E. EXPERIMENTAL VISCOSITY DATA AS A FUNCTION OF TEMPERATURE FOR GASEOUS CARBON DIOXIDE-HYDROGEN-NITROGEN-OXYGEN MIXTURES

Cur. No.	Fig.	Ref. No.	Author(s)	CO2	Mole F	raction of	02	Pressure (atm)	Temp. (K)	Viscosity (N s m ⁻² x 10 ⁻⁶)	Remarks
1		362	Schmid, C.	0.1080	0.0220	0.8500	0.0200		300. 5 415. 5 524. 5 654 814. 5 973 1125. 5 1279	18. 27 23. 19 27. 15 31. 76 36. 65 41. 17 44. 97 48. 56	Capillary method; error always less than 4%.

TABLE 169-G(D)E. EXPERIMENTAL VISCOSITY DATA AS A FUNCTION OF DENSITY FOR GASEOUS ETHANE-METHANE-NITROGEN-PROPANE MIXTURES

Cur. No.	Fig.	Ref. No.	Author(s)	C ₂ H ₆	Mole F1	action of	C3H8	Temp. (K)	Density (g cm ⁻³)	Viscosity (N s m ⁻² x 10 ⁻⁶)	Remarks
1		365	Carr, N. L.	0.257	0.735	0.006	0.002	298.5	0.0083 0.0500 0.0933 0.1315 0.1592 0.1811 0.2080	10. 66 11. 95 13. 90 15. 91 17. 51 18. 65 23. 09	Mixtures simulated, all gases well dried, obtained commercially and subjected to spectroscopic analysis; capillary pyrex viscometer of Rankine type enclosed in a special high pressure bomb; maximum experimental error < 2% in all cases, < 1% in most cases.
2		365	Carr, N. L.	0. 257	0.735	0.006	0.002	298.8	0.0084 0.0696 0.0696 0.2372 0.2592 0.2770	10. 42 12. 81 12. 76 25. 86 28. 77 31. 58	Same remarks as for curve 1.
3		365	Carr, N. L.	0.257	0. 735	0.006	0.002	299.0	0.0086 0.2746 0.2976 0.3172 0.3384 0.3474 0.3654 0.3642 0.3741 0.3791 0.3906	10. 69 31. 85 35. 42 38. 70 42. 64 44. 47 46. 20 48. 07 49. 76 51. 18 54. 30	Same remarks as for curve 1.
4		365	Carr, N.L.	0, 257	0, 735	0.006	0, 002	299. 5	0.0084 0.0084 0.0208 0.0411 0.0694 0.1202	10.69 10.58 10.93 21.44 12.70 15.27	Same remarks as for curve 1.
5		365	Carr, N.L.	0.036	0.956	0.003	0.005	302.7	0.0081 0.0991 0.2109 0.2288 0.2385 0.2602 0.2761 0.2870 0.2941	11. 20 16. 05 24. 26 26. 09 27. 90 31. 23 34. 24 37. 03 38. 23	Same remarks as for curve 1.
6		365	Carr, N.L.	0.036	0. 956	0.003	0.005	302.7	0.0112 0.0208 0.0384 0.0529 0.0632	11. 21 11. 45 12. 15 12. 75 14. 22	Same remarks as for curve 1.
7		365	Carr, N. L.	0.036	0. 956	0.003	0.005	302.8	0.0676 0.1468 0.1702 0.1934	13. 33 17. 91 19. 91 21. 85	Same remarks as for curve 1.
8		365	Carr, N. L.	0. 257	0.735	0.006	0.002	338. 8	0. 0178 0. 0412 0. 0714 0. 0887 0. 1050 0. 1423 0. 1423 0. 1719 0. 2070 0. 2270 0. 2615 0. 2894	12. 31 13. 25 14. 37 15. 43 16. 07 18. 21 18. 40 20. 29 23. 19 24. 97 27. 98 30. 97	Same remarks as fer curve 1.
9		365	Carr, N. L.	0. 036	0.956	0.003	0.005	377.6	0.0038 0.0197 0.0396 0.0582 0.0747 0.1178 0.1506 0.1893 0.2102	13. 62 13. 92 14. 64 15. 48 16. 65 18. 74 21. 11 24. 80 27. 32	Same remarks as for curve 1.

TABLE 169-G(D)E. EXPERIMENTAL VISCOSITY DATA AS A FUNCTION OF DENSITY FOR GASEOUS ETHANE-METHANE-NITROGEN-PROPANE MIXTURES (continued)

Cur. No.	Fig. No.	Ref. No.	Author(s)	C₂H€	Mole F CH4	raction o	C ₃ H ₈	Temp. (K)	Density (g cm ⁻³)	Viscosity (N s m ⁻² x 10 ⁻⁶)	Remarks
10		365	Carr, N. L.	0, 036	0. 956	0.003	0.005	397.9	0,0048	14. 03	Same remarks as for curve 1.

í

-

_

7. MULTICOMPONENT SYSTEMS

TABLE 170-G(C)E. EXPERIMENTAL VISCOSITY DATA AS A FUNCTION OF COMPOSITION FOR GASEOUS ARGON-HELIUM-AIR-CARBON DIOXIDE MIXTURES

Cur. No.	Fig.	Ref. No.	Author(s)	Temp. (K)	Pressure (atm)	Ar	Mole F	raction of Air	CO2	Viscosity (N s m ⁻² x 10 ⁻⁶)	Remarks
1		361	Strunk, M.R. and Fehsenfeld, G.D.	278. 2	1.0	0.1875 0.2914	0.0964 0.4038	0.3254 0.2033	0.3907 0.1015	17. 02 19. 87	Ar: Matheson Co., specified purity 99. 995, chief impurities O ₂ and N ₂ , He: Matheson Co., specified purity 99. 9, chief impurities N ₂ and CO ₂ , Air: Matheson Co. 20. 9 O ₂ . 79 N ₂ . 0. 1 Ar, no CO ₂ , CO ₂ : Matheson Co., specified purity 99. 8, chief impurities N ₂ and O ₂ ; mixtures prepared according to Dalton's law of partial pressures; mixtures analyzed on mass spectrometer; rolling ball viscometer; experimental error ±1.5%.
2		361	Strunk, M.R. and Fehsenfeld, G.D.	323.2	1.0 1.0	0.1875 0.2914	0.0964 0.4038	0.3254 0.2033	0.3907 0.1015	19.30 22.32	Same remarks as for curve 1.
3		361	Strunk, M.R. and Fehsenfeld, G.D.	363. 2	1.0 1.0	0. 1875 0. 2914	0.0964 0.4038	0.3254 0.2033	0.3907 0.1015	21.64 24.48	Same remarks as for curve 1.

TABLE 171-G(C)E. EXPERIMENTAL VISCOSITY DATA AS A FUNCTION OF COMPOSITION FOR GASEOUS ARGON-HELIUM-AIR-METHANE MIXTURES

Cur. No	Fig. No.	Ref. No.	Author(s)	Temp. (K)	Pressure (atm)	Ar	Mole F He	raction o	f CH ₄	Viscosity (N s m ⁻² x 10 ⁻⁶)	Remarks
1		361	Strunk, M. R. and Fehsenfeld, G. D.		1.0	0.1869 0.2922	0, 3438 0, 1948	0.1068 0.4014	0.3605 0.1116	15.72 18.69	Ar: Matheson Co., specified purity 99. 995, chief impurities O ₂ and N ₂ , He: Matheson Co., specified purity 99. 9, chief impurities N ₂ and CO ₂ , Air: Matheson Co. specified purity 20. 9 O ₂ , 79 N ₂ , 0.1 Ar, no CO ₁ , CH ₄ : Matheson Co. specified purity 99. 0, chief impurities CO ₂ , N ₂ , ethane, propane; mixtures analyzed on mass spectrometer; rolling ball viscometer; experimental error ±1.5%.
2		361	Strunk, M.R. and Fehsenfeld, G.D.	323. 2	1.0 1.0	0. 1869 0. 2922	0.3438 0.1948	0.1088 0.4014	0.3605 0.1116	17.77 20.83	Same remarks as for curve 1.
3		361	Strunk, M.R. and Fehsenfeld, G.D.	363.2	1.0 1.0	0, 1869 0, 2922	0.3438 0.1948	0.1088 0.4014	0.3605 0.1116	19.63 22.92	Same remarks as for curve 1.

TABLE 17 -G(C)E. EXPERIMENTAL VISCOSITY DATA AS A FUNCTION OF COMPOSITION FOR GASEOUS ARGON-AIR-CARBON DIOXIDE MIXTURES

Cur. No.	Fig. No.	Ref. No.	Author(s)	Temp. (K)	Pressure (atm)	Mole Ar	Fraction Air	of CO ₂	Viscosity (N s m ⁻² x 10 ⁻⁶)	Remarks
1		361	Strur ., M.R. and Fehr enfeld, G.D.	278. 2	1.0	0.4748 0.1915	0. 3194 0. 5225		18.78 17.44	Ar: Matheson Co., specified purity 99.995, chief impurities O ₂ and N ₂ , Air: Matheson Co., 20.9 O ₂ , 79 N ₂ , 0.1 Ar, no CO ₂ . CO ₂ : Matheson Co., specified purity 98.8, chief impurities N ₂ and O ₃ ; mixtures prepared according to Dalton's law of partial pressures; mixtures analyzed on mass spectrometer; rolling ball viscometer; experimental error ±1.5%.
2		361	Strunk, M.R. and Fehsenfeld, G.D.	323, 2	1.0 1.0	0.4748 0.1915	0.3194 0.5225	0.2058 0.2860	21.18 19.62	Same remarks as for curve 1.
3		361	Strunk, M.R. and Fehsenfeld, G.D.	363.2	1.0 1.0	0.4748 0.1915	0.3194 0.5225	0.2058 0.2860	23.53 21.80	Same remarks as for curve 1.

TABLE 173-G(C) E. EXPERIMENTAL VISCOSITY DATA AS A FUNCTION OF COMPOSITION FOR GASEOUS ARGON-AIR-CARBON DIOXIDE-METHANE MIXTURES

Cur. No.	Fig.	Ref. No.	Author(s)	Temp.	Pressure (atm)	Ar	Mole Fr Air	action o	f Сң	Viscosity (N s m ⁻² x 10^{-6})	Remarks
1		361	Strunk, M.R. and Fehsenfeld, G.C.	278.2	1.0		0.2242 0.3215			14.42 17.58	Ar: Matheson Co., specified purity 99.995, chief impurities O ₂ and N ₂ , Air: Matheson Co., 20.9 O ₂ , 79 N ₂ , 0.1 Ar, no CO ₂ , CO ₂ : Matheson Co., specified purity 98.8, chief impurities N ₂ and O ₂ , CH ₄ : Matheson Co., specified purity 99.0, chief impurities CO ₂ , N ₃ , ethane, propane; mixtures prepared according to Dalton's law of partial pressures; mixtures analyzed on mass spectrometer; competer; experimental error ± 1.5%.
2		361	Strunk, M.R. and Fehsenfeld, G.C.	323.2	1.0 1.0		0.2242 0.3215				Same remarks as for curve 1.
3		361	Strunk, M.R. and Fehsenfeld, G.C.	363.2	1.0 1.0		0.2242 0.3215				Same remarks as for curve 1.

TABLE 174-G(C)E. EXPERIMENTAL VISCOSITY DATA AS A FUNCTION OF COMPOSITION FOR GASEOUS HELIUM-AIR-CARBON DIOXIDE MIXTURES

Cur. No.	Fig. No.	Ref. No.	Author(s)	Temp. (K)	Pressure (atm)	Mo He	le Fraction Air	of CO ₂	Viscosity (N s m ⁻² x 10 ⁻⁶)	Remarks
1		361	Strunk, M.R. and Fehsenfeld, G.D.	278.2	1.0	0.1714 0.4697	0, 2353 0, 3784	0.5933 0.1519	15. 77 18. 36	He: Matheson Co., specified purity 99.995, chief impurities O ₂ and N ₂ , Air: Matheson Co., specified purity 20.9 O ₂ , 79 N ₂ , 0.1 Ar, no CO ₂ , CO ₃ : Matheson Co., specified purity 99.8, chief impurities N ₂ and O ₂ ; mixtures prepared according to Dalton's law of partial pressures; mixtures analyzed on mass spectrometer; rolling ball viscometer; experimental error ±1.5%.
2		361	Strunk, M.R. and Fehsenfeld, G.D.	323. 2	1.0 1.0	0.1714 0.4697	0. 2353 0. 3784	0. 5933 0. 1519	17.86 20.40	Same remarks as for curve 1.
3		361	Strunk, M.R. and Fehsenfeld, G.D.	363. 2	1.0 1.0	0. 1714 0. 4697	0. 2353 0. 3784	0. 5933 0. 1519	19.62 21.98	Same remarks as for curve 1.

TABLE 175-G(C) E. EXPERIMENTAL VISCOSITY DATA AS A FUNCTION OF COMPOSITION FOR GASEOUS HELIUM-AIR-CARBON DIOXIDE-METHANE MIXTURES

Cur.	Fig.	Ref.	Author(s)	Temp.	Pressure			action o		Viscosity	Remarks
No.	No.	No.		(K)	(atm)	He	Air	CO2	CH ₄	(Nsm-3x10-4)	
1		361	Strunk, M.R. and Fehsenfeld, G.C.	278.2	1.0		0.1183			15. 09 15. 34	He: Matheson Co., specified purity 99.995, chief impurities O ₂ and N ₂ . Air: Matheson Co., specified purity 20.9 O ₂ , 79 N ₂ . 0.1 Ar, no CO ₂ , CO ₂ : Matheson Co., specified purity 99.8, chief impurities N ₂ and O ₂ , CH ₂ : Matheson Co., specified purity 99.0, chief impurities CO ₂ , N ₂ , ethane, propane; mixture prepared according to Dalton's law of partial pressures; mixtures anal yzed on mass spectrometer; rolling ball viscometer; experimental error ± 1.5%.
2		361	Strunk, M.R. and Fehsenfeld, G.C.	323.2	1.0 1.0		0.1183 0.4085			17.13 17.53	Same remarks as for curve 1.
3		361	Strunk, M.R. and Fehsenfeld, G.C.	363.2	1.0 1.0		0.1183 0.4085			18.66 19.06	Same remarks as for curve 1.

TABLE 176-G(C) E. EXPERIMENTAL VISCOSITY DATA AS A FUNCTION OF COMPOSITION FOR GASEOUS HELIUM-AIR-METHANE MIXTURES

Cur. No.	Fig. No.	R ef. No.	Author(s)	Temp. (K)	Pressure (atm)	Mol He	e Fracti Air	on of CH ₄	Viscosity (N s m ⁻² x 10 ⁻⁶)	Remarks
1		361	Strunk, M.R. and Fehsenfeld, G.D.	278.2	1.0			0.2270 0.1546	15. 97 16. 67	He: Matheson Co., specified purity 99.995, chief impurities O ₂ and N ₂ , Air: Matheson Co., specified purity 20.9 O ₂ , 79 N ₂ , 0.1 Ar, no CO ₂ , CH ₄ : Matheson Co., specifie purity 99.0, chief impurity CO ₂ , N ₂ , ethane, propane; mixtures prepared according to Dalton's law of partial pressures; mixtures analyzed on mass spectrometer; rollin ball viscometer; experimental error ± 1.5%.
2		361	Strunk, M.R. and Fehsenfeld, G.D.	323.2	1.0 1.0	0.6055 0.2281	0.1675 0.6173		17.80 18.51	Same remarks as for curve 1.
3		361	Strunk, M.R. and Fehsenfeld, G.D.	363.2	1.0 1.0	0.6055 0.2281			19.33 20.36	Same remarks as for curve 1.

TABLE 177-G(D) E. EXPERIMENTAL VISCOSITY DATA AS A FUNCTION OF DENSITY FOR GASEOUS HELIUM-B-BUTANE-ETHANE-METHANE-NITROGEN-PROPANE-I-BUTANE MIXTURES

Cur. No.	Fig. No.	Ref. No.	Author(s)	Mole Fraction	Temp.	Density (g cm ⁻³)	Viscosity (N s m ⁻² x 10 ⁻⁶)	Remarks
1		365	Carr, N. L.	See footnote	299.7	0.0068 0.0190 0.0374 0.0637 0.0655 0.1010 0.1385 0.1743	12.00 12.36 12.99 13.89 13.95 15.56 17.59 19.87	Mixtures simulated, all gases well dried, obtained commercially and subjected to spectroscopic analysis; capillary pyrex viscometer of Rankint type enclosed in a special high pressure bomb; maximum experimental error < 2% in all cases, < 1% in most cases.
2		365	Carr, N. L.	See footnote	301.2	0.0068 0.1778 0.2042 0.2608 0.2914 0.3178 0.3453 0.3627 0.3764	11. 99 20. 09 22. 26 26. 60 30. 60 34. 32 37. 64 42. 08 45. 17	Same remarks as for curve 1.
3		365	Carr, N. L.	See footnote	338.9	0.0066 0.0197 0.0240 0.1109 0.1375	13.30 13.67 13.97 15.86 17.19	Same remarks as for curve 1.
4		365	Carr, N. L.	See footnote	338.9	0.0070 0.0527 0.1368 0.1941 0.2200 0.2533 0.2711 0.2927 0.3318	13.40 14.75 17.37 20.38 23.54 26.60 29.28 31.90 36.17	Same remarks as for curve 1.

Mole Fractions: 0.008 He, 0.006 n-C4H10, 0.081 C2H4, 0.731 CH4, 0.158 N2, 0.034 C2H4, and 0.002 i-C4H40.

TABLE 178-L(T). RECOMMENDED VISCOSITY VALUES FOR LIQUID AIR

IBCUSSIO

	RECOMME	RECOMMENDED VALUES
SATURATED LAYUD	[Temperature, T, K; 1	[Temperature, T, K; Viscosity, μ , 10-1 N s m-2]
Three sets of experimental data were found in the literature. They are those of Busineshe [188], Maiti [188] and Verschnffelt [288] Only the date of Busineshe	SATURAT	SATURATED LIQUID
covers a substantial temperature range. They were fitted to an equation	Į.	31.
$\log \mu = A + B/T$		•
The accuracy of the data is poor.	09	0.325
	65	0.264
From 110 K to the critical temperature, recommended values were zen-	0.2	0.221
erabed by effectively a smooth curve joining the value of viscosity at 110 K and the	75	0.189
The state of the state of the state of the state of Joses, Stiel and Thodos	80	0.165
there are accompanied to the controllation is of about ±15%.	85	0.147
	06	0.132
	96	0.120
	100	0.1101
	105	0.1019
	110	0.0949
	115	0.0865
	120	0.0750
	125	0.0615
	130 133*	0.0420
		0.0201

Crit. Temp

TABLE 178-V(T). RECOMMENDED VISCOSITY VALUES FOR AIR VAPOR

RECOMMENDED VALUES

~
-
\sim
×
77
22
92
_
_
O
<i>A</i> 5.
24
-
\mathbf{H}

[Temperature, T, K; Viscosity, µ, 10-3 N s m-2]	SATURATED VAPOR	a	80 0.0055		95 0.0070	100 0,0075	105 0.0080		120 0,0102	125 0.0117	130 0.0143 133* 0.0207
SATURATED VAPOR	Recommended values of the viscosity of the saturated vapor were computed by the correlation betweene of Josef, Stiel and Thodos [100] series the same of the same statements.	mended values of viscosity of the gas at 1 atmosphere and the density values given by Din [49]. The accuracy is of about ±5%.									

* Crit. Temp.

TABLE 178-G(T). RECOMMENDED VISCOSITY VALUES FOR GASEOUS AIR

RECOMMENDED VALUES

DESCUSSION

TRECONSION	5		:		į	ŕ	
975	=	ı emperawre	I, N;	lemperature, I, K; Viscosity, μ , 10° N s m 2	1 S N . OT	- -	
			•	GAS			
The literature revealed a rather abundant experimental work on air: 51	۲	3.	H	31	H	3.	
1903 of CONT. WOLVE PURILLY, MORNEY, OX UNDER AND AN AN AND AN AND AN AND AND AND AND			450	24.93	820	37.83	
oppose to Fundamentariants. At ingan temperature the freezes or varies of variety of the seal measure force 400 900 901 semester the worst consistent while at four term.			460	25, 32	980	38, 10	
THE LIBERT LEGGE AND ACTION TO THE CONTROL OF THE C			470	25. 70	870	38, 37	
paramete, the capital of FOLICE (1905), continuous for 1 Figure 1 (v.) are in	8	5, 52	480	26.07	880	38,64	
Berries [8] Brefor [183] Kelletröm [104-6] and Majumdar [146-7] were selected,	06	6.35	490	26. 45	980	38.91	
and the curve was forced to fit these data.	100	7.06	200	26.82	006	39.18	
	110	7.75	210	27.18	910	39.45	
The theoretical expression for viscosity:	120	8.43	520	27.54	920	39, 71	
F	130	9.09	530	27.90	930	39.97	
$\mu = \sigma \cdot \Omega \tag{1}$	140	9.74	240	28.25	940	40.23	
\$	150	10.38	220	28.60	920	40.49	
was meet to contact the experimental data. A plot of o'll versus 1/1 re-	160	11.00	200	28.95	96	40.75	
	170	19.01	200	23.23	0.6	41.00	
$\mathbf{\sigma}^{2}\mathbf{\Omega} = \mathbf{A} + \mathbf{B}/\mathbf{T} e^{-\mathbf{C}/\mathbf{T}} \tag{2}$	190	12. 78 82. 73	280	29.97	96	41.52	
numbered by Kenne (1931 was ship to management the date, which were least source	200	13.36	900	30, 30	1000	41.77	
The first of the second of the	210	13.92	610	30.63	1050	43.0	
equation (1) to generate the table of recommended values, which are thought to	220	14.47	620	30.96	1100	4.2	
be acceptable to £2% in the whole range covered.	230	15.01	930	31.28	1150	45.4	
	240	15.54	640	31.61	1200	46.5	
	250	16.06	650	31.93	1250	47.7	
	260	16, 57	99	32.24	1300	48.8	
	270	17.07	670	32.56	1350	6.0	
	280	17.57	990	32.87	1450	50° 5	
		70.0		9	201	0.10	
	300	18.53	200	33, 49	1500	53.0	
	310	19.00	110	33.79	1550	54.0	
	330	10.40	3 6	34 30	1650	ייני צעייט פייני	
	340	20.37	740	34.69	1700	56.9	
	350	20.81	750	34.98	1750	57.8	
	360	21.25	760	35.28	1800	58.7	
	370	21.68	770	35.57	1850	59.6	
	380	22, 52	200	36.15	1950	61.4	
	200			91.00		* • •	
	404 104 104	23, 35	200	36. 43	0007	62.3	
	420	23.75	820	36.99			
	430	24.15	830	37.27			
	440	24. 54	840	37, 55			

w. T

. ,

FIGURE 178-G(T). DEPARTURE PLOT FOR VISCOSITY OF GASEJUS AIR

TEMPERATURE, K 3 TEMPERATURE, F 8 8 \$ \$ Reference 1988 2631 2631 146,147 104,105,106 183,8 8 17 257 257 260 766 (E) (v 8 977777944686 30 (F) B 222354554456445 (3) 8 8 8 254, 255 233 2233 206 228 229 220 67 67 68 68 P = I ATM DEPARTURE, PERCENT

FIGURE 178-G(T). DEPARTURE PLOT FOR VISCOSITY OF GASEOUS AIR (continued)

TABLE 179-G(C)E. EXPERIMENTAL VISCOSITY DATA AS A FUNCTION OF COMPOSITION FOR GASEOUS AIR-CARBON DIOXIDE MIXTURES

Cur. No.	Fig. No.	Ref. No.	Author(s)	Temp. (K)	Pressure (atm)	Mole Fraction of CO ₂	Viscosity (N s m ⁻² x 10 ⁻⁶)	Remarks
1	179-G(C)	346	Jung, G. and Schmick, H.	290		1.000 0.800 0.600 0.400 0.200	14.55 15.23 15.91 16.60 17.30 17.97	Effusion method of Trautz and Weizel; $L_1=0.042\%$, $L_2=0.076\%$ $L_3=0.162\%$.

TABLE 179-G(S). SMOOTHED VISCOSITY VALUES AS A FUNCTION OF COMPOSITION FOR GASEOUS AIR-CARBON DIOXIDE MIXTURES

Mole Fraction of CO ₂	(290. û K) [Ref. 346]
1.00	14.55
0.95	14.71
0.90	14.88
0.85	15.06
0.80	15.23
0.75	15.40
0.70	15.52
0.65	15.73
0.60	15.91
0.55	16.08
0.50	16.24
0.45	16.42
0.40	16.59
0.35	16.76
0.30	16.93
0.25	17.10
0.20	17.27
0.15	17.45
0.10	17.62
0.05	17.80
0.00	17.97

FIGURE 179-G(C). VISCOSITY DATA AS A FUNCTION OF COMPOSITION FOR GASEOUS AIR-CARBON DIOXIDE MIXTURES

· ·

The second secon

TABLE 180-G(C)E. EXPERIMENTAL VISCOSITY DATA AS A FUNCTION OF COMPOSITION FOR GASEOUS AIR-CARBON DIOXIDE-METHANE MIXTURES

Cur. No.	Fig.	Ref. No.	Author(s)	Temp. (K)	Pressure (atm)	Mo Air	le Fraction	of CH ₄	Viscosity (N s m ⁻² x 10 ⁻⁴)	Remarks
1		361	Strunk, M.R. and Fehsenfeld, G.D.	278.2	1.0	0.5022 0.2212	0.1195 0.5270	0.3783 0.2518	14. 52 14. 28	Air: Matheson Co., 20.9 O ₂ 79 N ₂ , 0.1 Ar, no CO ₂ ; CO ₂ : Matheson Co., specified purity 99.8%, chief impurities N ₂ and O ₂ ; CH ₄ : Matheson Co., specified purity 99.0%, chief impurities CO ₂ , N ₂ , ethane, propane; mixtures prepared according to Dalton's law of partial pressures; mixtures analyzed on mass spectrometer; rolling ball viscometer; experimental error ±1.5%.
2		361	Strunk, M.R. and Fehsenfeld, G.D.	323.2	1.0 1.0	0.5022 0.2212	0. 1195 0. 5270	0.3783 0.2518	16.52 16.34	Same remarks as for curve 1.
3		361	Strunk, M.R. and Fehsenfeld, G.D.	363.2	1.0 1.0	0.5022 0.2212	0.1195 0.5270	0.3783 0.2518	17.92 17.94	Same remarks as for curve 1.

TABLE 181-G(C)E. EXPERIMENTAL VISCOSITY DATA AS A FUNCTION OF COMPOSITION FOR GASEOUS AIR-METHANE MIXTURES

Cur. No.	Fig. No.	Ref. No.	Author(s)	Temp. (K)	Pressure (mm Hg)	Mole Fraction of Air	Viscosity (N s m ⁻² x 10 ⁻⁶)	Remarks
1	181-G(C)	334	Strauss, W.A. and	293. 2	756. 5	1.000	17. 95	Capillary flow viscometer, relative
			Edse, R.		757. 0	0. 902	17. 37	measurements; $L_1 = 0.397\%$, $L_2 =$
					757.2	0.804	16.77	0.695%, L ₁ = 2.007%.
					757.8	0.713	16. 24	• •
					758. 4	0.609	15.70	
					758.6	0.505	15.08	
					758.6	0.405	14.39	
					7 59. 5	0. 302	13. 78	
					758. 8	0. 19 9	13, 01	
					756. 9	0. 10 9	12.04	
					755. 8	0.000	11.21	
2	181-G(C)	334	Strauss, W.A. and	293.2	755. 7	0.000	11.09	Same remarks as for curve 1 except
	` '		Edse, R.		756. 3	0.045	11.47	L ₁ = 0.691%, L ₂ = 1.612%, L ₃ =
					757.8	0.150	12.39	5.451%.
					757. 9	0.253	13.34	
					759. 2	0.354	13. 99	
					758.8	0.441	14.55	
					759.1	0.559	16. 25	
					758.3	0.654	15. 97	
					757.6	0.749	16.54	
					757.5	0.85 4	17.05	•
					756. 5	0. 949	17.63	
					756.2	1.000	17. 96	
3	181-G(C)	334	Strauss, W.A. and	293.2	749.4	0.000	11.29	Same remarks as for curve 1 except
			Edse, R.		751.2	0.106	12. 15	$L_1 = 0.526\%$, $L_2 = 1.108\%$, $L_3 =$
					752.4	0.199	13.06	3, 516%,
					753. 1	0.306	13.87	
					752.3	0.384	14.84	
					752.5	0.505	15. 11	
					752.1	0.601	15.66	
					750.4	0.699	16.19	
					750. 9	0.798	16.72	
					750.4	0.901	17.32	
					751. 7	1.000	17.8 4	
4	181-G(C)	334	Strauss, W. A. and	293.2	750.0	1,000	17.97	Same remarks as for curve 1 except
					750. 1	0.946	17.58	L ₁ = 0.256%, L ₂ = 0.353%, L ₃ =
					750. 7	0, 852	17.06	0.865%.
					751.3	0.747	16. 51	
					752. 0	0. 636	15. 91	
					752.3	0. 553	15. 33	
					752.5	0.442	14. 67	
					752.9	0, 348	14.09	
					753. 6	0. 252	13. 53	
					751.7	0. 152	12.59	
					750. 1	0.048	11.69	
					749.5	0,000	11.28	

TABLE 181-G(C)8, SMOOTHED VISCOSITY VALUES AS A FUNCTION OF COMPOSITION FOR CASEOUS AIR-METHANE MIXTURES

Mole Fraction of Air	293.2 K [Ref. 334]
0.00	11.20
0.05	11.58
0.10	12. 10
0. 15	12.44
0. 20	12. 85
0. 25	13.34
0.30	13.65
0.35	14. 02
0.40	14.37
0.45	15.70
0.50	15. 02
0. 55	15. 33
0. 60	15.63
0.65	15. 92
0. 70	16. 22
0. 75	16.50
0.80	16. 79
0, 85	17.08
0.90	17.35
0. 95	17.64
1.00	17. 91

FIGURE 181-G(C). VISCOSITY DATA AS A FUNCTION OF COMPOSITION FOR GASEOUS AIR-METHANE MIXTURES

TABLE 182-G(C)E. EXPERIMENTAL VISCOSITY DATA AS A FUNCTION OF COMPOSITION FOR GASEOUS CARBON DIOXIDE-CARBON MONOXIDE-HYDROGEN-METHANE-NITROGEN MIXTURES

Cur.	Fig.		Author(a)	Temp. Mole Fraction of				on of		Viscosity	Domento.
No.	No.		Author(s)	(K)	CO	œ	H ₂	CH ₄	N ₂	$(N s m^{-2} x 10^{-6})$	Remarks
1		363	Herning, F. and	293. 2	0.106 0.089	0, 298 0, 307	0. 039 0. 033	0.003 0.004	0.554 0.567	17.43 17.47	Capillary method.
			Zipperer, L.		0.087	0. 328	0.015	0.002	0.568	17.49	

TABLE 183-G(T)E. EXPERIMENTAL VIBCOSITY DATA AS A FUNCTION OF TEMPERATURE FOR GASEOUS CARBON DIOXIDE-CARBON MONOXIDE-HYDROGEN-METHANE-NITROGEN-OXYGEN MIXTURES

Cur.	Fig.	Fig. Ref.	4494-1		Mole Fraction of					Temp.	Viscosity	7)
No.	No.	No.	Author(s)	CO2	CO	CO H ₂	CH4	N ₂	02	(K)	$(N + m^{-2} \times 10^{-6})$	Remarks
1		362	Schmid, C.	0.037	0.271	0.095	0.016	0, 578	0.003	300. 5 366. 5	18. 15 21. 00	Capillary method; error always less
										477	25.11	than 4%.
										565. 5	28.19	
										676, 5	31.97	
										776	34. 99	
										866	37.55	
										981	40.45	
										1070	42.86	
										1176	45, 35	
										1282	47.92	

TABLE 184-G(C)E. EXPERIMENTAL VISCOSITY DATA AS A FUNCTION OF COMPOSITION FOR GASEOUS CARBON DIOXIDE-CARBON MONOXIDE-HYDROGEN-METHANE-NITROGEN-OXYGEN - HEAVIER HYDROCARBONS MIXTURES

Cur.	Fi_	Ref. No.		Austham(a)	Temp.	*Mole Fraction of							Viscosity		
No.	No.			No. No.	No. No.	No. No.	No. No.	Author(s)	(K)	CO2	co	H ₂	CH ₄	N ₂	O ₂
1		363	Herning, F. and	293.0	0.017	0.060	0, 575	0.240	0.078	0.009	0.021	12,62			
			Zipperer, L.		0.021	0.057	0,530	0.243	0.117	0.009	0.023	13.04			
					0.020	0.046	0.549	0. 235	0.116	0.014	0.020	13.10			
					0, 033	0.038	0.513	0.296	0.100	0.006	0.014	13. 22			
					0.022	0.041	0. 531	0. 295	0.092	0.006	0.013	13.06			
					0.022	0.040	0, 523	0. 299	0.094	0.010	0, 012	13.07			
					0.025	0.149	0, 530	0. 181	0.091	0.008	0.016	13.55			
					0.048	0.264	0.172	0.026	0.482	0.003	0.005	17.14			
					0.035	0.273	0. 144	0.037	0.500	0.003	0.008	17.12			
					0.031	0.286	0.177	0.042	0.450	0.005	0.009	17.15			

^{*}Capillary method used to obtain values.

TABLE 185-G(T)E. EXPERIMENTAL VISCOSITY DATA AS A FUNCTION OF TEMPERATURE FOR GASEOUS CARBON DIOXIDE-CARBON MONOXIDE-HYDROGEN-NITROGEN-OXYGEN MIXTURES

Cur.	Fig.		Author(s)			le Frac			Temp.	Viscosity	Remarks
No.	No.	No.	Author (a)	CO2		H ₂	N ₂	O,	(K)	(N s m ⁻² x 10 ⁻⁶)	Venatur
1		362	Schmid, C.	0.067	0.078	0. 022	0.832	0.001	307. 5	18. 42	Capillary method: error always
			·						417	22. 95	less than 4%.
								519	26. 55		
									668	31.69	
									815	36. 03	
									975	40. 48	
									1116	44 . 01	
									1285	48.08	
2		362	Schmid, C.	0.064	0.003	0.007	0.890	0. 030	314	19.04	Same remarks as for curve 1.
									368	21.44	
									518	27.06	
									695	33. 30	
									820	37.02	
									974.5	41.13	
									1126	44.85	
									1287	48. 95	
3		362	Schmid, C.	0.060	0. 257	0. 115	0.567	0.001	302	18. 23	Same remarks as for curve 1.
								_	439	23. 82	
									526	26.86	
									653	31.14	
									819	36.27	
									976	40.41	
									1126.3	44, 00	
									1283	47, 77	

TABLE 186-G(C)E. EXPERIMENTAL VISCOSITY DATA AS A FUNCTION OF COMPOSITION FOR GASEOUS AIR-AMMONIA MIXTURES

Cur. No.	Fig. No.	Ref. No.	Author (s)	Temp. (K)	Pressure (atm)	Mole Fraction of NH ₃	Viscosity (N s m ⁻² x 10 ⁻⁶)	Remarks
1	186-G(C)	346	Jung, G. and	288.7		0.000	9.88	Effusion method of Trautz and
			Schmick, H.			0.100	11.00	Weizel; $L_1 = 0.264\%$, $L_2 = 0.571\%$
			•			0.200	12,03	$L_3 = 1.820\%$.
						0.300	13.06	•
						0.400	14.03	
						0.500	14.92	
						0.600	15.75	
						0.700	16.18	
					0.800	17,13		
						0.900	17.64	
						1.000	18.10	

TABLE 186-G(C)S. SMOOTHED VISCOSITY VALUES AS A FUNCTION OF COMPOSITION FOR GASEOUS AIR-AMMONIA MIXTURES

Mole Fraction of NH ₂	(288.7 K) [Ref. 346]
0.00	9. 88
0.05	. 10.46
0.10	11.02
0. 15	11.56
0. 20	12.08
0. 25	12.58
0.30	13.09
0.35	13.58
0.40	14.04
0.45	14.50
0.50	14.94
0.55	15.36
0.60	15.75
0.65	16.13
0.70	16.48
0.75	16.81
0.80	17.13
0,85	17.40
0,90	17.66
0, 95	17.89
1.00	18.10

FIGURE 186-GIC). VISCOSITY AS FUNCTION OF COMPOSITION FOR GASEOUS A AMBIONIA MIXTURES

TABLE 187-C(C)E. EXPERIMENTAL VISCOSITY DATA AS A FUNCTION OF COMPOSITION FOR GASEOUS AIR-HYDROGEN CHLORIDE MIXTURES

Cur. No.	Fig. No.	Ref. No.	Author(s)	Temp. (K)	Pressure (atm)	Mole Fraction of HCl	Viscosity (N s m ⁻² x 10 ⁻⁶)	Remarks
1	187 -G(C)	346	Jung, G. and	289.7		1,000	14.26	Effusion method of Trautz and
	.,	Schmick, H.		0.900	14.89	Weizel: $L_1 = 0.079\%$, $L_2 = 0.109\%$,		
					0.800	15.45	$L_3 = 0.260\%$.	
					0.700	15.92	•	
					0.600	16.38		
					0.500	16.78		
					0.400	17,15		
						0.300	17.49	
						0.200	17.78	
						0.100	18.00	
						0.000	18.18	
2	187-G(C)	346	Jung, G, and	291.3		1.000	14.07	Same remarks as for curve 1 excep
			Schmick, H.			0.800	15.35	$L_1 = 0.169\%$, $L_2 = 0.377\%$, $L_3 =$
			• • • •			0.600	16.16	0. 920%.
						0.400	16.93	
						0.200	17.55	
						0.000	17.94	

TABLE 187-G(C)S. SMOOTHED VISCOSITY VALUES AS A FUNCTION OF COMPOSITION FOR GASEOUS AIR-HYDROGEN CHLORIDE MIXTURES

Mole Fraction of HCl	(289.7 K) [Ref. 346]
0.00	18.19
0.05	18.11
0.10	18.01
0.15	17.90
0.20	17.77
0.25	17.64
0.30	17.49
0.35	17.34
0. 4 0	17.17
0.45	16.99
0.50	16.80
0.55	16.40
0.60	16.38
0.65	16,26
0.70	15.92
0.75	15.67
0.80	15,41
0.85	15.15
0.90	14.87
0.95	14.58
1.00	14.27

FIGURE 187-G(C). VISCOSITY DATA AS A FUNCTION OF COMPOSITION FOR GASEOUS AIR-HYDROGEN CHLORIDE MIXTURES

TABLE 188-G(C)E. EXPERIMENTAL VISCOSITY DATA AS A FUNCTION OF COMPOSITION FOR GASEOUS AIR-HYDROGEN SULFIDE MIXTURES

Cur. No.	Fig. No.	Ref. No.	Author(s)	Temp.	Pressure (atm)	Mole Fraction of H ₂ S	Viscosity (N s m ⁻² x 10 ⁻⁶)	Remarks
1	188-G(C)	346	Jung, G. and	290, 36		1,000	12,60	Effusion method of Trautz and
-	,-,		Schmick, H.			0.900	13.31	Weizel; $L_1 = 0.108\%$, $L_2 = 0.167\%$
		DVALUE, III			0. 800	14.03	$L_1 = 0.339\%$	
					0.700	14.69		
						0.600	15.35	
						0.500	16.03	
						0.400	16.55	•
						0.300	17.09	
					0.200	17.55		
						0.100	17.95	
						0.000	18. 27	

TABLE 188-G(C)S. SMOOTHED VISCOSITY VALUES AS A FUNCTION OF COMPOSITION FOR GASEOUS AIR-HYDROGEN SULFIDE MIXTURES

Mole Fraction of H ₂ S	(2J0,4 K) [Ref. 346]
0.00	18, 27
0.05	18, 13
0.10	19, 95
0.15	17.74
0.20	17.53
0.25	17.30
0.30	17,06
0.35	16.81
0.40	16,55
0.45	16,28
0.50	16.00
0.55	15.70
0.60	15.40
0.65	15,07
0.70	14,74
0.75	14.39
0.80	14.03
0.85	13.68
0.90	13.31
0.95	12.95
1.00	12,60

FIGURE 188-G(C). VISCOSITY DATA AS A FUNCTION OF COMPOSITION FOR GASEOUS AIR-HYDROGEN SULFIDE MIXTURES

References to Data Sources

Ref. No.	TPRC No.	
1	11499	Adzumi, H., "The Flow of Gaseous Mixtures Through Capillaries. I. The Viscosity of Binary Gaseous Mixtures," Bull. Chem. Soc. Japan, 12, 199-226, 1937.
2	9302	Amdur, I. and Mason, E.A., "Properties of Gases at Very High Temperatures," Phys. Fluids, 1, 370-83, 1958.
3	24839	Andrussow, L., "Diffusion, Viscosity and Conductivity of Gases," 2nd ASME Symp. Thermophysical Properties, 279-87, 1962.
4	60183	Barker, J.A., Fock, W., and Smith, F., "Calculation of Gas Transport Properties and the Interaction of Argon Atoms," Phys. Fluids, $\underline{7}$, 897-903, 1964.
5	18203	Baron, J.D., Roof, J.G., and Wells, F.W., "Viscosity of Nitrogen, Methane, Ethane, and Propane at Elevated Temperature and Pressure," J. Chem. Eng. Data, 4, 283-8, 1959.
6	33445	Barua, A.K., Ross, J., and Afzal, M., "Viscosity of Hydrogen, Deuterium, Methane and Carbon Monoxide from -50 C to 150 C below 200 Atmospheres," Project Squid Tech. Rept. BRN-10-P, 21 pp., 1964. [AD429 502]
7	26015	Baumann, P.B., "The Viscosity of Binary Mixtures of Hydrogen with Ether Vapor, Nitrogen and Carbon Monoxide," Heidelberg University Doctoral Dissertation, 52 pp., 1928.
8	9871	Bearden, J.A., "A Precision Determination of the Viscosity of Air," Phys. Rev., <u>56</u> , 1023-40, 1939.
9	5473	Becker, E.W., Misenta, R., and Schmeissner, F., "Viscosity of Gaseous Helium-3 and Helium-4 between 1.3 K and 4.2 K. Quantum Statistics of the Gas-Kinetic Collision at Low Temperatures," Z. Physik, 137, 126-36, 1954.
10	5474	Becker, E.W. and Stehl, O., "Viscosity Difference Between Ortho- and Para-Hydrogen at Low Temperatures," Z. Physik, 133, 615-28, 1952.
11	5475	Becker, E.W. and Misenta, R., "Viscosity of HD and Helium-3 between 14 and 20 K," Z. Physik, 140, 535-9, 1955.
12	23543	Benning, A.F. and McHarness, R.C., "Thermodynamic Properties of Freon 114 Refrigerant CCIF ₂ -CCIF ₂ with Addition of Other Physical Properties," E.I. DuPont de Nemours No. T-114 B, 11 pp., 1944.
13	23546	Benning, A. F. and McHarness, R. C., "Thermodynamic Properties of Freon-113 Trichlorotrifluoromethane CCl ₂ F-CClF ₂ , with Addition of Other Physical Properties," E. I. DuPont de Nemours No. T-113 A, 12 pp., 1938.
14	10260	Benning, A.F. and Markwood, W.H., "The Viscosities of Freon Refrigerants," Refrig. Eng., 37, 243-7, 1939.
15	42454	Bewilogua, L., Handstein, A., and Hoeger, H., "Measurement on Liquid Neon," Cryogenics, $\underline{6}(1)$, 21-4, 1966.
16		Bicher, L.B., Jr. and Katz, D.L., "Viscosities of Natural Gases," Ind. Eng. Chem., 35, p. 754, 1943.
17	9377	Bond, W.N., "Viscosity of Air," Nature, 137, p. 1031, 1936.
18	24607	Bonilla, C.F., Brooks, R.D., and Walker, P.L., "The Viscosity of Steam and Nitrogen at Atmospheric Pressure and High Temperatures," in Proc. of the General Discussion on Heat Transfer, The IME and the ASME, Section II, 167-73, 1951.
19	30818	Boon, J.P. and Thomaes, G., "The Viscosity of Liquefied Gases," Physica, 29, 208-14, 1963.
20	41782	Boon, J.P., Thomaes, G., and Legros, J.C., "The Principle of Corresponding States for the Viscosity of Simple Liquids," Physica, 33(3), 547-57, 1967.
21	25394	Braune, H., Basch, R., and Wentzel, W., "The Viscosity of Some Gases and Vapors. I. Air and Bromine," Z. Phys. Chem., Abt. A, <u>137</u> , 176-92, 1928.
22	7029	Braune, H. and Linke, R., "The Viscosity of Gases and Vapors. III. Influence of the Dipole Moment on the Magnitude of the Sutherland Constant," Z. Physik. Chem., <u>148A</u> , 195-215, 1930.
23	10240	Breitenbach, P., "On the Viscosity of Gases and Their Alteration with Temperature," Ann. Physik, $\underline{5}(4)$, 140-65, 1901.
24	4333	Bresler, S. E. and Landerman, A., "Viscosity of the Liquid Methane and Deuteriomethane," J. Exptl. Theoret. Phys. (USSR), 10(2), 50-1, 1940.
25	10284	Bremond, P., "The Viscosities of Gases at High Temperatures," Comptes Rendus, 196, 1472-4, 1933.
26	337 59	Bruges, E.A., Latto, B., and Ray, A.K., "New Correlations and Tables of the Coefficient of Viscosity of Water and Steam up to 1000 Bar and 1000 C," Int. J. Heat Mass Transfer, 9(5), 465-80, 1966.
27		Bruges, E.A. and Gibson, M.R., "The Viscosity of Compressed Water to 10 Kilobar and Steam to 1500 C," 7th Int. Conf. on Steam, Tokyo Paper B-16, 1968.
28	9360	Buddenberg, J.W. and Wilke, C.R., "Viscosities of Some Mixed Gases," J. Phys. and Colloid Chem., 55, 1491-8, 1951.

Ref. No.	TPRC No.	
29	26122	Carmichael, L.T., Reamer, H.H., and Sage, B.H., "Viscosity of Ammonia at High Pressures," J. Chem. Eng. Data, 8, 400-4, 1963.
30	29494	Carmichael, L.T. and Sage, B.H., "Viscosity of Ethane at High Pressures," J. Chem. Eng. Data, 8, 94-8, 1963.
31	10334	Carmichael, L.T. and Sage, B.H., "Viscosity of Liquid Ammonia at High Pressures," Ind. Eng. Chem. 44, 2728-32, 1952.
32	26167	Carmichael, L.T. and Sage, B.H., "Viscosity of Hydrocarbons. N-Butane," J. Chem. Eng. Data, 8, 612-6, 1963.
33	37900	Carmichael, L.T., Berry, V., and Sage, B.H., "Viscosity of Hydrocarbons, Methane," J. Chem. Eng. Data, 10, 57-61, 1965.
34	10340	Carr, N. L., "Viscosities of Natural-Gas Components and Mixtures," Inst. Gas Technol. Res. Bull. 23, 59 pp., 1953.
35	34426	Chakraborti, P.K. and Gray, P., "Viscosities of Gaseous Mixtures Containing Polar Gases. Mixtures with One Polar Constituent," Trans. Faraday Soc., $\underline{61}(11)$, 2422-34, 1965.
36	24608	Comings, E.W., "Recent Advances in the Use of High Pressures," Ind. Eng. Chem., 39(8), 948-52, 1947.
37	3371	Comings, E.W. and Egly, R.S., "Viscosity of Ethylene and of Carbon Dioxide under Pressure," Ind. Eng. Chem., 33, 1224-9, 1941.
38	24609	Comings, E.W., Mayland, B.J., and Egly, R.S., "Viscosity of Gases at High Pressures," Univ. Illinois Eng. Expt. Sta. Bull. 354, 68 pp., 1944.
39	10148	Coremans, J.M.J., Van Itterbeek, A., Beenakker, J.J.M., Knaap, H.F.P., and Zandbergen, P., "Viscosity of Gaseous Helium, Neon, Hydrogen, and Deuterium below 80 K," Kamerlingh onnes Lab. Leiden Neth. Physica, 24, 557-76, 1958.
40	56153	Coughlin, J., "The Vapor Viscosities of Refrigerants," Purdue Univ. M.S. Thesis, 49 pp., 1953.
41	5455	Craven, P.M. and Lambert, J.D., "The Viscosities of Organic Vapors," Proc. Roy. Soc. (London), A205, 439-49, 1951.
42	36450	Das Gupta, A. and Barua, A.K., "Calculation of the Viscosity of Ammonia at Elevated Pressures," J. Chem. Phys., 42(8), 2849-51, 1965.
43	42183	De Bock, A., Grevendonk, W., and Awouters, H., "Pressure Dependence of the Viscosity of Liquid Argon and Liquid Oxygen, Measured by Means of a Torsionally Vibrating Quartz Crystal," Physica, 34(1), 49-52, 1967.
44	47154	De Bock, A., Grevendonk, W., and Herreman, W., "Shear Viscosity of Liquid Argon," Physica, 37(2), 227-32, 1967.
45	3046	Guimaraes De Carvalho, H., "Variation of Viscosity of Gases with Temperature," Anais Assoc. Quim. Brasil, $\underline{4}$, 79-82, 1945.
46	29692	DiGeronimo, J.P., "Viscosity Correlations of n-Paraffin Hydrocarbons," Newark College of Engineering Newark, N.J., M.S. Thesis, 41 pp., 1960.
47	9812	De Rocco, A.G. and Halford, J.O., "Intermolecular Potentials of Argon, Methane, and Ethane," J. Chem. Phys., <u>28</u> , 1152-4, 1958.
48	36203	Diller, D.E., "Measurements of the Viscosity of Parahydrogen," J. Chem. Phys., 42, 2089-100, 1965.
49	28079	Din, F. (Editor), <u>Thermodynamic Functions of Gases</u> , Ed. Butterworths Scientific Publ., London, Current Edition. s.d.
50	40170	DiPippo, R., Kestin, J., and Whitelaw, J.H., "A High-Temperature Oscillating-Disk Viscometer," Physica, 32, 2064-80, 1966.
51	47413	DiPippo, R., "An Absolute Determination of the Viscosity of Seven Gases to High Temperatures," Brown Univ., Ph.D. Thesis, 106 pp., 1964. [Univ. Micr. 67-2231]
52	30399	Dolan, J.P., Starling, K.E., Lee, A.L., Eakin, B.E., and Ellington, R.T., "Liquid, Gas, and Dense-Fluid Viscosity of Butane," J. Chem. Eng. Data, 8, 396-9, 1963.
53	27243	Eakin, B. E., Starling, K. E., Dolan, J. P., and Ellington, R. T., "Liquid, Gas, and Dense Fluid Viscosity of Ethane," J. Chem. Eng. Data, 7, 33-6, 1962.
54	22432	Edwards, R.S., "The Effect of Temperature on the Viscosity of Neon," Proc. Roy. Soc. (London), A119, 578-90, 1928.
55	7637	Edwards, R.S. and Rankine, A.O., "The Effect of Temperature on the Viscosity of Air," Proc. Roy. Soc. (London), A117, 245-57, 1927.
56	22400	Edwards, R.S. and Worswick, B., "On the Viscosity of Ammonia Gas," Proc. Phys. Soc. London, 38, 16-23, 1925.

Ref. No.	TPRC No.	
57	22310	Eglin, J.M., "Coefficients of Viscosity and Slip of Carbon Dioxide by the Oil Drop Method, and the Law of Motion of an Oil Drop in Carbon Dioxide, Oxygen and Helium at Low Pressures," Phys. Rev., 22, 161-70, 1923.
58	47610	Eisele, E.H., "Determination of Dynamic Viscosity of Several Freon Compounds at Temperatures in the Range 200 F to -200 F," Purdue Univ. M.S. Thesis, 122 pp., 1965.
59	18277	Ellis, C.P. and Raw, C.J.G., "High Temperature Gas Viscosities. II. Nitrogen, Nitric Oxide, Boron Trifluoride, Silicon Tetrafluoride, and Sulfur Hexafluoride," J. Chem. Phys., 30, 574-6, 1959.
60	27768	Esipov, Yu. L. and Gagarin, V.I., "Specific Gravity and Viscosity of Furfural-Water Solutions," Gidrolizn i Lesokhim Prom., 15, 15-16, 1962.
61	3742	Felsing, W.A. and Blankenship, F., "Effect of Pressure on the Viscosity of C ₂ H ₄ ," Proc. OKLA Acad. Sci., <u>24</u> , 90-1, 1944.
62	22612, 17363	Filippova, G.P. and Ishkin, I.P., "The Viscosity of Air and Argon at Temperatures of from 0 to -183 C and Pressures of from 1 to 150 Atmospheres," Kislorod, 12(2), p. 38, 1959; English translation: RTS-1696, N61-15235, 3 pp., 1960.
63	10397	Fisher, W.J., "The Coefficients of Gas Viscosity. II," Phys. Rev., 28, 73-106, 1909.
64	24080	Flynn, G.P., Hanks, R.V., LeMaire, N.A., and Ross, J., "Viscosity of Nitrogen, Helium, Neon, and Argon from -78.5 to 100 C below 200 Atmospheres," J. Chem. Phys., 38, 154-62, 1963. [AD 294 401]
65	23179, 32116	Forster, S., "Viscosity Measurements in Liquid Neon, Argon, and Nitrogen," Monatsber. Deut. Akad. Wiss. Berlin, 5(10), 695-60, 1963; English translation: Cryogenics, 3, 176-7, 1963.
66	6735	Fortier, A., "Viscosity of Gases and Sutherland's Constant," Compt. Rend., 203, 711-2, 1936.
67	14832	Fortier, A., "The Viscosity of Air and Gases," Publ. Sci. et Tech. du Ministere de l'Air, No. 111, 74 pp., 1937.
68	6734	Fortier, A., "The Viscosity of Air and the Electronic Charge," Compt. Rend. Acad. Sci., 208, 506-7, 1939.
69	5437, 21126	Galkov, G.1. and Gerf, S.F., "Viscosity of Liquefied Pure Gases and their Mixtures II," J. Tech. Phys. (USSR), 11, 613-6, 1941; English translation: SLA 61-18003, 4 pp., 1961.
70	5434, 21037	Gerf, S. F. and Galkov, G. I., "Viscosity of Liquefied Pure Gases and Their Mixtures," J. Tech. Phys. (USSR), 10, 725-32, 1940; English translation: N61-18004, 8 pp., 1961.
71	330 59	Giddings, J.G., "The Viscosity of Light Hydrocarbon Mixtures at High Pressures. The Methane- Propane System," Rice Univ., Houston, Texas, Ph.D. Thesis, 202 pp., 1964.
72	39467	Giddings, J. G., Kao, J. T. F., and Kobayashi, R., "Development of a High-Pressure Capillary-Tube Viscometer and its Application to Methane, Propane, and Their Mixtures in the Gaseous and Liquid Regions," J. Chem. Phys., 45, 578-86, 1966.
73	10396	Gilchrist, L., "An Absolute Determination of the Viscosity of Air," Phys. Rev., 1, 124-40, 1913.
74	8361	Gille, A., "The Coefficient of Viscosity for Mixtures of Helium and Hydrogen," Ann. Physik, 48, 799-837, 1915.
75	32097	Gnapp, J.I., "Extrapolation of Viscosity Data for Liquids," Newark College of Engineering, M.S. Thesis, 124 pp., 1961.
76	7215	Golubev, I.F., "The Viscosity of Gases and Gaseous Mixtures at High Pressures. I," J. Tech. Phys., USSR, 8, 1932-7, 1938.
77	42489	Golubev, I. F. and Gnezdilov, N. E., "Viscosity of Helium and Helium-Hydrogen Mixtures up to 250 and 500 kg/cm² Pressure," Gazov. Promy., 10(12), 38-42, 1965.
78	33226	Gonzalez, M.H. and Lee, A.L., "Viscosity of Isobutane," J. Chem. Eng. Data, 11, 357-9, 1966.
79	521 96	Gordon, D.T., "The Measurements and Analysis of Liquid Viscosity Data for Eight Freon Refrigerants," Purdue Univ., M.S. Thesis, 108 pp., 1968.
80		Graham, T., "On the Motion of Gases," Phil. Trans. Roy. Soc. (London), 136, 573-632, 1846.
81	24638	Grindlay, J. H. and Gibson, A. H., "In the Frictional Resistance to the Flow of Air through a Pipe," Proc. Roy. Soc. (London), A80, 114-39, 1908.
82	34248	Guevara, F.A. and Wagner, W.E., "Measurement of Helium and Hydrogen Viscosities to 2340 K," NASA LA-3319 and CFSTI N65-33510, 41 pp., 1965.
83	22850	Guenther, P., "Viscosity of Gases at Low Temperatures," Z. Physik. Chem., 110, 626-36, 1924.
84	22645	Guenther, P., "The Viscosity of Hydrogen at Low Temperatures," Sitz preuss Akad., 720-8, 1920.
85	48301	Hanley, H.J.M. and Childs, G.E., "Discrepancies between Viscosity Data for Simple Gases," Science, 159 (3819), 1114-7, 1968.
86	10415	Hogg, J. L., "Viscosity of Air," Proc. Amer. Acad. Arts and Sci., 40, 611-26, 1905.
87	10405	Houston, W.V., "The Viscosity of Air," Phys. Rev., <u>52</u> , 751-7, 1937.
	20645	Human F. T. S. Swift C. W. and Vinner F. Hillershiles of Matheman and Thomas at Law Manuscrations

Huang, E. T.S., Swift, G.W., and Kurata, F., "Viacosities of Methane and Propane at Low Temperatures and High Pressures," A.I. Ch. E. J., 12(5), 932-6, 1966.

The state of the s

Heds.	Salar Salar	
•	*****	Spitialis. V "Productively, and Characterism and of the Hadron-Milliton Law Company in the 1986-1994, Market "
400	W ith	Treamatics, 18 "Wannesterment of Klassenstiten of Games of High Presenters II. Klassenstit of Aug of Ma, time, and time." British C. "Helentific Bagains Brownist Man. Districts Care. Augus, 5., 207-25., time;
₩£;	THE IT	Honorable, Mr. and Maretta, B., "Blo Missourity of Augus-Multium Mitchards," (Montes), 🚉, 1866-72, 1880.
462	WHATE	Dissentiti, M., Mantille, S., and Segmittine, A., "Kinentile of Augus-American Ministra Mr. Strin-Mr., 1986.
₩>	27 1667 .	Strengths, W., Marchin, B., and Neggedismes, B., "The Wisconsin of August-Augustoness Minimum," Militer to the Minimum of August-Augus-August-Augus-August-August-Augus-August-August-Augus-August-August-Augus-Augus-Augus
944	建筑地	Symposis, Mr. and Delinitaritis, Mr., "The Kinnesith of Mathema at High Presenters," Houge Hoggits, Counts. Ingain, \$2000, 909-25, 1986
47 1.	M ART.	Burkann, W., M., 'Minecasten of the Strany Che Minesano, Medium-Christian Process and Hillydres-August, ' P., Mine, Chem., M., Philiphan, 1988.
*** .	MALE!	Hallom, M. H "The Missourity of Galaxiel Michigan," Com. 1. Hannagett, 1775, 221-4, 1880.
#	以 轮廓 。	Substantion, M. S., and (47:335), (5.85), "Xiponosisson of Capitary Manacesto, Maissan, Youss, and Magnes Sussanan 40-466-465 Conflictuate of Xiponosis," S. Wyon Chare, Michigan, (48:46), 1862.
394	Philips B	Statemeters, M. S., and Mark Bushess, M. S "Managemeters of recognitive department department between the last decision from the last
***	400	Haltematory, M. G Mantory, M. M., west Garmany, M. M "Kinerunsteen of Aug agel Viteragen at Gore Garmanians." NAMEA CA 2006. 22 (8) 1865.
1116	\$7.4 43	Bannes, B. D., ., Wiles, G. E., and Michiga, G "The Alexander of Many Milhelmore in the Penne Gamesia- and Gigand Minnes. " S. E. & R., E.,
ųr.	i januti 19	Maurida, K., "Klassenskie uit Flamskie Can die Kore desagestatures." Halt. Cheer, 100., 1030a., 💯, 1615-76, 1887.
ting	以如 以	Navenesse, W. Nr. agel Navenesse, Br.Nr., "Winnesstyn of Hyellengen, Vagous," (Physician, 2., 286–182, 1894).
:UH:	ti tilletti ?	Historicans, W. M., mail: MacMinot, G. R., "The Vincensian of Mediagram Vignor," (President, 3, 798-38), 18810.
ti ller	4725	Microedistrones, (4.,, "Tittle-Kinnessige of their united francours of h-Mi-lay (1997), their, their tests. How, J. 27/2/20), h-kits, their.
tinė,	设 相称,	Maidintenance, (G.,., "Mothe-unca Physics" (A. Nors-Butterressandous of the Minerality of Ace by the Mutabing-Cylinder- Monthest, " Polis, Mang., 35,, 1660-776, 1864;
11,000	ų ilo kių	Markinsoners, Mail, "Minerunsin of Just week the Aboutmouse Changes," Manages, <u>USB</u> , 6182-1, 1816.
tier.		Manamatanama, M. Mr., wind Chantemanitaria, A. Mr., "'Thurressal Programtion of House Hydrocomologous at High Decorpora- attaction," Depticible. Kins. Decorp., j. 7886-7., Utilila, Bugitails tenantiations. High Decorp., j. 1672-7., Utilila.
:UP		Manadam, S., anna Guardennikovan, W.,, "Manamatik vil Madanam," Manadam, 🏰, 1877-18, 1879-18.
199	LENGTH OF	Mannisten, 11. annil Sanishmilleanis, W, "Philippilate Deterministration of the Wignessian of 151 (Agence 10 our a Manage of Processians)." Physician, 25, 14530-462, 1868.
tiu.	4(164)	Mondan, D., and Leidenskout, W.,., "The Effect of Modernia Processes on the Viscousty of Street, " In Discounting and Transmist Processing of Charge, Educate and Solids Street, Modern May 1823 - 10, 1823 - 10, 1835.
йµй	12.000	Minotine, Jr., and Mingenhimee, Ar., "The Armenists of the Sections of Minitegree and New Sections." Branch Minite Committee and Minitegree Minited Sections. But the Ministry Beauty Section 1988 - 1
tu:	t jir77 5;	Minorith, E., and Bilintersylls, M., "Minopersonant of the Kincensip of Fiser Gapes at Historical Pressurates the the Gasting Could Medical." Trump. ASMAR., 28s., 440-48s., 1886.
tit?		Mandin, S. and Birlinskipen, P. D., "The Vincentip of Vigorofestant dumm: up to 275 C. A Bullinoi: Outstructuration," S. Hoge Committee, MC, alth-202, 1885s
h in in	學(務	Mandin, S., and Wang, M.R., "The Viscosite of Sine Glass. A Sectionism." Drawn Addit, 19, 118 7, 1866.
this.	1000	Manness, A., and Wang, B. B., ""The Vignosity of Pine Granes A for Bundanesses, "Action West 1972, A.Phones The Me-An, 在1980, UNIO, (AD)(BA)(1)
t; 1:10	\$0 7 7	Manifella, A. work Wangs, M. G * Viscounting of Sugarithmetical Statem van to: 原籍 (Pagerwans, * Physician). 違。 1775-464 1886s.
HM?	TOMAS.	Mandin, A., and Whiteler, A.A., "A Delative Enterprination of the Viscousip of Several Gyers to the Guellana, Bull Madinis, "Planton, 强, 306-86, 1886, 1888, 1888; 1714:
ti igre	AGENÇE.	Haustin, A., and Whiteleyn, A.M., "Stock interestance Conference on the Programton of Stocks - Discoupers." Despuis up. Supportion of Water Substance." Despuis up. Million up. Support. Support. Sp. Un. 40-186.
排	100 de par	Houselder, A., and Whitelester, A.M., "The Wisesestle of Day and Humal Astr." Project Squit Deals. Proje

TPRC Ref. No. No. 120 37448 Kestin, J. and Whitelaw, J.H., "The Viscosity of Dry and Humid Air," Int. J. Heat Mass Transfer, 7, 1245-55, 1964. 121 10637 Keyes, F.G., "The Heat Conductivity, Viscosity, Specific Heat and Prandtl Numbers for Thirteen Gases," Project Squid Tech. Rept. 37, 33 pp., 1952. [AD 167 173] Keyes, F.G., "Summary of Measured Thermal Conductivities and Values of Viscosities. Transport 122 24649 Properties in Gases," in Proc. Second Biennial Gas Dynamics Symposium, Northwestern Univ. Press, 51-4, 1958. 123 57313 Kinser, R.E., "Viscosity of Several Fluorinated Hydrocarbons in the Liquid Phase," Purdue Univ. M.S. Thesis, 54 pp., 1956. Kiyama, R. and Makita, T., "The Viscosity of Carbon Dioxide, Ammonia, Acetylene, Argon, and Oxygen 124 7667 under High Pressure," Rev. Phys. Chem. Japan, 22, 49-58, 1952. 125 2993 Kiyama, R. and Makita, T., "An Improved Viscometer for Compressed Gases and the Viscosity of Oxygen," Rev. Phys. Chem. Japan, 26(2), 70-4, 1956. 126 22179 Klemenc, A. and Remi, W., "Experimental Investigation of the Viscosity of Nitric Oxide, Propane and their Mixtures with Hydrogen, "Monatsh. Chemie, 44, 307-16, 1924. Kompaneets, V.Ya., "Experimental Determination of the Viscosity of Gases and Gaseous Mixtures at High Temperatures," Sbornik Nauch. Rabot Leningrad Inst. Mekhanizatsii Sel'sk. Khoz., 9, 113-26, 127 5397 1953. 128 Kopsch, W., "The Coefficient of Viscosity of Hydrogen and Argon at Low Temperatures," Halle, Germany, Dissertation, 1909. 28213 Krueger, S., "A Correlation of Viscosity of n-Paraffin Hydrocarbons," Newark College of Engrg., 129 Newark, N.J., M.S. Thesis, 68 pp., 1963. Kuenen, J.P. and Visser, S.W., "The Viscosity of Normal Butane Vapor," Verslag Gewone Vergader. 130 24631 Afdeel, Natuurk., Ned. Akad. Wetenschap., 22, 336-43, 1913. 25376 Kundt. A. and Warburg, E., "The Viscosity and Thermal Conductivity of Rarefied Gases," Pogg. Ann., 131 <u>155</u>, 525-50, 1875. Kuss, E., "High-Pressure Research. II. Viscosity of Compressed Gases," Z. Angew Physik, 4, 203-7, 132 2343 1952. 133 1117 Lambert, J.D., Cotton, K.J., Pailthorpe, M.W., Robinson, A.M., Scrivins, J., Vale, W.R.F., and Young, R.M., "Transport Properties of Gaseous Hydrocarbons," Proc. Roy. Soc. (London), 231, 280-90, 1955. Latto, B., "The Viscosity of Steam at Atmospheric Pressure," Mechanical Engr. Dept., Glasgow Univ. 134 35257 Ph. D. Thesis, 207 pp., 1965. 135 36265 Latto, B., "Viscosity of Steam at Atmospheric Pressure," Intern. J. Heat Mass Transfer, 8, 689-720, 1965. 59509 136 Latto, B. and Cal-Salvum, A.J., "Absolute Viscosity of CCl, F, and ChCl, F," J. Mech. Engng. Sci., <u>12(2)</u>, 135-42, 1970. 137 58068 Latto, B., Hesoun, P., and Asrani, S.C., "Absolute Viscosity and Molecular Parameter for R13, R500, R12, and R22," in 5th ASME Symp. on Thermophys. Properties, ASME, N.Y., 177-85, 1970. Lazarre, F. and Vodar, B., "Determination of the Viscosity of Nitrogen Compressed up to 3000 kg/cm2," 5394 138 Compt. Rend. Acad. Sci., 243, 487-9, 1956. Leipunskii, O.I., "The Viscosity of Compressed Gases," Acta Phys. (USSR), 18, 172-82, 1943. 139 5393 Lilios, N., "The Viscosities of Several Liquid Refrigerants at Atmospheric Pressure," Purdue Univ. 140 51487 M.S. Thesis, 72 pp., 1957. Linke, R., "The Viscosities of the Freon Compounds and of MeCl in the Liquid and Gaseous States," 141 5388 Warme-Kalte-Tech., 44, 52-3, 1942. 142 5387 Lipkin, M.R., "Viscosity of Propane, Butane and Isobutane," Ind. Eng. Chem., 34, 976-8, 1942. McCullum, R.G., "High Temperature Viscosity Measurement of Fluorinated Hydrocarbon Compounds 24630 143 in the Vapor Phase," Purdue Univ. M.S. Thesis, 84 pp., 1958. 20993 McCoubrey, J. C. and Singh, N. M., "Intermolecular Forces in Quasi-Spherical Molecules. 11," Trans. 144 Faraday Soc., <u>55</u>, 1826-30, 1959. 145 8867 McCoubrey, J.C. and Singh, N.M., "Intermolecular Forces in Quasi-Spherical Molecules," Trans. Faraday Soc., 53, 877-83, 1957. 146 Majumdar, V.D. and Oka, V.S., "Atomic Function of Some Gases in the Light of Revised Viscosity 5383 Determinations," J. Univ. Bombay, <u>17A(5)</u>, 35-40, 1949. Majumdar, V.D. and Vajifdar, M.B.; "Coefficient of Viscosity of Air," Proc. Ind. Acad. Sci., 8A, 147 7634

Makavetskas, R.A., Popov, V.N., and Tsederberg, N.V., "Experimental Study of the Viscosity of Helium and Nitrogen," Teplofiz. Vys. Temp., $\underline{1}(2)$, 191-7, 1963; English translation: High Temp.,

171-8, 1938.

1(2), 169-75, 1963.

148

23177, 23178

Ref. No.	TPRC No.	
149	2492	Makita, T., "The Viscosity of Freens under Pressure," Rev. Phys. Chem. Japan, 24, 74-80, 1954.
150	5382	Makita, T., "Viscosity of Gases under High Pressure," Mem. Fac. Ind. Arts, Kyoto Tech. Univ. Sci. and Technol., No. 4, 19-35, 1955.
151	6611	Makita, T., 'The Viscosity of Argon, Nitrogen and Air at Pressures up to 800 kg/cm to the Second Power,'' Rev. Phys. Chem. Japan, <u>27</u> , 16-21, 1957.
152	24635	Markowski, H., "The Viscosity of Oxygen, Hydrogen, Chemical and Atmospheric Nitrogen and Its Change with Temperature," Ann. Physik, $\underline{14}(4)$, 742-5, 1904.
153	4302	Mason, S.G. and Maass, O., "Measurement of Viscosity in the Critical Region. Ethylene," Can. J. Research, <u>18B</u> , 128-37, 1940.
154	5377	Michels, A., Botzen, A., and Schuurman, W., "The Viscosity of Argon at Pressures up to 2000 Atmospheres," Physica, XX, 1141-8, 1954.
155	5375	Michels, A., Schipper, A.C.J., and Rintoul, W.H., "The Viscosity of Hydrogen and Deuterium at Pressures up to 2000 Atmospheres," Physica, <u>19</u> , 1011-28, 1953.
156		Miyabe, K. and Nishikawa, K., "Correlation of Viscosity for Water and Water Vapor," 7th Int. Conf. on Prop. of Steam, Tokyo, Paper B-6, 1968.
157	19208	Monchick, L., "Collision Integrals for the Exponential Repulsive Potential," Phys. Fluids, 2, 695-700, 1959.
158	6728	Naiki, T., Hanai, T., and Shimizu, S., "Measurement of the Viscosity of Liquid Air," Bull. Inst. Chem. Research, Kyoto Univ., 31(1), 56-8, 1953.
15 9	21674	Nasini, A. and Rossi, C., "Viscosity of Rare Gases," Gazz. Chim. Ital., 58, 433-42, 1928.
160	57430	Neduzhii, I.A. and Khmara, Yu.I., "Experimental Investigation of the Liquid Viscosity of Propylene, Isobutylene, Butadiene-1,3, Toluol, and Cyclohexane," Teplofiz. Kharakteristiki Veshchestv. GSSSD Moskow, 158-60, 1968; English translation: TT69-55091, 158-60, 1970.
161	9016, 9137	Novikov, I.I., "Some Relationships for Viscosity and Thermal Conductivity of Liquids and Gases," Atomnay energiya, 2, 468-9, 1957; English translation: J. Nucl. Energy, 6(4), p. 370, 1958.
162	9966	Onnes, H.K., Dorsman, C., and Weber, S., "The Viscosity of Gases at Low Temperatures. 1. Hydrogen, Verslag Koninkl. ned Akad Wetenschap., 21, 1375-84, 1913.
163	41443	Gorrell, J.H., Jr. and Bubois, J.T., "Viscosity and Intermolecular Potentials of Hydrogen Sulphide, Sulphur Dioxide and Ammonia," Trans. Faraday Soc., <u>63</u> , 347-54, 1967. [AD656156]
164	24613	Phillips, P., "The Viscosity of Carbon Dioxide," Proc. Roy. Soc. (London), 87, 48-61, 1912.
165	5305	Rietveld, A.O., Van Itterbeek, A., and Van den Berg, G.J., "Coefficient of Viscosity of Gases and Gas Mixtures at Low Temperatures," Physica, <u>19</u> , 517-24, 1953.
166	57384	Phillips, T.W. and Murphy, K.P., "Liquid Viscosity of Halocarbons," J. Chem. Eng. Data, <u>15</u> (2), 304-7, 1970.
167		Pinevich, G., "Viscosity of Water-Ammonia Solutions and of Liquid Ammonia," Refrig. Tech. (Moscow), 20, p. 30, 1948.
168	4307	Pleskov, V.A. and Igamberdyev, I., "Viscosity of Mixtures of Ammonia and Water at 20 C," J. Phys. Chem. USSR, 13, 701-2, 1939.
169	20633	Rankine, A.O., "On the Viscosities of the Gases of the Argon Group," Proc. Roy. Soc., <u>83</u> , 516-25, 1910.
170	24614	Rankine, A.O., "On the Variation with Temperature of the Viscosities of the Gases of the Argon Group," Proc. Roy. Soc., <u>84</u> , 181-92, 1910.
171	25389	Rankine, A.O., "The Viscosity of Gases of the Argon Group," Physik. Z., 11, 491-502, 1910.
172	253 9 0	Rankine, A.O., "On the Variation with Temperature of the Viscosities of the Gases on the Argon Group," Physik. Z., <u>11</u> , 745-52, 1910.
173	24615	Rankine, A.O., "One a Method of Measuring of Viscosity of Vapors of Volatile Liquids. An Application to Bromine," Proc. Roy. Soc., A88, 575-88, 1913.
174	2252 9	Rankine, A.O. and Smith, C.J., "The Viscosities and Molecular Dimensions of Methane, Sulfuretted Hydrogen and Cyanogen," Phil. Mag., 42, 615-20, 1921.
175	24643	Rappenecker, K., "The Viscosity Coefficients of Vapors and their Dependence on the Temperature," Z. Phys. Chem., 72, 695-722, 1910.
176	6918	Raw, C.J.G. and Ellis, C.P., "High-Temperature Gas Viscosities. I. Nitrous Oxide and and Oxygen," J. Chem. Phys., <u>28</u> , 1198-200, 1958.
177	8577	Reed, J. F. and Rabinovitch, B.S., "Viscosities of Fluorinated Methyl Bromides and Chlorides," J. Chem. Eng. Data, 2, p. 75, 1987.
178	8808	Rietveld, A.O. and Van Itterbeek, A., "Viscosity of Mixtures of H_2 and HD between 300 and 14 K," Physica, 23, 838-42, 1987.

Ref. No.	TPRC No.	
179	15721	Rietveld, A.O., Van Itterbeek, A., and Velds, C.A., "Viscosity of Binary Mixtures of Hydrogen Isotopes and Mixtures of He and Ne," Physica, 25, 205-16, 1959.
180	7196	Rietveld, A.O. and Van Itterbeek, A., "Measurements of the Viscosity of Ne-A Mixtures between 300 and 70 K," Physica, 22, 785-90, 1956.
181	5305	Rietveld, A.O., Van Itterbeek, A., and Van den Berg, G.J., "Measurements on the Viscosity of Mixtures of He and Argon," Physica, 19, 517-24, 1953.
182	33954	Rigby, M. and Smith, E.B., "Viscosities of the Inert Gases," Trans. Faraday Soc., 62, 54-8, 1966.
183	7194	Rigden, P.J., "The Viscosity of Air, Oxygen, and Nitrogen," Phil. Mag., 25, 961-81, 1938.
184	50238	Riley, V.J., "The Viscosity of Liquid Freon 11 and Freon 22 at Temperatures to -110 C," Purdue Univ. M.S. Thesis, 97 pp., 1962.
185		Rivkin, S.L., "Equations of Thermal Conductivity and Dynamic Viscosity of Water Substance," 7th Int. Conference on Prop. of Steam, Tokyo, Paper B-10, 33 pp., 1968.
186	6673	Ross, J. F. and Brown, G. M., "Viscosities of Gases at High Pressures," Ind. Eng. Chem., 49, 2026-33, 1957.
187	32722 23676	Rudenko, N.S., "Viscosity of Liquid Hydrogen and Deuterium," Zh. Fiz. Khim., 37(12), 2761-2, 1963; English translation: Russ. J. Phys. Chem., 37(12), 1493-4, 1963.
188	5300	Rudenko, N.S., "Viscosity of Liquid O_2 , N_2 , CH_4 , C_2H_4 , and Air, "J. Expt'l. Theor. Phys. USSR, $\underline{9}$, 1078-80, 1939.
189	9888	Rudenko, N.S. and Shubnikov, L.V., "The Viscosity of Liquid Nitrogen, Carbon Monoxide, Argon, and Oxygen in Dependency of Temperature," Phys. Z. Sowjetunion, 6, 470-7, 1934.
190	14159	Sage, B.H. and Lacey, W.N., "Effect of Pressure Upon Viscosity of Air, Methane and Two Natural Gases," Am. Inst. Mining Met. Engrs., Tech. Pub. 845, 16 pp., 1937.
191	11722	Sage, B.H., Yale, W.D., and Lacey, W.N., "Effect of Pressure on Viscosity of Butane and i-Butane," Ind. Eng. Chem., 31, 223-6, 1939.
192	11714	Sage, B.H. and Lacey, W.N., "Viscosity of Hydrocarbon Solutions. Viscosity of Liquid and Gaseous Propane," Ind. Eng. Chem., <u>30</u> , 829-34, 1938.
193	31581	Schmitt, K., "The Viscosity of Some Gases and Gas Mixtures at Different Temperatures," Ann. Physik, 30, 393-410, 1909.
194	25383	Schultze, H., "The Viscosity of Argon and Its Change with Temperature," Ann. Physik, $\underline{5}(4)$, 140-65, 1901.
195	25382	Schultze, H., "The Viscosity of Helium and Its Change with the Temperature," Ann. Physik, $\underline{6}$, 302-14, 1901.
196	20027	Senftleben, H., "Measurements of Physical Gas Constants," Arch. Eisenhuttenw., 31, 709-10, 1960.
197	11660, 10303	Shifrin, A.S., "Viscosity of Steam at Atmospheric Pressure," Teploenergetika, $\underline{6}(9)$, 22-7, 1959; English translation: MDF-S-142, 10 pp., 1959.
198	7195	Shilling, W.G. and Laxton, A.E., "The Effect of Temperature on the Viscosity of Air," Phil. Mag., 10, 721-33, 1930.
199	21093	Shimotake, H., "Viscosity of Ammonia in the Dense-Phase Region Pressures Up to 500° Lb./Sq. In. and Temperatures of 100, 150, and 200 Degrees," Univ. Micro. Publ. No. 60-4795, 84 pp., 1960.
200	5292	Smith, A.S. and Brown, G.G., "Correlating Fluid Viscosity," Ind. Eng. Chem., 35, 705-11, 1943.
201	16316	Smith, C.J., "XXIII. An Experimental Comparison of the Viscous Properties of (A) Carbon Dioxide and Nitrous Oxide, (B) Nitrogen and Carbon Monoxide," Proc. Phys. Soc. (London), 34, 155-64, 1922.
202	16910	Stakelbeck, H., "The Viscosities of Various Refrigerants in the Liquid and Vapor States and Their Dependence on Pressure and Temperature," Z. Ges. Kalte-Ind., 40, 33-40, 1933.
203	32009	Starling, K.E. and Ellington, R.T., "Viscosity Correlations for Nonpolar Dense Fluids," A.I.Ch.E. J., 10, 11-5, 1964.
204	25715	Starling, K.E., Eakin, B.E., and Ellington, R.T., "Liquid, Gas, and Dense-Fluid Viscosity of Propane," A.I.Ch.E. J., <u>6</u> , 438-42, 1960.
205	9865	States, M.N., "The Coefficient of Viscosity of Helium and the Coefficients of Slip of Helium and Oxygen by the Constant Deflection Method," Phys. Rev., <u>21</u> , 662-71, 1923.
206	26017	Stauf, F.W., "The Viscosity of Ethylene and Its Mixtures with Hydrogen," Heidelberg Univ. Doctoral Dissertation, 34 pp., 1927.
207	27872	Stiel, L.I. and Thodos, G., "The Viscosity of Polar Gases at Normal Pressures," A.I.Ch. E. J., 8, 229-32, 1962.
208	67 29	Sutherland, B.P. and Mass, O., "Measurement of the Viscosity of Gases Over a Large Temperature Range," Can. J. Research, 6, 428-43, 1932.

Swift, G.W., Lohrenz, J., and Kurata, F., "Liquid Viscosities Above the Normal Boiling Point for Methane, Ethane, Propane and n-Butane, "A.I.Ch. E. J., 6, 415-9, 1960.

Ref. No.	TPRC No.	
210		Tanishita, I., Watanabe, K., and Oguchi, K., "Formulation of Viscosity for Water Substance as a Function of Temperature and Density," 7th Int. Conf. on Prop. of Steam, Tokyo, Paper B-7, 1968.
211	25392	Tanzler, P., "The Coefficient of Viscosity for Mixtures of Argon and Helium," Verhandl. deut. Physik. Ges., <u>8</u> , 222-35, 1906.
212	25379	Thomsen, E., "The Viscosity of Gas Mixtures," Ann. Physik., 36, 815-33, 1911.
213	30962	Thornton, E. and Baker, W.A.D., "Viscosity and Thermal Conductivity of Binary Gas Mixtures: Argon-Neon, Argon-Helium, and Neon-Helium," Proc. Phys. Soc., <u>80</u> , 1171-5, 1962.
214	24859	Thornton, E., "Viscosity of Binary Mixtures of Rare Gases," in Progr. in International Research on Thermodynamic and Transport Properties, Academic Press, 527-9, 1962.
215	12175	Titani, T., "Viscosity of Vapors of Organic Compounds. III," Bull. Chem. Soc. Japan, 8, 255-76, 1933.
216	21501	Titani, T., "Viscosity of Vapours of Organic Compounds, Part I," Bull. Inst. Phys. Chem. Res. Japan, 8, 433-60, 1929.
217	24636	Tomlinson, H., "The Coefficient of Viscosity of Air," Phil. Trans. Roy. Soc. (London), 177(2), 767-89, 1886.
218	33119	Trappeniers, N.J., Botzen, A., Van den Berg, H.R., and Van Oosten, J., "The Viscosity of Neonbetween 25 C and 75 C at Pressures up to 1800 Atmospheres," Physica, 30, 985-96, 1964.
219	5335	Trautz, M., "The Applicability of the Uniformity Principle of Kamerlingh-Onnes to the Estimation of Viscosities," J. Prakt. Chem., 162, 218-23, 1943.
220	15506	Trautz, M. and Baumann, P.B., "Viscosity, Heat Conductivity and Diffusion in Gaseous Mixtures. II. The Viscosities of Hydrogen, Nitrogen, and Hydrogen-Carbon Monoxide Mixtures," Ann. Physik., 2, 733-6, 1929.
221	8354	Trautz, M. and Binkele, H.E., "Viscosity, Heat Conductivity, and Diffusion in Gaseous Mixtures. VIII. The Viscosity of Hydrogen, Helium, Neon, Argon, and their Binary Mixtures," Ann. Physik, 5, 561-80, 1930.
222	6713	Trautz, M. and Heberling, R., "Viscosity, Heat Conductivity and Diffusion in Gas Mixtures. XVII. The Viscosity of Ammonia and its Mixtures with Hydrogen, Nitrogen, Oxygen, Ethylene," Ann. Physik., 10, 155-77, 1931.
223	13313	Trautz, M. and Kipphan, K.F., "Viscosity, Heat Conductivity and Diffusion in Gaseous Mixtures. IV. The Viscosity of Binary and Ternary Mixtures of Noble Gases," Ann. Physik, 2, 743-8, 1929.
224	13869	Trautz, M. and Husseini, I., "Viscosity, Heat Conductivity, and Diffusion in Gaseous Mixtures. XXVI. The Viscosity of Propylene and Beta-Butylene and of Their Mixtures with Helium of Hydrogen," Ann. Physik, 20, 121-6, 1934.
225	13870	Trautz, M. and Ruf, F., "Viscosity, Heat Conductivity and Diffusion in Gaseous Mixtures. XVII. The Viscosity of Chlorine and of Hydrogen Iodide. A Test of Methods of Viscosity Measurements on Corrosive Gases," Ann. Physik, 20, 127-34, 1934.
226	15507	Trautz, M. and Ludesigs, W., "Viscosity, Heat Conductivity, and Diffusion in Gaseous Mixtures. VI. Viscosity Determinations on Pure Gases by Direct Measurement and by Measurements on their Mixtures," Ann. Physik, 3, 409-28, 1929.
227	15509	Trautz, M. and Melster, A., "Viscosity, Heat Conductivity and Diffusion in Gaseous Mixtures. XI. The Viscosity of Hydrogen, Nitrogen, Carbon Monoxide, Ethylene, Oxygen Mixtures," Ann. Physik, 7(5), 409-26, 1930.
228	25381	Trautz, M. and Narath, A., "The Viscosity of Gas Mixtures," Ann. Physik, 79, 637-72, 1926.
229	21421	Trautz, M. and Sorg, K.G., "Viscosity, Heat Conductivity, and Diffusion in Gaseous Mixtures. XVI. The Viscosity of Hydrogen, Methane, Ethane, Propane, and their Binary Mixtures," Ann. Physik, 10, 81-96, 1931.
230	21409	Trautz, M. and Stauf, F.W., "Viscosity, Heat Conductivity, and Diffusion in Gaseous Mixtures. III. The Viscosity of Hydrogen-Ethylene Mixtures," Ann. Physik, 2(5), 737-42, 1929.
231	21402	Trautz, M. and Weizel, W., "Determination of the Viscosity of Sulfur Dioxide and its Mixtures with Hydrogen," Ann. Physik, 78, 305-69, 1925.
232	8358	Trautz, M. and Zimmerman, H., "The Viscosity, Heat Conductivity and Diffusion in Gaseous Mixtures. XXX. The Viscowity at Low Temperatures of Hydrogen, Helium and Neon and their Binary Mixtures Down to 90 Abs.," Ann. Physik, 22(5), 189-93, 1935.
233	8355	Trautz, M. and Zink, R., "Viscosity, Heat Conductivity and Diffusion in Gaseous Mixtures. XII. Viscosity of Gases at High Temperatures," Ann. Physik, 7(5), 427-52, 1930.
234	21419	Trautz, M. and Kwiz, F., "Viscosity, Heat Conductivity, and Diffusion in Gaseous Mixtures. XV. The Viscosity of Hydrogen, Nitrous Oxide, Carbon Dioxide, and Propane and their Binary Mixtures," Ann. Physik, 9, 981-1003, 1931.

Tsui, C.Y., "Viscosity Measurements for Several Fluorisated Hydrocarbon Vapors at Elevated Pressures and Temperatures," Purdue Univ. M.S. Thesis, 95 pp., 1959.

Ref. No.	TPRC	
236	6824	Uchiyama, H., "Viscosity of Gases at Atmospheric Pressure," Chem. Eng. Japan, 19, 342-8, 1955.
237	13454	Van Cleave, A.B. and Maass, O., "The Variation of the Viscosity of Gases with Temperature Over a Large Temperature Range," Can. J. Research, <u>13B</u> , 140-8, 1935.
238	25146	Van Dyke, K.S., "The Coefficients of Viscosity of Slip of Air and of Carbon Dioxide by the Rotating Cylinder Method," Phys. Rev., <u>21</u> , 250-65, 1923.
239	5478	Van Itterbeek, A. and van Paemel, O., "Determination of the Viscosity of Liquid Hydrogen and Deuterium, Physica, 8, 133-43, 1941.
240	40172	Van Itterbeek, A., "Viscosity of Liquefied Gases at Pressures between 1 and 100 Atmospheres," Physica, $32(11)$, 2171-2, 1966.
241	3383 9	Van Itterbeek, A., "Viscosity of Liquefied Gases at Pressure Above 1 Atmosphere," Physica, $\underline{32}(2)$, 489-93, 1966.
242	4766	Van Itterbeek, A., "Viscosity of Light and Heavy Methane Between 322 K and 90 K," Physica, 7, 831-7, 1940.
243	10275	Van Itterbeek, A. and Claes, A., "Viscosity of Gaseous Oxygen at Low Temperatures. Dependence on the Pressure," Physica, 3, 275-81, 1936.
244	11919	Van Itterbeek, A. and Claes, A., "The Viscosity of Hydrogen and Deuterium Gas Between 293 K and 14 K," Physica, 5, 938-44, 1938.
245	11684	Van Itterbeek, A. and Claes, A., "Viscosity of Light Hydrogen Gas and Deuterium Between 293 K and 14 K," Nature, 142, 793-4, 1938.
246	11923	Van Itterbeek, A. and Keesom, W. II., "Measurements on the Viscosity of Helium Gas Between 293 and 1.6 K," Physica, $\underline{5}$, 257-69, 1938.
247	3653	Van Itterbeek, A. and van Paemel, O., "Measurements of the Viscosity of Gases for Low Pressures at Room Temperature and at Low Temperatures," Physica, 7, 273-83, 1940.
248	9295	Van Itterbeek, A. and van Paemel, O., "Measurements on the Viscosity of Argon Gas at Room Temperature and Between 90 and 55 K," Physica, $\underline{5}$, 1009-12, 1938.
249	7177	Van Itterbeek, A. and Keesom, W.H., "Measurements of the Viscosity of Oxygen Gas at Liquid Oxygen Temperatures," Physica, 2, 97-103, 1935.
250	4315	Van Itterbeek, A. and van Paemel, O., "Measurements of the Viscosity of Neon, Hydrogen, Dueterium and Helium as a Function of the Temperature, between Room Temperature and Liquid-Hydrogen Temperatures," Physica, 7, 265-72, 1940.
251	5420	Van Itterbeek, A., Schapink, F.W., Van den Berg, G.J., and Van Beek, H.J.M., "Measurements of the Viscosity of Helium Gas at Liquid-Helium Temperatures as a Function of Temperature and Pressure," Physica, 19, 1158-62, 1953.
252	5419	Van Itterbeek, A., van Paemel, O., and Van Lierde, J., "The Viscosity of Gas Mixtures," Physica, 13, 88-95, 1947.
253	5312	Van Paemel, O., "Measurements and Theoretical Considerations Relating to the Viscosity of Gases and Condensed Gases," Verh Kon Vlaamsche Acad. Wetensch, Letteren Schoone Kunsten Belgie, Klasse Wetensch., 3(3), 3-59, 1941.
254	5279	Vasilesco, V., "Experimental Research on the Viscosity of Gases at High Temperatures," Ann. Phys., 20, 292-334, 1945.
255	8260	Vasilesco, V., "Experimental Research on the Viscosity of Gases at High Temperatures," Ann. Phys., 20, 137-76, 1945.
256	24620	Verschaffelt, J.E. and Nicaise, C., "The Viscosity of Liquefied Gases. IX. Preliminary Determination of the Viscosity of Liquid Hydrogen," Proc. Acad. Sci. (Amsterdam), 19, 1084-98, 1917.
257	8360	Vogel, H., "The Viscosity of Several Gases and its Temperature Dependence at Low Temperatures," Ann. Physik, <u>43</u> , 1235-72, 1914.
258	24645	Volker, E., "The Viscosity of Carbon Dioxide and Hydrogen at Low Temperatures," Halle Univ. Doctoral Dissertation, 32 pp., 1910.
259	26019	Vukalovich, M.P., "Thermodynamic Properties of Water and Steam," V.E.B. Verlag Technik, Berlin, 245 pp., 1958.
260	24621	Warburg, E. and von Babo, L., "The Relation between Viscosity and Density of Liquid, Particularly Gaseous Liquid Bodies," Wied. Ann., <u>17</u> , 390-427, 1882.
261	24628	Wellman, E.J., "Viscos'ty Determination for Several Fluorinated Hydrocarbon Vapors with a Rolling Ball Viscometer," Purdue Univ. Ph.D. Thesis, 103 pp., 1955. [Univ. Microfilms Publ. UM-13959]
262	28033	Wilbers, O.J., "Viscosity Measurements of Several Hydrocarbon Vapors at Low Temperatures," Purdue Univ. M.S. Thesis, 77 pp., 1961.
263	7633	Williams, F.A., "The Effect of Temperature on the Viscosity of Air," Proc. Roy. Soc. (London), A110, 141-67, 1926.

Ref. No.	TPRC No.	
264	3110	Wobser, R. and Muller, F., "The Viscosity of Gases and Vapors and the Measurement of Viscosity with the Hoppler Viscometer," Kolloid-Beihefte, <u>52</u> , 165-276, 1941.
265	24629	Witzell, O.W. and Kamien, C.Z., "Viscosity of Refrigerants," ASHRAE J., 65, 663-74, 1959.
266	22277	Yen, K.L., "An Absolute Determination of the Coefficients of Viscosity of Hydrogen, Nitrogen and Oxygen," Phil. Mag., 38, 582-97, 1919.
267	27786	Zaloudik, P., "Viscosity Measurements with Hopplers Viscometer," Chem. Prumysl., 12, 81-3, 1962.
268	8847	Zhdanova, N.F., "Temperature Dependence of the Viscosity of Liquid Argon," Zhur. Eksptl. i Theoret. Fiz., 31(4), 724-5, 1956; English translation: Soviet PhysJETP, 4, 749-50, 1957.
269	26032	Ziegler, E., "Concerning the Thermal Conductivity of Ethane and Methane," Phil. Diss. Halle Univ., 39 pp., 1904.
270	24624	Zimmer, O., "The Viscosity of Ethylene and Carbon Monoxide and its Change at Low Temperatures," Halle Univ. Doctoral Dissertation, 30 pp., 1912.
271	1661	Hilsenrath, J. and Touloukian, Y.S., "The Viscosity, Thermal Conductivity, and Prandtl Number for Air, O ₂ , N ₂ , NO, H ₂ , CO, CO ₂ , H ₂ O, He, and A," The Transactions of the ASME, <u>76</u> , 1967-85, 1954.
272		E. I. duPont de Nemours and Co., Inc., Methyl Chloride refrigerant Technical Note.
273	18993	Titani, T., "Viscosity of Vapors of Organic Compounds. II," Bull. Chem. Soc. Japan, <u>5</u> , 98-108, 1930.
274	23548	Benning, A. F. and McHarness, R. C., "Thermodynamic Properties of Freon-11 Trichloromonofluoromethane (CCl ₃ F) with Addition of Other Physical Properties," E. I. duPont Technical Note T-11-B, 11 pp., 1938.
275	23552	E. l. duPont de Nemours and Co., Inc., "Properties and Applications of the Freon Fluorinated Hydrocarbons," Bulletin B-2, 11 pp., 1957.
276	26045	Pennsalt Chemicals, Isotron Controlled-Process Refrigerants," Leaflet, 3 pp., 1957.
277	60184	E. I. duPont de Nemours and Co., Inc., "Thermodynamic Properties of Freon-12 Refrigerant," Technical Note 12, 31 pp., 1956.
278	24144	Thornton, E., "Viscosity and Thermal Conductivity of Binary Gas Mixtures. Krypton-Argon, Krypton-Neon, and Krypton-Helium," Proc. Phys. Soc. (London), <u>77</u> , 1166-9, 1961.
279	23543	E. I. duPont de Nemours and Co., Inc., "Thermodynamic Properties of Freon-114 Refrigerant $CClF_2$ - $CClF_2$ with Addition of Other Physical Properties," Technical Note T-114, 11 pp., 1944.
280	60185	E. I. duPont de Nemours and Co., Inc., "Thermodynamic Properties of Freon C318 Refrigerant," Technical Note C-318, 35 pp., 1964.
281		E. I. duPont de Nemours and Co., Inc., "Transport Properties of Freon Fluorocarbons," Technical Note C-30, 23 pp., 1967.
282	30191	Huth, F., "The Viscosity of Liquid Neon," Cryogenics, 2(6), p. 368, 1962.
283	33752	Corruccini, R.J., "Properties of Liquid Hydrogen," Meeting Int. Inst. of Refrigeration, Comm. I, NBS, 53 pp., 1965.
284	5211	Swindells, J.F., Cole, J.R., and Godfrey, T.B., "Absolute Viscosity of Water at 20 Degrees," J. Research Natl. Bur. Stand. (Res. Paper No. 2279), 48, 1-31, 1952.
285	19391	Roscoe, R. and Bainbridge, W., "Viscosity Determination by the Oscillating Vessel Method. II. The Viscosity of Water at 20 Degrees," Proc. Phys. Soc., <u>72</u> , 585-95, 1958.
286	22284	Ray, S., "Viscosity of Air in a Transverse Electric Field," Phil. Mag., 43, 1129-34, 1922.
287	22434	Nasini, A.G., "Molecular Dimensions of Organic Compounds. II. Viscosity of Vapors. Benzene, Toluene and Cyclohexane," Proc. Roy. Soc. (London), <u>123</u> , 692-704, 1929.
288	10641	Spencer, A.N. and Trowbridge-Williams, J.L., "The Viscosity of Gaseous Boron Trifluoride," UKAEA and ASTIA IGR-R-CA-235, 8 pp., 1957. [AD 200 161]
289	6914	Raw, C.J.G., "Properties of the Boron Halides. V. The Intermolecular Force Constants of Boron Trifluoride," J. S. African Chem. Inst., 7, p. 20, 1954.
290	6897	Cooke, B.A. and MacKenzie, H.A.E., "Properties of the Boron Halides. I. Viscosity of Boron Trifluoride in the Range 20-200 Degrees," J. S. African Chem. Inst., 4, 123-9, 1951.
291	23835	Panchenkov, G.M., Makarov, A.V., Dyachenko, V.Ya., and Moiseev, V.D., "Viscosity of Boron Trifluoride," Vestnik Moskovskogo Univ. Seriya II, Khim., <u>17</u> , 11-3, 1962.
292	18306	Mueller, C.R. and Ignatowski, A.J., "Equilibrium and Transport Properties of the Carbon Tetrachloride- Methylene Chloride System," J. Chem. Phys., 32, 1430-4, 1960.
293	20442	Sperry, E. H. and Mack, E., Jr., "The Collision Area of the Gaseous Carbon Tetrachloride Molecule," J. Am. Chem. Soc., <u>54</u> (3), 904-7, 1932.
. 294	22340	Bleakney, W. M., "Measurements on the Vapor Viscosities of the Two Common Pentanes, Two Pentanes and Carbon Tetrachloride," Physics, 3, 123-36, 1932.

TPRC Ref. No. No. Rankine, A.O., "The Viscosities of Gaseous Chlorine and Bromine," Nature (London), 88, 469-70, 1912. 295 25136 21416 Trautz, M. and Winterkorn, H., "Viscosity, Heat Conductivity and Diffusion of Gaseous Mixtures. XVIII. 296 The Measurement of Viscosity in Corrosive Gases (Cl2, HI), "Ann. Physik, 10(5), 511-28, 1931. 297 22230 Campetti, A., "Physical Constants of Chlorine Under the Action of Light," Nuovo Cimento, 17(1), 143-58, 1919. 298 13456 Van Cleave, A.B. and Maass, O., "The Viscosities of Deuterium-Hydrogen Mixtures," Can. J. Research, <u>13</u>, p. 384, 1935. 29823 299 Amdur, I., "Viscosity of Deuterium," J. Am. Chem. Soc., 57, 588-9, 1935. 300 16908 Khalilov, K., "Viscosity of Liquids and Saturated Vapors at High Temperatures and Pressures," J. Exptl. Theoret. Phys. USSR, 9, 335-45, 1939. Reid, R.C. and Belenyessy, L.T., "Viscosity of Polar Vapor Mixtures," J. Chem. Eng. Data, 5, 150-1, 301 18209 302 10407 Eucken, A., "On the Thermal Conductivity, Specific Heat and Viscosity of Gas," Physik Z., 14, p. 324, 303 24642 Pedersen, F.M., "The Influence of Molecular Structure Upon the Internal Friction of Certain Isometric Ether Gases," Phys. Rev., 25, 225-54, 1907. Franck, E.U. and Stober, W., "The Viscosity and Effective Molecular Diameter of Fluorine," Z. 304 5441 Naturforsch., 7, 822-3, 1952. Melaven, R. M. and Mack, E., "The Collision Areas and Shapes of Carbon Chain Molecules in the Gaseous 305 State: Normal Heptane, Normal Octane, Normal Nonane, "J. Am. Chem. Soc., 54, 888-904, 1932. 306 30266 Agaev, N.A. and Golubev, I.F., "The Viscosities of Liquid and Gaseous n-Heptane and n-Octane at High Pressures and at Different Temperatures," Gazovaya Prom., 8, 50-3, 1963. Carmichael, L. T. and Sage, B. H., "Viscosity and Thermal Conductivity of Nitrogen-n-Heptane and 33779 307 Nitrogen-n-Octane Mixtures," A.I.Ch. E. J., 2(3), 559-62, 1966. 308 6059 McCoubrey, J.C., McCrea, J.N., and Ubbelohde, A.R., "The Configuration of Flexible Polymethylene Molecules in the Gas Phase, "J. Chem. Soc., 1961-71, 1951. 309 22413 Harle, H., "Viscosities of the Hydrogen Halides," Proc. Roy. Soc. (London), A100, p. 429, 1922. Pal, A.K. and Barua, A.K., "Viscosity and Intermolecular Potentials of Hydrogen Sulphide, Sulphur 310 41442 Dioxide and Ammonia," Trans. Faraday Soc., 63(2), 341-6, 1967. 311 20635 Rankine, A.O., "On the Viscosities of the Vapor of Iodine," Proc. Roy. Soc. (London), 91A(8), p. 201, Clifton, D.G., "Measurements of the Viscosity of Krypton," J. Chem. Phys., 38, p. 1123, 1963. 312 29802 36848 Trappeniers, N.J., Botzen, A., Van Oosten, J., and Van den Berg, H.R., "The Viscosity of Krypton 313 between 25 and 75 C and at Pressures Up to 2000 Atm.," Physica, 31, p. 945, 1965. 314 13871 Trautz, M. and Freytag, A., "Viscosity, Heat Conductivity and Diffusion in Gaseous Mixtures. XXVIII. The Viscosity of Cl2, NO, and NOCl. Viscosity During the Reaction 2 NO + Cl2 = 2 NOCl, "Ann. Physik., 20, 135-44, 1934. 315 21422 Trautz, M. and Gabriel, E., "Viscosity, Heat Conductivity and Diffusion in Gaseous Mixtures. XX. The Viscosity of Nitric Oxide and Its Mixtures with Nitrogen," Ann. Physik, 11, 606-10, 1931. 316 29728 Peter, S. and Wagner, E., "The Methodics of Accurate Viscosity Measurements with Capillary Viscometers. II. Influence of the Capillary Forces and of the Change of the Hydrostatic Pressure on the Measurement," Z. Physik. Chem., 17, 199-219, 1958. 317 Beer, H., "Heat Transfer in Dissociated Gases," Chem. Ing. Tech., 31(10), p. 1047, 1965. 318 Timrot, D. L., Serednickaja, M. A., and Traktueva, S. A., "Investigation of the Viscosity of Dissociating Nitrogen Tetraoxide by the Method of a Vibrating Disc," Teplofiz. Vys. Temp., 7(5), 885-92, 1969. 22329 Day, R.K., "Variation of the Vapor Viscosities of Pentane and Isopentane with Pressure by the Rotating 319 Cylinder Method," Phys. Rev., 40, 281-90, 1932. 30480 McCoubrey, J.C. and Singh, N.M., "The Vapor-Phase Viscosities of the Pentanes," J. Phys. Chem., 320 <u>67</u>, 517-8, 1963. 321 21541 Stewart, W. W. and Masss, O., "The Coefficient of Viscosity of Sulphur Dioxide Over a Low Temperature Range, "Can. J. Research, 6, p. 453, 1932. 25090 Smith, C.J., "The Viscosity and Molecular Dimensions of Sulfur Dioxide," Phil. Mag., 44, 508-11, 322

Kestin, J. and Nagashima, A., "Viscosity of Neon-Helium and Neon-Argon Mixtures at 20 and 30 C,"

Thornton, E., "Viscosity and Thermal Conductivity of Binary Gas Mixtures. Xenon-Krypton, Xenon-

Argon, Xenon-Neon, and Xenon-Helium," Proc. Phys. Soc. (London), 76, 104-12, 1980.

37222

15622

J. Chem. Phys., 40, 3648-54, 1964.

323

- Ref. TPRC
- No. No.
- 325 21675 Nasini, A.G. and Rossi, C., "Viscosity of Mixtures of Rare Gases. I," Gazz. Chim. Ital., <u>58</u>, 898-912, 1928.
- 326 39402 Kestin, J., Kobayashi, Y., and Wood, R.T., "The Viscosity of Four Binary, Gaseous Mixtures at 20 and 30 C," Physica, 32(6), 1065-89, 1966.
- 327 5390 van Lierde, J., "Measurements of Thermal Diffusion and Viscosity of Certain Gas Mixtures at Low and Very Low Temperatures," Verh. Koninkl. Vlaam. Acad. Wetensch. Belg., Kl. Wetensch., 9(24), 7-78, 1947.
- 328 34992 Di Pippo, R., Kestin, J., and Oguchi, K., "Viscosity of Three Binary Gaseous Mixtures," J. Chem. Phys., 46(12), 4758-64, 1967.
- 329 48647 Kestin, J. and Yata, J., "Viscosity and Diffusion Coefficient of Six Binary Mixtures," J. Chem. Phys., 49(11), 4780-91, 1968.
- 330 39148 Kao, J.T.F. and Kobayashi, R., "Viscosity of Helium and Nitrogen and Their Mixtures at Low Temperatures and Elevated Pressures," J. Chem. Phys., 47(8), 2836-49, 1967.
- 331 31983 Makavetskas, R.A., Popov, V.N., and Tsederberg, N.V., "An Experimental Investigation of the Viscosity of Mixtures of Nitrogen and Helium," Teplofiz. Vys. Temp., 1(3), 348-55, 1963.
- 332 16644 Johnson, C.A., "Viscosity of Gas Mixtures," SURI Ch. E. 273-566F3, AECU-3301, 119 pp., 1956.
- 333 39459 Breetveld, J.D., Di Pippo, R., and Kestin, J., "Viscosity and Binary Diffusion Coefficient of Neon-Carbon Dioxide Mixtures at 20 and 30 C," J. Chem. Phys., 45(1), 124-6, 1966.
- 334 6650 Strauss, W.A. and Edse, R., "Measurements of the Viscosity of Gas Mixtures," WADC TR 57-484, 15 pp., 1957. [AD 142 082]
- 335 39179 DeWitt, K.J. and Thodos, G., "Viscosities of Binary Mixtures in the Dense Gaseous State: The Methane-Carbon Dioxide System," Can. J. Research, 44(3), 148-51, 1966.
- 336 15651 Kestin, J. and Leidenfrost, W., "Effect of Pressure on the Viscosity of N_2 -CO₂ Mixtures," Physica, $\underline{25}$, 525-36, 1959.
- 337 39122 Gururaja, G.J., Tirunarayanan, M.A., and Ramchardran, A., "Dynamic Viscosity of Gas Mixtures," J. Chem. Eng. Data, 12(4), 562-7, 1967.
- 338 39502 DeWitt, K.J. and Thodos, G., "Viscosities of Binary Mixtures in the Dense Gaseous State: The Methane-Tetrafluoromethane System," Physica, 32(8), 1459-72, 1966.
- 339 30437 Kaw, C.J.G. and Tang, H., "Viscosity and Diffusion Coefficients of Gaseous Sulfur Hexafluoride-Carbon Tetrafluoride Mixtures," J. Chem. Phys., 39(10), 2616-8, 1963.
- 22179 Alfons, K. and Walter, K., "Experimental Investigation of the Coefficients of Viscosity of Nitric Oxide, Propane and Their Mixtures with Hydrogen," Monatsh. Chemie, 44, 307-16, 1924.
- 341 36791 Pal, A.K. and Barua, A.K., "Viscosity of Hydrogen-Nitrogen and Hydrogen-Ammonia Gas Mixtures," J. Chem. Phys., 47(1), 216-8, 1967.
- 342 36031 Dolan, J.P., Ellington, R.T., and Lee, A.L., "Viscosity of Methane-Butane Mixtures," J. Chem. Eng. Data, 9(4), 484-7, 1964.
- 40602 Carmichael, L.T., Virginia, B., and Sage, B.H., "Viscosity of a Mixture of Methane and n-Butane," J. Chem. Eng. Data, 12(1), 44-7, 1967.
- 344 21156 Gerf, S. F. and Galkov, G.I., "Viscosity of Liquefied Pure Gases and Their Mixtures. III," J. Tech. Phys. (USSR), 11, 801-8, 1941.
- 27488 Hawksworth, W.A., Nourse, H.H.E., and Raw, C.J.G., "High-Temperature Gas Viscosities. III. NO-N₂O Mixtures," J. Chem. Phys., <u>37</u>(4), 918-9, 1962.
- 346 22885 Jung, G. and Schmick, H., "The Influence of Molecular Attractive Forces on the Viscosity of Gas Mixtures," Z. Physik. Chem., <u>B7</u>, 130-47, 1930.
- 347 49917 Pal, A.K. and Barua, A.K., "Viscosity of Polar-Nonpolar Gas Mixtures," Indian J. Phys., <u>41</u>(10), 713-8, 1967.
- 34795 Burch, L.G. and Raw, C.J.G., "Transport Properties of Polar-Gas Mixtures. I. Viscosities of Ammonia-Methylamine Mixtures," J. Chem. Phys., 47(8), 2798-801, 1967.
- 349 39381 Chakraborti, P.K. and Gray, P., "Viscosities of Gaseous Mixtures Containing Polar Gases: More Than One Polar Constituent," Trans. Faraday Soc., 62(7), 1769-75, 1966.
- 350 57310 Chang, K.C., Hesse, R.J., and Raw, C.J.G., "Transport Properties of Polar Gas Mixtures SO₂ + SO₂F₂ Mixtures," Trans. Faraday Soc., <u>66</u>, 590-6, 1970.
- 351 37951 Katti, P.K. and Chaudhri, M.M., "Viscosities of Binary Mixtures of Benzyl Acetate with Dioxane, Aniline, and m-Cresol," J. Chem. Eng. Data, 9(3), 442-3, 1964.
- Katti, P.K. and Prakash, O., "Viscosities of Binary Mixtures of Carbon Tetrachloride with Methanol and Isopropyl Alcohol," J. Chem. Eng. Data, 11(1), 46-7, 1966.
- 353 33143 Lee, A.L., Gonzalez, M.H., and Eakin, B.E., "Viscosity of Methane-n-Decane Mixtures," J. Chem. Eng. Data, 11(3), 281-7, 1236.

Ref. No.	TPRC No.	
354	28616	Lewis, J.E., "Thermodynamic and Intermolecular Properties of Binary Liquid Systems," Purdue Univ. Ph. D. Dissertation, 151 pp., 1956.
355	34565	Ridgway, K. and Butler, P.A., "Some Physical Properties of the Ternary System Benzene-Cyclohexane-n-Hexane," J. Chem. Eng. Data, 12(4), 509-15, 1967.
356	32932	Vatolin, N.V., Vostrayakov, A.A., and Esin, O.A., "Viscosity of Molten Ferrocarbon Alloys," Phys. Metals Metallography (USSR), 15(2), 53-8, 1963.
357	7466	Yao, T.P. and Kondic, V., "The Viscosity of Molten Tin, Lead, Zinc, Aluminum, and Some of Their Alloys," J. Inst. Metals, 81(1), 17-24, 1952.
358	48549	Campbell, A.N. and Van der Kouive, E.T., "Studies on the Thermodynamics and Conductances of Molten Salts and Their Mixtures. V. The Density, Change of Volume on Fusion, Viscosity, and Surface Tension of Sodium Chlorate and of Its Mixtures with Sodium Nitrate," Can. J. Chem., 46(8), 1279-86, 1968.
359	5415	Morrison-Jackson, W., "Viscosities of the Binary Gas Mixtures Methane-Carbon Dioxide and Ethylene-Argon," J. Phys. Chem., <u>60</u> , 789-91, 1956.
360	48784	Marsh, K.N., "Mutual Diffusion in Octamethylcyclotetrasiloxane Mixtures," Trans. Faraday Soc., 64(4), 894-901, 1968.
361	40696	Strunk, M.R. and Fehsenfeld, G.D., "The Prediction of the Viscosity of Multicomponent Nonpolar Gaseous Mixtures at Atmospheric Pressure," Univ. of Missouri at Rolla, M.S. Thesis, 95 pp., 1964. [AD18254]
362	52 9 7	Schmid, C., "Viscosity of Gases and Gaseous Mixtures at High Temperatures," Gas-und Wasserfach, 85, 92-103, 1942.
363	14264	Herning, F. and Zipperer, L., "Calculation of the Viscosity of Technical Gas Mixtures from the Viscosity of the Individual Gases," Gas-und Wasserfach, 79, 49-54, 69-73, 1936.
364	5407	Kenney, M.J., Sarjant, R.J., and Thring, M.W., "The Viscosity of Mixtures of Gases at High Temperatures," Brit. J. Appl. Phys., 7(9), 324-9, 1956.
365	10340	Carr, N. L., "Viscosities of Natural Gas Components and Mixtures," Inst. Gas, Technol. Res. Bull. No. 23, June 1953.
366	40097	Gnezdilov, N.E. and Golubev, I.F., "Viscosity of Methane-Nitrogen and Methane-Nitrogen-Hydrogen Mixtures at Temperatures from 298 to 473 K and Pressures up to 490.3 x 10 ⁵ N/m ² ," Teploenergetika, 14(1), 89-90, 1967.
367		Reamer, H. H., Sage, B. H., and Lacey, W. N., "Phase Equilibria in Hydrocarbon Systems," Ind. Eng. Chem., 42(3), 534-9.
368		Canjar, L.N. and Manning, F.S., <u>Thermodynamic Properties and Reduced Correlations for Gases</u> , Gulf Publishing Co., Houston, Texas, 212 pp., 1967.
369		Reamer, H.H., Korpi, K.J., Sage, B.H., and Lacey, W.N., "Phase Equilibria in Hydrocarbons Systems Ind. Eng. Chem., 39(2), 206-9, 1947.
370		Witonsky, R. and Miller, J.G., "Compressibility of Gases. IV. The Burnett Method Applied to Gas Mixtures at Higher Temperatures. The Second Virial Coefficients of the Helium-Nitrogen System from 175 to 475 Degrees," J. Am. Chem. Soc., 85, 282-6, 1963.
371	63037	Phillips, T.W. and Murphy, K.P., "Liquid Viscosity of Halogenated Refrigerants," ASHRAE Trans., 76, 146-56, 1970.
372	33096	Petker, I. and Mason, D., "Viscosity of the N_2O_4 - NO_2 Gas System," J. Chem. Eng. Data, $\underline{9}(2)$, 280-1, 1964.
373	13868	Trautz, M. and Heberling, R., "Viscosity, Heat Conductivity, and Diffusion in Gaseous Mixtures. XXV. Internal Viscosity of Xenon and Its Mixtures with Hydrogen and Helium," Ann. Physik, 20, 118-20, 1934.
374	30265	Agaev, N.A. and Golubev, I.F., "The Viscosities of Liquid and Gaseous n-Pentane at High Pressures at Different Temperatures," Gazovaya Prom., $\underline{8}(5)$, $45-50$, 1963.
375		Miller, J.E., Brandt, L.W., and Stroud, L., "Compressibility of Helium-Nitrogen Mixtures," J. Chem. Eng. Data, 5, 6-9, 1960.
376		Miller, J.F., Brandt, L.W., and Stroud, L., "Compressibility Factors for Helium and Helium-Nitrogen

Mixtures," U.S. Bureau of Mines Rept. Invest., 5845, 11 pp., 1961.

377

5390

van Lierde, J., "Measurement of Thermal Diffusion and Viscosity of Certain Gas Mixtures at Low and Very Low Temperatures," Verhandel. Koninkl. Vlaam. Acad. Weten-Schap. Belg. Kl. Wetenschap., 9(24), 7-78, 1947.

Material Index

Material Index

Material Name	Page	Material Name	Page
Acetone	98	Argon - Ammonia	342
Acetylene	100	Argon - Carbon Dioxide	285
Air (R-729)	608	Argon - Carbon Dioxide - Methane	583
Air – Ammonia	624	Argon - Helium	237
Air - Carbon Dioxide	614	Argon - Helium - Air - Carbon Dioxide	600
Air - Carbon Dioxide - Methane	616	Argon – Helium – Air – Methane	601
Air - CH ₄	617	Argon - Helium - Carbon Dioxide	581
Air - CO ₂	614	Argon - Helium - Carbon Dioxide - Methane	594
Air - CO ₂ - CH ₄	616	Argon - Helium - Methane	582
Air - HCl	626	Argon - Helium - Neon	580
Air - H ₂ S	628	Argon - Hydrogen	289
Air - Hydrogen Chloride	626	Argon - Krypton	249
Air - Hydrogen Sulphide	628	Argon - Neon	251
Air - Methane	617	Argon - Nitrogen	294
Air - NH ₃	624	Argon - Sulfur Dioxide	348
Ammonia (R-171)	68	Argon - Xenon	258
Ammonia – Methylamine	540	Benzene	102
Aniline – Benzyl Acetate	543	Benzene – Cyclohexane	350
Ar - Air - CO ₂	602	Benzene - n-Hexane	352
Ar - Air - CO ₂ - CH ₄	603	Benzene - Octamethylcyclotetrasiloxane	354
Ar - CO ₂	285	Benzyl Acetate - meta-Cresol	545
Ar - CO ₂ - CH ₄	583	BF3	74
Ar - He - Air - CH ₄	601	Boron Trifluoride (R-768)	74
Ar - He - Air - CO ₂	600	Bromine	9
Ar - He - CH ₄	582	Bromotrifluoromethane (R-13B1)	104
Ar - He - CO ₂	581	i-Butane (R-600a)	109
Ar - He - CO ₂ - CH ₄	594	n-Butane (R-600)	114
Ar - NH ₃	342	n-Butane – Methane	357
Ar - SO ₂	348	Carbon Dioxide (R-744)	119
Argon (R-740)	2	Carbon Dioxide – Carbon Monoxide – Hydrogen – Methane – Nitrogen	620
Argon – Air – Carbon Dioxide Argon – Air – Carbon Dioxide – Methane	602 603	Carbon Dioxide - Carbon Monoxide - Hydrogen - Methane - Nitrogen - Oxygen	621

Material Name	Page	Material Name	Page
MARCE IN AMERIC	Luge		
Carbon Dioxide - Carbon Monoxide - Hydrogen - Methane - Nitrogen - Oxygen -		CCIF ₃	145
Heavier Hydrocarbons	622	CCIF ₃ - CHF ₃	563
Carbon Dioxide - Carbon Monoxide - Hydrogen - Nitrogen - Oxygen	623	CCl ₂ F ₂ CCl ₂ F ₂ - C ₂ ClF ₅	150 558
Carbon Dioxide - Hydrogen	366	$CCl_2F_2 - C_2H_4F_2$	553
Carbon Dioxide - Hydrogen - Nitrogen - Oxygen	595	CCl ₃ F	220
Carbon Dioxide - Hydrogen - Oxygen	584	C,CIF,	140
Carbon Dioxide - Hydrogen Chloride	501	- •	160
Carbon Dioxide - Nitrogen - Oxygen	585	C ₂ Cl ₂ F ₄	225
Carbon Dioxide - Methane	369	C ₂ Cl ₃ F ₃	131
Carbon Dioxide - Nitrogen	376	CF CU	l -
Carbon Dioxide - Nitrous Oxide	383	CF, - CH,	401
Carbon Dioxide - Oxygen	385	CF ₄ - SF ₆	
Carbon Dioxide - Propane	387	C ₄ F ₈	199
Carbon Dioxide - Sulfur Dioxide	503	$n-C_7F_{16} - (CH_3)_2CHCH_2C(CH_3)_3$	438
Carbon Monoxide (R-728A)	125	CH ₁	186
Carbon Monoxide – Ethylene	389	CH _t - N ₂	465
Carbon Monoxide – Hydrogen	391	CH ₄ - NH ₃	526
Carbon Monoxide - Nitrogen	393	CH ₁ - O ₂	474
Carbon Monoxide - Oxygen	397	CH ₄ - O ₃ H ₈	477
Carbon Tetrachloride (R-10)	129	CH ₄ - SO ₂	529
Carbon Tetrachloride - Dichloromethane	506	C ₂ H ₄	174
Carbon Tetrachloride - Isopropyl Alcohol	508	C ₂ H ₄ - CH ₄	428
Carbon Tetrachloride - Methanol	510	C ₂ H ₄ - H ₂	425
Carbon Tetrachloride -		$C_2H_4 - N_2$	432
Octamethylcyclotetrasiloxane	399	$C_2H_4 - NH_3$	514
Carbon Tetrafluoride (R-14)	131	C ₂ H ₄ - O ₂	434
Carbon Tetrafluoride - Methane	401	C ₂ H ₈	167
Carbon Tetrafluoride - Sulfur Hexafluoride	406	C ₂ H ₆ - CH ₄	421
CBrF ₃	104	$C_2H_6 - CH_4 - N_2 - C_3H_8$	596
CC14	129	$C_2H_6 - C_2H_4$	417
CC1 ₄ - (CH ₃) ₂ CHOH	508	C ₂ H ₆ - C ₃ H ₈	423
CC1 ₄ - CH ₂ C1 ₂	506	C ₂ H ₆ - H ₂	419
СС1 ₄ - СН ₃ ОН	510	C ₃ H ₆	213
CC1 ₄ - [OSi(CH ₃) ₂] ₄	399	C₃H ₈	208

Material Name	Page	Material Name	Page
i-C ₄ H ₁₀	109	(CH ₃) ₂ O - SO ₂	549
n-C ₄ H ₁₀	114	(C ₂ H ₅) ₂ O	180
n-C ₄ H ₁₀ - CH ₄	357	C ₄ H ₈ O ₂ - CH ₃ COOCH ₂ C ₆ H ₅	512
n-C ₅ H ₁₂	206	сн₃он	192
C ₆ H ₆	102	C₂H₅OH	172
C ₆ H ₆ -C ₆ H ₁₂	350	со	125
C ₆ H ₆ - n-C ₆ H ₁₄	352	CO - C ₂ H ₄	389
$C_6H_6 - [OSi(CH_3)_2]_4$	354	CO - H ₂	391
$C_6H_{12} - n-C_6H_{14}$	408	CO - N ₂	393
n-C ₆ H ₁₄	184	CO - O ₂	397
n-C ₇ H ₁₆	182	CO ₂	119
n-C ₇ H ₁₆ - N ₂	436	CO ₂ - CH ₄	369
n-C ₈ H ₁₈	204	$CO_2 - C_3H_8$	387
n-C ₁₀ H ₂₂ - CH ₄	410	CO ₂ - CO - H ₂ - CH ₄ - N ₂	620
СНСН	100	CO ₂ - CO - H ₂ - CH ₄ - N ₂ - O ₂	621
C ₆ H ₅ CH ₃	218	$CO_2 - CO - H_2 - CH_1 - N_2 - O_2$ - Heavier Hydro-	
сисі3	138	carbons	622
CH₃Cl	194	CO ₂ - CO - H ₂ - N ₂ - O ₂	623
CH ₃ Cl - SO ₂	551	CO ₂ - H ₂	366
CHCIF ₂	133	CO ₂ - H ₂ - N ₂ - O ₂	595
CHCl₂F	155	CO ₂ - H ₂ - O ₂	584
(CH ₃)₂CO	98	CO ₂ - HCl	501
СH ₃ COOCH ₂ C ₆ H ₅ - CH ₃ C ₆ H ₄ OH	545	CO ₂ - N ₂	376
СНГ3	230	CO ₂ - N ₂ - O ₂	585
CH ₂ F ₂ - C ₂ ClF ₅	565	CO ₂ - N ₂ O	383
C2H4F2	165	CO ₂ - O ₂	385
Chlorine (R-771)	11	CO ₂ - SO ₂	503
Chlorodifluoromethane (R-22)	133	Cyclohexane - n-Hexane	408
Chloroform (R-20)	138	D ₂ - HD	415
Chloropentafluoroethane (R-115)	140	n-Decane - Methane	410
Chlorotrifluoromethane (R-13)	145	Deuterium (R-704A)	13
CeH5NH2 - CH3COOCH2CeH5	543	Deuterium - Hydrogen	413
(CH ₃) ₂ O - CH ₃ C1	547	Deuterium - Hydrogen Deuteride	415
(CH ₃) ₂ O - CH ₃ C1 - SO ₂	592	Dichlorodifluoromethane (R-12)	150
		Dichlorofluoromethane (R-21)	155

Material Name	Page	Material Name	Page
Dichlorotetrafluoroethane (R-114)	160	He - Air - CO ₂ - CH ₄	605
1, 1-Difluoroethane (R-152a)	165	$He - n-C_4H_{10} - C_2H_6 - CH_4 - N_2 - C_3H_8 - i-C_4H_{10}$	607
Dimethyl Ether – Methyl Chloride	547	He - CO ₂	297
Dimethyl Ether - Methyl Chloride - Sulphur Dioxide	592	Helium (R-704)	18 604
Dimethyl Ether – Sulfur Dioxide	549	Helium - Air - Carbon Dioxide Helium - Air - Carbon Dioxide - Methane	605
Dioxane – Benzyl Acetate	512	}	606
Ethane (R-170)	167	Helium - Air - Methane	"
Ethane - Ethylene	417	Helium - n-Butane - Ethane - Methane - Nitrogen - Propane - i-Butane	601
Ethane - Hydrogen	419	Helium - Carbon Dioxide	29
Ethane - Methane	421	Helium - Hydrogen	30
Ethane - Propane	423	Helium - Krypton	26
Ethyl Alcohol	172	Helium - Neon	26
Ethyl Ether (R-610)	180	Helium - Nitrogen	30
Ethylene (R-1150)	174	Helium - Oxygen	32
Ethylene - Ammonia	514	Helium - Xenon	27
Ethylene - Hydrogen	425	n-Heptane	18
Ethylene - Methane	428	n-Heptane - Nitrogen	43
Ethane - Methane - Nitrogen - Propane	596	Hexadecafluoro-n-Heptane -	43
Ethylene - Nitrogen	432	2, 2, 4-Trimethylpentane	18
Ethylene - Oxygen	434	n-Hexane	
Fluorine (R-738)	16	HI	
H ₂ - CH ₄	442	H ₂ O	
H ₂ - CH ₄ - N ₂	587	H ₂ S	
H ₂ - C ₃ H ₈	463	Hydrogen, normal (R-702)	51
$H_2 - (C_2H_5)_2O$	519	Hydrogen - Ammonia	5
H ₂ - HC1	521	Hydrogen - Ethyl Ether	5
H ₂ - HD	440	Hydrogen - Hydrogen Chloride	4
H ₂ - NH ₃	516	Hydrogen – Hydrogen Deuteride	4
H ₂ - NO	445	Hydrogen - Methane	5
H ₂ - N ₂ O	458	Hydrogen - Methane - Nitrogen	4
H ₂ - SO ₂	523	Hydrogen - Nitrogen	
HC1	76	Hydrogen - Nitrogen	
He - Air - CH ₄	606	Hydrogen - Nitrous Oxide	
He - Air - CO ₂	604	Hydrogen - Oxygen	"

Material Name	Page	Material Name	Page
Hydrogen - Propane	463	Nitric Oxide - Nitrous Oxide	492
Hydrogen - Sulfur Dioxide	5 2 3	Nitric Oxide - Nitrogen	495
Hydrogen Chloride (R-736)	76	Nitrogen (R-728)	48
Hydrogen Iodide	78	Nitrogen - Ammonia	531
Hydrogen Sulfide (R-734)	80	Nitrogen - Oxygen	497
Iodine	35	Nitrogen Peroxide (R-746)	85
Iron - Carbon	573	Nitrous Oxide (R-744A)	87
Kr - CO ₂	331	Nitrous Oxide - Ammonia	534
Krypton (R-784)	37	Nitrous Oxide - Propane	499
Krypton - Carbon Dioxide	331	Nitrous Oxide - Sulfur Dioxide	536
Krypton - Neon	279	NO	82
Krypton - Xenon	281	NO - N ₂	495
Lead - Tin	576	NO - N ₂ O	492
Methane (R-50)	186	NO ₂	85
Methane - Ammonia	526	N ₂ O	87
Methane - Nitrogen	465	N ₂ O - C ₃ H ₈	499
Methane - Oxygen	474	N ₂ O - NH ₃	534
Methane - Propane	477	N ₂ O - SO ₂	536
Methane - Sulfur Dioxide	529	O ₂ - NH ₃	538
Methyl Alcohol	192	Octafluorocyclobutane (R-C318)	199
Methyl Chloride (R-40)	194	n-Octane	204
Methyl Chloride - Sulfur Dioxide	551	Oxygen (R-732)	56
N ₂ - NH ₃	531	Oxygen - Ammonia	538
N ₂ - O ₂	497	n-Pentane	206
NaClO ₃ - NaNO ₃	567	Propane (R-290)	208
Ne - CO ₂	334	Propylene (R-1270)	213
Neon (R-720)	41	Refrigerants	
Neon - Carbon Dioxide	334	R-10	129
Neon - Hydrogen	337	R-11	220
Neon - Nitrogen	339	R-12	150
Neon - Xenon	283	R-13	145
NH ₃	68	R-13B1	104
NH ₃ - CH ₃ NH ₂	540	R-14	131
Nitric Oxide (R-730)	82	R-20	138
		<u> </u>	1

Material Name	Page	Material Name	Page
R-21	155	R-744	119
R-22	133	R-744A	87
R-23	230	R-746	85
R-40	194	R-764	91
R-50	186	R-768	74
R-113	225	R-771	11
R-114	160	R-784	37
R-115	140	R-1150	174
R-152a	165	R-1270	213
R-170	167	Refrigerant 500 [Dichlorodifluoromethane (R-12) -	
R-290	208	1, 1-Difluoroethane (R-152a)	553
R-C318	199	Refrigerant 502 [Dichlorodifluoromethane (R-12) -	
R-500	553	Chloropentafluoroethane (R-115)	558
R-502	558	Refrigerant 503 (Chlorotrifluoromethane (R-13) -	
R-503	563	Trifluoromethane (R-23))	563
R-504	565	Refrigerant 504 [Methylene Fluoride (R-32) -	1
R-600	114	Chloropentafluoroethane (R-115)]	565
R-600a	109	so_2	91
R-610	180	SO ₂ - SO ₂ F ₂	570
R-702	24	Sodium Chlorate - Sodium Nitrate	567
R-704	18	Sulfur Dioxide (R~764)	91
R-704A	13	Sulfur Dioxide - Sulfuryl Fluoride	570
R-717	68	Toluene	218
R-718	94	Trichlorofluoromethane (R-11)	220
R-720	41	Trichlorotrifluoroethane (R-113)	225
R-728	48	Trifluoromethane (R-23)	230
R-728A	125	Water (R-718)	94
R-729	608	Xenon	62
R-7 :0	82		
R-732	56		
R-734	80	! !	
R-736	76		1
R-738	16	11	1
k-740	2		